高斯光束

合集下载

高斯光束 通俗

高斯光束 通俗

高斯光束通俗
(最新版)
目录
1.高斯光束的定义和特点
2.高斯光束的生成原理
3.高斯光束的应用领域
正文
一、高斯光束的定义和特点
高斯光束,又称高斯光束束腰,是指在传播过程中,光束的横截面上光强分布呈现高斯分布的光束。

高斯光束具有很多特点,例如,光束的束腰位置光强分布最为集中,呈高斯分布,离束腰越远,光强分布逐渐减弱。

此外,高斯光束的光学传输特性较好,光束的指向性和稳定性都相对较高。

二、高斯光束的生成原理
高斯光束的生成原理主要基于光的传播规律和高斯光束的聚焦特性。

一般来说,高斯光束可以通过两种方法生成:一种是通过透镜或反射镜等光学元件对光束进行调制,使得光束在传播过程中满足高斯分布;另一种是通过激光器等光源产生的光束,在传播过程中自然形成高斯分布。

三、高斯光束的应用领域
高斯光束在许多领域都有广泛的应用,例如在光通信、光学测量、激光加工、光学成像等方面。

高斯光束的光强分布特点使其在光通信领域具有很高的信噪比和传输速率;在光学测量领域,高斯光束的聚焦性能和指向稳定性使其成为理想的测量工具;在激光加工领域,高斯光束的优异光学性能使其在激光切割、打标等方面具有很高的加工精度和效率;在光学成像领域,高斯光束的成像质量高,可以提高成像系统的分辨率和成像质量。

综上所述,高斯光束以其独特的光学性能和广泛的应用领域,在光学领域具有重要的研究价值和实用意义。

第8章高斯光束

第8章高斯光束

l2 f 2
f
2
1
l f
(3) F 1 R(l) 1 (l f 2 )时,
2
2l
(4)F
时,
w0 w0
1
lim w0 lim
F
w F 0
F (l F )2 f 2
lim F
1
1
(l
- F)2 F
f F
2 2
w0 1 w0
w0 w0
1
l f
2
1
RR
2
F
25
结论
只有 F 1 R(l) ,才有聚焦作用
F15 q
五、透镜对高斯光束的变换规律
q=l+if q=-l+if
q Fq Fq
q、q:透镜处物、像高斯光束q参数
l、l :物、像高斯光束腰到透镜距离
f、f :物像高斯光束焦参数
q q
f(w0)
O
f(w0) Z
O
l F l
16
例1 某高斯光束焦参数为f=1m,将焦距F=1m 的凸透镜置於其腰右方l=2m处,求经透镜变换 后的像光束的焦参数f及其腰距透镜的距离l
解 (1)
0
f
f
02
3.14 106 3.14 106
1m
z=0.5m
q(z) பைடு நூலகம் if 0.5 i(m)
(2)
w(z) w0
1
z2 f2
w0
1
0.52 12
1.12mm
f2
12
R(z) z 0.5 2.5m
z
0.5
8
例8-2 高斯光束在某处的光斑半径为w=1mm, 等相

第三章--高斯光束及其特性

第三章--高斯光束及其特性

qM
AqM B 1 CqM D qM
D Ai 2B
1 (D A)2 4 B
§3.2 高斯光束与球面谐振腔的自再现模式
1 D A 1 (D A)2 4
i
qM 2B
B
1 q(z)
1 R(z)
i
2 (z)
R(z) 2B (D A)
(z) (
)1 2
B12
1
D
2
A
2
2
0 (z)
z
R(z
)
1
1
2(z) R(z)
R(z) 2
2
(
z
)
§3.1 基模高斯光束
3)基模高斯光束的特征参数:
➢ 用q参数表征高斯光束
u00
(
x
,
y
,
z
)
c00
0 (z
)
exp[
x2
2(
y2 z)
]exp{
i[k
(
z
x2 y2 ) arctg 2R(z)
1 11
q2 q1 F
q2
Aq1 Cq1
B D
复曲率半径q
§3.1 基模高斯光束
出射光束的束腰位置和尺寸: 入射高斯光束的光腰在l处, 出射高斯光束的光腰在l ’处
q q0
if
02
q
q0
if
02
等和式实两部端对的应虚相部等
f l
(l
F2 f F )2
l(l F ) f (l F )2 f
z f
]}
u00 ( x,
y, z) c00
0 exp{ik (z)
x2

高斯光束

高斯光束

为光波波前的曲率半径 ;
束宽: 对于在自由空间传播的高斯光束,其腰斑位置的半径在光轴方向总大于一个 最小值 ,这个最小值被称为束腰。波长为 的光波的腰斑位置在轴上的分 布为 这里将 定为束腰位置。 被称为瑞利长度。
瑞利距离和共Байду номын сангаас参数:与束腰轴向距离等于瑞利距离 处的束宽为 这两点之间的距离称作是共焦参数或光束的焦深
高斯光束
钱朝阳
在光学中,高斯光束(Gaussian beam)是 横向电场以及辐照度分布近似满足高斯函数 的电磁波光束,所以称为高斯光束。是激光 在光学谐振腔里基模条件下发出的光,许多 激光都近似满足高斯光束的条件。
麦克斯韦方程组 (1)
物质方程 (5)
(2)
(3) (4)
(6)
(7)
对光频电磁场, 主要关心电场E,我们所讲的光场均指电 磁场的电场分量。
谢谢观赏
曲率半径: 光束偏移:当
是光束波前的曲率半径,它是轴向距离的函数 ,参数 趋于一条直线。这条直线与中央光轴的夹角被称为 光束的偏移,即远场发散角。
综上所述,可知高斯光束在其轴线附近可以看做是一种非均匀高 斯球面波,周期传输过程中曲率中心不断改变,其振幅在横截面 内为一高斯函数,强度集中在轴线及其附近,且等相面为球面 (特殊范围内为平面)。
(13)
式(13)为在近轴近似下的波动方程,高斯光束就是缓变振幅 近似下的一个特解。
高斯光束作为电磁波,其电场的振幅为:
r为场点距离光轴中的径向距离;z为光轴上光波最狭窄位置束腰的位置坐标 为激光的束腰宽度 为波数 ; 为电磁场振幅降到轴向的1/e、强度降到轴向的1/e2的点的半径 为轴对称光波的Gouy相位,对高斯光束的相位 也有影响,在近轴条件下可以忽略。

光学谐振腔理论-第8节-高斯光束的传输

光学谐振腔理论-第8节-高斯光束的传输

05 高斯光束的未来发展与应 用
高斯光束在光学通信中的应用
高速光通信
高斯光束在光学通信中具有较高的传输速度和较低的信号衰减,有助于实现高 速、大容量的光通信系统。
远程通信
高斯光束具有较好的光束质量和传输稳定性,适用于长距离的光纤通信,有助 于实现远程、稳定的通信连接。
高斯光束在光学传感中的应用
03 高斯光束的调制与控制
高斯光束的相位调制
01
相位调制是指通过改变高斯光束的相位分布来改变其波前的状 态。
02
常见的相位调制方法包括利用液晶空间光调制器、光栅或其他
光学元件对高斯光束进行相位调制。
相位调制在光学通信、光学传感和光学计算等领域有广泛应用,
03
可以实现光束的聚焦、散焦、波形转换等功能。
高斯光束的波前测量
波前测量概述
波前是描述光束相位变化的物理量,高斯光束的波前测量有助于 了解光束的传播特性和干涉、衍射等光学现象。
波前测量方法
常用的波前测量方法有干涉法、散斑法、剪切干涉法等,可以根据 高斯光束的特点和测量精度要求选择合适的方法。
测量误差来源
波前测量误差主要来源于光束的聚焦、光束截面分布、光学元件的 误差等因素。
高斯光束的聚焦特性
聚焦原理
高斯光束经过透镜聚焦后,其横截面 上的强度分布会发生变化,形成明暗 相间的干涉条纹。
干涉条纹
干涉条纹的形状取决于透镜的焦距和 光束的束腰半径。当透镜焦距一定时 ,束腰半径越小,干涉条纹越密集; 反之,则越稀疏。
02 高斯光束在光学谐振腔中 的应用
光学谐振腔对高斯光束的影响
偏振态调制是指通过改变高斯光 束的偏振状态来改变其电磁场分
布。
常见的偏振态调制方法包括利用 偏振片、电光晶体或液晶等对高

激光原理-(9)-高斯光束

激光原理-(9)-高斯光束


1 F
0
1
R2
=
AR1 CR1
+ +
B D
(遵循ABCD变换法则) NJUPT
高斯光束q参数的变换规律——ABCD公式
在自由空间的传播
束腰处:
=z 0,q(0=) if=
1 Z
自由空间变换矩阵: TL = 0
1
i πω02 λ
由ABCD法则: q(z=) if + z
11

z − if
高斯光束的聚焦
F 一定时,ω0′与 l′ 随 l 的变化情况
l

F 2(l − F ) = F + (F − l )2 + f 2 ,
ω ′2 0
F 2ω 2
= (F − l )2 0+ f 2
(1) l < F
ω0′随 l 的减小而减小
当 l = 0 时:ω0′(min) =
ω0 =l′
1 + ( f )2 F
i
πω
2 2
=( 1 R1
λ − i πω12 ) −
1 F
=
1 q1

1 F
结论:高斯光束q参数经薄透镜的变换规律满足ABCD法则
用q参数分析高斯光束经单透镜的传输过程
ω0
ω0′ ωc
A B l′
C
l
lC
q0
qA qB
qC
求:ωC、RC
方法一: z=0 处:q0 = i πω02 λ
A处: q=A q0 + l
ω ( z )
ω0,z

R(
z)
θ0
2. 任一 坐标 z处的光斑半径 ω (z)及等相面曲率半径 R(z)

2.6 高斯光束基本性质及特征参数详解

2.6 高斯光束基本性质及特征参数详解

a、光腰半径
x方向:m2 2m 102 02 y方向:n2 2n 102 02
b、z处光斑半径
x方向: m2z 2m 1z2 z2 y方向: n2z 2n 1z2 z2
(5) 远场发散角
x方向: m
lim
z
2m z
z
y方向:
n
lim
z
2n z
z
2m 1 2 0
2n 1 2 0
1
2
z
R
z 1
R z w2 z
2
1
00 x,
y, z
c
wz
exp
ik
r2 2
1
Rz
i w2 z
e
i
kztg
1
z f
1
qz
1
Rz
i
2 z
1/q(z) —高斯光束的复曲率半径
知道q(z)可以求R (z)和 z
1
Rz
Re q1z
1
2 z
Im
q
1
z
特例:
自由空间为例
r2 Ar1 B1 近轴光 ,
2 Cr1 D1 r2 R22 r1 R11
R2
r2
2
AR1 B CR1 D
—ABCD公式
二、高斯光束q参数的变换规律——ABCD公式 1、高斯光束与普通球面波参数与传输规律的对应
描述 传播
普通球面波 曲率半径
R2
AR 1 CR 1
B D
高斯光束
2.9 高斯光束基本性质和特征参数
在高斯近似下,稳定腔和共焦腔都输出高斯光束,对方形镜和 圆形镜腔,分别是厄米—高斯(高阶或基模)和拉盖尔—高斯(高 阶或基模)光束。

高斯光束的聚焦和准直课件

高斯光束的聚焦和准直课件

高斯光束的参数如束腰半径、波长等 也会影响准直效果。
光学元件质量
透镜、反射镜等光学元件的质量对准 直效果有重要影响,如光学元件的加 工精度、表面质量等。
04
高斯光束聚焦和准直的应用
光学通信
总结词
高斯光束的聚焦和准直技术在光学通信领域具有广泛应用,能够实现高速、高效 、远距离的光信号传输。
详细描述
实时处理能力
对于动态变化的光束,需要具备实 时处理能力,以便快速响应和调整 。
研究方向
新型光学元件研究
研究新型的光学元件,以提高光 束的聚焦和准直精度。
光束质量提升技术
研究提高光束质量的方法和技术 ,以满足各种应用需求。
实时控制系统
研究实时的光学控制系统,以快 速响应和调整光束。
发展前景
应用领域拓展
比较不同聚焦透镜和不同输入光束参 数对聚焦效果的影响,得出结论和建 议。
06
高斯光束聚焦和准直的未来 发展
技术挑战
高精度控制
高斯光束的聚焦和准直需要高精 度的光学元件和控制系统,以实
现光束的稳定和精确控制。
光束质量提高
目前的高斯光束聚焦和准直技术受 到光束质量的限制,如何提高光束 质量是未来的一个重要挑战。
减小。
高斯光束的应用
1 2
3
激光加工
高斯光束可被用于激光切割、打标和焊接等加工领域。
光学测量
高斯光束可被用于光学测量领域,如干涉仪、光谱仪和全息 术等。
光学通信
高斯光束在光纤通信中用作信号传输的光源,具有传输损耗 低、信号稳定等优点。
02
高斯光束的聚焦
聚焦原理
高斯光束的聚焦是指将发散的高 斯光束通过透镜或反射镜系统, 使其在空间上形成一个能量集中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009 湖北工大理学院 24
一般稳定球面腔与共焦腔的等价性
根据共焦腔模式理论:任何一个共焦腔与无穷多个稳定球面腔等价;而任 何一个稳定球面镜腔唯一地等价于一个共焦腔。 一般稳定球面腔与共焦腔的等价性:指它们具有相同的行波场
共焦腔与稳定球面腔的等价性
2009 湖北工大理学院 25
任一共焦腔与无穷多个稳定球面腔等价
w0s 2 w0
共焦腔基模高斯光束腰斑半径
2009 湖北工大理学院 6
模体积
模体积是指模式在腔内空间扩展的范围。模体积越大,对该模有贡献的激发态
粒子数就越多,因而,也就可能获得大的功率输出。 由于实际上光频电磁场是存在于无限大的范围之内,但是又由于它的能量的绝 大部分分布于中心附近,所以一般定义模体积是指光斑半径以内的那部分体积。 对于基模,由于其光斑尺寸随z变化,比较严格的计算应该进行积分运算,但 是通常用下式估算:
激光原理
2009
湖北工大理学院
1
方形球面镜共焦腔的行波场
知道了腔镜面上的场分布之后,利用菲涅耳—基尔霍夫衍射积分可以求 出共焦腔内或腔外任意一点的场分布,在镜面上的场能用厄米—高斯函 数描述的条件下:
共焦腔场的解析式:
坐标原点选在腔轴线的中心
2 w0 Emn x, y, z Amn E0 Hm w( z ) w( z )
根据曲率半径R的符号规定:曲面凸向z轴正向为正,放置在c1、c2处的反 射镜,由共焦腔中与腔的轴线相交于任意一点z的等相位面的曲率半径, 则有:
2 f , R1 R( z1) z1 z1
f2 R2 R( z2 ) z2 , z2 L z2 z1
2009
湖北工大理学院
3
方形镜共焦腔的行波场
TEMmn模在腔内或腔外任意点(x,y,z) 处的电场强度:
2 w0 Emn x, y, z Amn E0 Hm w( z ) w( z ) 2 x H n w( z ) x2 y 2 exp ix, y, z y exp 2 w ( z)
n
可以通过基模的
m 2m 1 0 n 2n 1 0
0为基模光束的发散角
2009 湖北工大理学院 14
圆形球面镜共焦腔自再现模积分方程
在近轴范围内,当 N 时,圆形镜共焦腔积分方程的本征 函数的近似解:
E pl (r , ) C pl (
2 cos l 2 l l 2 2 r) L p ( r ) exp( r ) L L L sin lzz 00z Nhomakorabea00
zz 0
0
2009
湖北工大理学院
一般情况下,共焦腔 的等相面凹面向着腔 的中心的球面 10
等相位面的分布
共焦腔等相位面的一个重要的性质: 若在等相位面处放置一个具有相应曲率的反射镜片, 不影响共焦腔的场分布。
共焦场等相面的分布
2009 湖北工大理学院 11
远场发散角
基模远场发散角:双曲线两根渐近线之间的夹角:
圆形镜共焦腔的行波场分布与方形镜完全类似, 对圆形镜共焦腔的行波场特性的分析可以按照方 形镜同样的方法进行。两者的基模光束的振幅分 布、光斑尺寸、等相位面的曲率半径及光束发散 角都完全相同。
2009
湖北工大理学院
23
一般稳定球面镜腔
一般球面镜腔:
由两个曲率半径不同的球面镜按照任意间距组成的腔
一般稳定球面镜腔: 当它们满足条件 0 g1 g 2 1 时。 一般稳定球面镜腔的模式理论: 可以从光腔的衍射积分方程出发严格建立,以共焦腔 的模式理论为基础,等价共焦腔的方法
2009
湖北工大理学院
21
单程相移和谐振频率
自再现模在腔内一次渡越的总相移为 :
2 pl arg 1 2[( p 2l 1)

2
pl
kL]
圆形镜共焦腔模的谐振频率为 :
plq
C 1 q p 2 l 1 2L 2
q plq1 plq
3
5.2 103 rad 一般激光器的远场发散角都很小,约为10-3弧度,也就是 表明激光具有很好的方向性。
2009 湖北工大理学院
12
远场发散角
不同的腰半径的激光光束的远场发散角对比图
2009 湖北工大理学院 13
远场发散角
高阶横模的光束发散角 m 光斑和发散角求出来: 和
0
腔中点或距腔中点无限 远处,等相面为平面 共焦腔的反射镜面是 两个等相位面,与场 的两个等相位面重合 ,且曲率半径最小。
z 0 时, R(z) 0 当 z 0 时, R(z) 0 x y zz 2 R( z )

2 2 0
z 0
0
R ( z0 ) 0 R ( z0 ) 0


2
2
k r2 x, y, z [kf (1 ) ] ( m n 1 )( ) 2 1 2 2f z 2z z ( L / 2) L f
0 L / 2
r 2 x 2 y2 1 arctan 1
旋转抛物面方程
可以证明,在近轴情况下,共焦场的在z处的等相位面近似为 2 球面,其曲率半径为: / 1 2 f 0 R (z) 2f L z0 2 0 z0
2009 湖北工大理学院 9
等相位面的分布
当 z 0 时, R(z 0 ) 当 z 时,R(z 0 ) 当 z 0 f 时,R ( z ) L
2009 湖北工大理学院
w0 s
L

17
圆形镜对称共焦腔镜面模的振幅和相位分布
对于高阶模 TEM pl ,在沿辐角方向有节线,数目为p;沿半 径方向有节圆,节圆数为l;p、l增加,模的光斑半径增大, 并且光斑半径随着l的增大比随着 p增大来的更快;
高阶模的光斑半径:振幅降低至最外面的极大值的1/e处 的点与镜面中心的距离;
2009 湖北工大理学院 8
等相位面的分布
与腔的轴线交于z0点的等相位面方程可以写成:
x, y, z 0,0, z0
忽略附加相移因子, 在近轴情况下,z0点的等相位面方程为:
0 2 2 z z0 2 2 L L 1 1 0
2 2 1 z f 0 0 抛物面焦距: f L 4 0 2 2z 0 /
2wz 2 lim lim 2 z z w 例:某共焦腔氦氖激光器,L=30cm, 0.638m
0 z z 0
z 2w 1 ( ) f
2
f
2 2.3 10 rad f 某共焦腔二氧化碳激光器, L=1m, 10.6m
1 2
w w( z ) :振幅衰减因子
0
3 exp i x, y, z :位相因子,决定了共焦腔的位相分布
传播因子 位相弯曲因子
2 H w( z )
m
x H
n
2 w( z )
r y exp w ( z)
(r,) :为镜面上的极坐标,
Llp ( x) :缔合拉盖尔多项式
Ll0 ( x) 1
l L1 ( ) 1 l x
Ll2 ( )
2009
1 2 1 x (2) x (1 l )( 2 l ) 2 2
湖北工大理学院 15
圆形镜对称共焦腔镜面光场分布
镜面上对基模及高阶模的场振幅分布:
pl p 2l 0 s
E pl (r,为实函数)
1 2
圆形共焦镜面本身也是等相位面。
湖北工大理学院 18
2009
圆形镜共焦腔横截面场强度分布
TEM00
2009
湖北工大理学院
19
圆形镜共焦腔横截面场强度分布
TEM02
2009
湖北工大理学院
20
圆形镜共焦腔横截面场强度分布
TEM01
代入 ws1、ws 2 :
V00
1 2 Lw0 s (2 2
g1 g2
g2 1 ) g1 4 1 g1g 2
0 V00 (2
g1 g2
g2 1 ) g1 4 1 g1g 2
对于一般稳定球面腔,TEMmn模体积可:
Vmn V00 (2m 1)( 2n 1)
wz
2 2
在共焦镜面上: wz w f w
L

f
在z=0处有最小值
基模高斯光束的束腰半径 : w0 w0
2009 湖北工大理学院

5
振幅分布和光斑尺寸
、 共焦腔中,基模光斑随着坐标按双 曲线规律变化:
w 2 z z 2 2 1 2 w0 f
2 x H n w( z )
x2 y 2 exp ix, y, z y exp w2 ( z )
L
:共焦腔的腔长
f L / 2 :镜的焦距
2009 湖北工大理学院 2
方形球面镜共焦腔的行波场
w z w L z z 2 1 0s 1 w 0 1 2 2 f f
2

r2
2 w0 s
cos
................. exp[ ikL i ( p 2 l 1 ) ] 本征值的近似解: pl
2
2009 湖北工大理学院 16
圆形镜对称共焦腔镜面模的振幅和相位分布
E 00 (r, ) c 00 e
相关文档
最新文档