2013函数的单调性及最值⑵
函数的单调性和求函数的最值

函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数2x y =的图像.图像在y 轴的右侧部分是上升的,当在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有1y <2y .这时就说函数y =2()f x x =在[0,+ ∞)上是增函数.图像在y 轴的左侧部分是下降的,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值反而随着减小,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有12y y <。
这时就说函数y =2()f x x =在[0,+ ∞)上是减函数.1.函数的单调性(1)单调函数的定义(2)单调区间的定义若函数f (x )在区间D 上是增函数或减函数,那么称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x 1,x 2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。
(4)若函数()f x 在其定义内的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B 上是增(减)函数. 例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞上是减函数.(3)用定义法判断函数的单调性:①定义域取值;任取x 1,x 2∈D,且x 1<x 2; ②作差;作差f (x 1)-f (x 2); ③变形;通常是因式分解和配方; ④定符号;即判断差f (x 1)-f (x 2)的正负⑤下结论.指出函数f (x )在给定的区间D 上的单调性例1 证明函数xx f 1)(=在(0,+∞)上是减函数. 证明:设1x ,2x 是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即)(1x f > )(2x f ∴xx f 1)(=在(0,+ ∞)上是减函数.练习:讨论函数21)(x x f -=在[-1,0]的单调性.在[-1,0]上任取x 1,x 2且x 1<x 2则2111)(x x f -=,2221)(x x f -=从而)(1x f -2221211)(x x x f ---== 2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x∵-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f ∴ 在[-1,0]上f (x )为增函数2.基本函数的单调性例:讨论函数322+-=ax x f(x)在(-2,2)内的单调性.解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x = ∴若2-≤a ,则322+-=ax x f(x)在(-2,2)内是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)内是减函数,在[a,2]内是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)内是减函数.3.判断函数的单调性的常见结论①设任意x 1,x 2∈[a ,b ],且x 1<x 2,那么()()210f x f x ->⇔f (x )在[a ,b ]上是增函数; ()()210f x f x -<⇔f (x )在[a ,b ]上是减函数.②设任意x 1,x 2∈[a ,b ],那么()()21210f x f x x x ->-⇔f (x )在[a ,b ]上是增函数;()()21210f x f x x x -<-⇔f (x )在[a ,b ]上是减函数.③ (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.【梳理·总结】(1)函数()y f x =-与()y f x =的单调性相反;例:求函数y =x 2+x -6的单调区间.4. 关于分段函数的单调性(1)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是增函数, ()h x 在区间[],c d 上是增函数,则()f x 在区间[][],,a b c d 上不一定是增函数,若使得()f x 在区间[][],,a b c d 上一定是增函数,需补充条件: ()()g b h c ≤(2)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是减函数, ()h x 在区间[],c d 上是减函数,则()f x 在区间[][],,a b c d 上不一定是减函数,若使得()f x 在区间[][],,a b c d 上一定是减函数,需补充条件: ()()g b h c ≥例:已知函数()(0)(3)4(0)x a x f x a x a x ⎧<⎨-+≥⎩=若对任意x 1,x 2,都有()()21210f x f x x x -<-成立,则实数a 的取值范围是( )A .(0,14] B .(0,1) C .[14,1) D .(0,3)5.函数的最值例:f(x)=x 2-2x (x ∈[-2,4])的单调增区间为__________;f(x)max =________.6.利用函数的单调性求最值例题:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f(x )在[-3,3]上的最大值和最小值.(1)证明:令0x y ==,则(0)0f =;再令y x =-,则应有()()f x f x -=-,从而在R 上任取12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-.1212,0.x x x x >∴->又0x >时,()0f x <,从而12()0f x x -<,即12()()f x f x <,由定义可知函数()f x 在R 上的减函数. (2)函数()f x 是R 上的减函数,()f x ∴在区间[3,3]-上也是减函数.从而可知在区间[3,3]-上,(3)f -最大,(3)f 最小.2(3)(2)(1)(1)(1)(1)3(1)3()2,3f f f f f f f =+=++==⨯-=-(3)(3) 2.f f ∴-=-=即()f x 在[3,3]-上的最大值为2,最小值为-2.练习:已知定义在区间(0,+∞)上的函数f(x)满足f (yx)=f (x )-f (y ).,且当x >1时,f(x)<0. (1)求f(1) (2)判断f(x)(3)若f(3)=-1,解不等式f(|x|)<-2.(1)f(1) = f(1/1) = f(1) - f(1) = 0。
函数的单调性与极值 最值

例8
判断函数 y = x − ln x 的单调性
解
函数的定义域为 (0,+∞ ) x −1 1 Q y′ = 1 − = x x 当 0 < x < 1 时数在 ( 0,1) 内单调减少。 单调减少。
内单调增加。 在 (1, +∞ ) 内单调增加。
x >1
时, y′ > 0,
y
f ( x1 )
( 2)
则称函数 f ( x )在区间 I上是单调减少的 ;
f ( x2 )
y = f ( x)
o
x1
x2
x
I
一、函数的单调性
y
2.判别方法 判别方法
y A y = f (x) B
y = f (x)
A
B
o
a
f ′( x ) ≥ 0
b
x
o a
f ′( x ) ≤ 0
b x
在区间(a,b)上单调上升 若 y = f (x)在区间 上单调上升 在区间(a,b)上单调下降 若 y = f (x)在区间 上单调下降
y
间断
∴ 单增区间为 (−∞, −2) , ( 2, +∞ ) 单减区间为 (−2, 0) , (0, 2)
x < ln(1 + x ) < x . 复习 证明当 x > 0 时, 1+ x 课本P124 课本 证法一设 f ( t ) = ln(1 + t ) t ∈ [0, x ]
足拉格朗日中值定理的条件. 则 f ( x ) 在 [0, x ]上满足拉格朗日中值定理的条件. 故
∴ 在(−∞ ,1]上单调增加; −∞ 上单调增加;
f ′( x ) < 0, ∴ 在[1,2]上单调减少; 上单调减少;
2013高考数学(理)一轮复习课件:2-2

(3)∵f(x)在[0,+∞)是单调递减函数. ∴f(x)在[2,9]上的最小值为f(9).
x1 9 由fx =f(x1)-f(x2)得,f3=f(9)-f(3), 2
而f(3)=-1,所以f(9)=-2. ∴f(x)在[2,9]上的最小值为-2.
规范解答2——如何解不等式恒成立问题
【示例】►
(本题满分12分)已知函数f(x)=x2-2ax+2,当x∈
[-1,+∞)时,f(x)≥a恒成立,求a的取值范围. 利用函数性质求f(x)的最值,从而解不等式 f(x)min≥a,得a的取值范围.解题过程中要注意a的范围的讨 论. [解答示范] ∵f(x)=(x-a)2+2-a2,∴此二次函数图象的对称 轴为x=a(1分) (1)当a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增, ∴f(x)min=f(-1)=2a+3.(3分) 要使f(x)≥a恒成立,只需f(x)min≥a,即2a+3≥a, 解得a≥-3,即-3≤a<-1.(6分)
双基自测 1.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则 xf(x)<0的解集为( ). B.(-∞,-2)∪(0,2) D.(-2,0)∪(0,2)
A.(-2,0)∪(2,+∞) C.(-∞,-2)∪(2,+∞) 答案 C
2.(2011· 湖南)已知函数f(x)=ex-1,g(x)=-x2+4x-3.若有 f(a)=g(b),则b的取值范围为( A.[2- 2,2+ 2] C.[1,3] ). B.(2- 2,2+ 2) D.(1,3)
x2+a 【例2】►已知函数f(x)= x (a>0)在(2,+∞)上递增,求实数 a的取值范围. [审题视点] 等价性. 求参数的范围转化为不等式恒成时要注意转化的
函数的单调性及极值

函数的单调性及极值一、函数单调性的判别法如果函数)(x f y =在],[b a 上单调增加(单调减少),那么,它的图形是一条沿x 轴正向上升(下降)的曲线。
这时,曲线上各点处的切线斜率非负(非正),即()0(()0)y f x y x '''=≥≤。
由此可见,函数的单调性与导数的符号有着密切的联系。
我们可以用导数的符号来判别函数的单调性。
定理1 设函数)(x f y =在闭区间],[b a 上连续,在开区间),(b a 内可导,则有(1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;(2)如果在),(b a 内0)(<'x f ,那么函数)(x f y =在],[b a 上单调减少.讨论可导函数)(x f 的单调性可按下列步骤进行 :(1)求出函数)(x f 的定义域;(2)求出)(x f ',并令0)(='x f ,解此方程求出驻点; (3)用驻点把定义域分割成若干个部分区间,在每个部分区间内判定)(x f '的符号 若0)(>'x f ,则)(x f 在该区间单调增加;若0)(<'x f ,则)(x f 在该区间单调减少.例1 判定函数()sin [02]f x x x π=-在,上单调性。
解 因为在02π(,)内,()1cos 0f x x '=->所以由定理1可知,函数()sin [02]f x x x π=-在,上单调增加。
例2 讨论396)(23++-=x x x x f 的单调性.解 该函数的定义域为 (),+∞∞-, )3)(1(39123)('2--=+-=x x x x x f令0)('=x f ,解得3,1==x x ,用它们把定义域分成),3[],3,1[],1,(+∞-∞三部分.列表讨论如下表示在)1,(-∞和),3(+∞内,0)('>x f ;“-”表示在)3,1(内0)('<x f .由上述讨论可知 函数)(x f 在),3[]1,(+∞-∞和上单调增加,在]3,1[上单调减少.例3 确定函数32)(x x f =的单调区间。
函数的单调性与最值讲义

函数的单调性讲义知识点一:函数单调性(1)相关概念增函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f <,那么就说)(x f 在这个区间上是增函数,如下图(1);用数学符号表示:()()()()()[]()x f x f x f x x x x x f x f ⇔>--⇔>--0021212121是增函数.减函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f >,那么就说)(x f 在这个区间上是减函数,如下图(2).用数学符号表示:()()()()()[]()x f x f x f x x x x x f x f ⇔<--⇔<--0021212121是减函数.单调性:如果函数)(x f 在某个区间是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性.单调区间:函数)(x f 在某个区间上具有单调性,则这一区间就叫做函数)(x f y =的单调区间.(2)对于函数单调性的定义的理解,要注意以下三点:①单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以有不同的单调性;②单调性是函数在某一区间上的“整体”性质,因此定义中的21,x x 具有任意性,不能用特殊值代替.③由于定义都是充要性命题,因此由)(x f 是增(减)函数,且)()()(212121x x x x x f x f ><⇔<,这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取D x x ∈21,,且21x x <; ②作差:()()21x f x f -; ③变形:通常是因式分解或配方; ④定号:即判断差()()21x f x f -的正负;⑤下结论:即指出函数()x f 在给定区间D 上的单调性.例:判断函数xx y 1+=在(1,+∞)上的单调性. 变式训练:证明函数()xx f 1=在()+∞,0上是减函数.(2) 利用已知函数的单调性;在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.如果函数()x f y =在某个区间上是增函数或是减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.①()0≠+=a b ax y 的单调性:0>a 增函数,0<a 减函数; ②()0≠=k xky 的单调性:0>k 减区间()()+∞∞-,0,0,;0<k 增区间()()+∞∞-,0,0,;③()02≠++=a c bx ax y 的单调性:0>a ,减区间⎥⎦⎤ ⎝⎛-∞-a b 2,,增区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; 0<a ,增区间⎥⎦⎤ ⎝⎛-∞-a b 2,,减区间⎪⎭⎫⎢⎣⎡+∞-,2a b ;④()x f 在区间A 上是增(减)函数,则0>k 时,()x kf 在A 上是增(减)函数;0<k 时则相反;⑤若()x f 、()x g 是区间A 上的增(减)函数,则()()x g x f +在区间A 上是增(减)函数;⑥若()0>x f 且在区间A 上是增(减)函数,则()x f 1在A 上是减(增)函数,()x f 在A 上是增(减)函数;⑦轴(与x 轴垂直)对称图形的函数在它们的对称区间上的单调性相反,中心对称图形的函数在它们的对称区间上单调性相同,例如求下列函数的单调区间:x y =,2-=x y ,212-+=x y .(3) 利用函数的图像;函数y =|x 2-2x -3|的单调增区间是________. 【解析】 y =|x 2-2x -3|=|(x -1)2-4|, 作出该函数的图像(如图).由图像可知,其增区间为[-1,1]和[3,+∞).(4) 依据一些常用结论及复合函数单调性的判定方法; ①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数; ③奇函数在对称的两个区间上有相同的单调性; ④偶函数在对称的两个区间上有相反的单调性; ⑤互为反函数的两个函数有相同的单调性;⑥如果)(x f 在区间D 上是增(减)函数,那么)(x f 在区间D 的任一子区间上也是增(减)函数;⑦如果)()(x g u u f y ==和单调性相同,那么)]([x g f y =是增函数;如果)()(x g u u f y ==和单调性相反,那么)]([x g f y =是减函数.上述规律可概括为“同性则增,异性则减” 例:函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞(5) 求导(以后会学到).知识点三:函数单调性的应用(1) 利用函数的单调性可以比较函数值的大小;例:已知2()f x x bx c =++对称轴为2x = ,比较(1)f 、(2)f 、(4)f 的大小。
【全程复习方略】2013版高中数学 (主干知识+典例精析)2.2函数的单调性与最值课件 理 新人教B版

(3)由y=ax在(0,+≦)上是减函数,知a<0; 由 y b 在(0,+≦)上是减函数,知b<0.
x
≨y=ax2+bx的对称轴 x b <0,
2a
又≧y=ax2+bx的开口向下, ≨ y=ax2+bx在(0,+≦)上是减函数. 答案:(1)①真 ②真 ③假 ④真
(2)>
{x|x>1或x<-1}
x 1
【解题指南】(1)转化为基本初等函数的单调性去判断; (2)可用定义法或导数法.
【规范解答】(1)函数f(x)的定义域为( 1 ,+≦),令
2
t=2x+1(t>0),
因为y=log5t在t∈(0,+≦)上为增函数,t=2x+1在(
1 ,+≦) 2
上为增函数,
所以函数f(x)=log5(2x+1)的单调增区间为( 1 ,+≦).
f(1-x2)>f(2x)的条件,得出1-x2与2x之间的大小关系, 进而求得x的取值范围.也可分1-x2≥0,1-x2<0讨论求解.
【规范解答】方法一:画出
x 2 1,x 0 的图象, f x 1,x<0
由图象可知, 若f(1-x2)>f(2x),
1<x<1 1 x 2>0 , 则 ,即 2 1 x >2x 1 2<x< 1 2
由图象知f(2)>f(-1)>f(0).
【反思·感悟】1.当已知函数的单调性,解含有“f”号的不等 式时,首先要根据函数的性质,转化为如“f(g(x))>f(h(x))” 的形式,再利用单调性,转化为具体不等式求解,但要注意函 数的定义域. 2.比较函数值的大小时,若自变量的值不在同一个单调区间内, 要利用其函数性质,转化到同一个单调区间上进行比较,对于
2013届高考数学考点回归总复习《第六讲 函数的单调性与最大(小)值》课件

[反思感悟] (1)若函数f(x)是增函数,则f(x1)<f(x2)⇔x1<x2,函 数不等式(或方程)的求解,总是想方设法去掉抽象函数的符 号,化为一般不等式(或方程)求解,但无论如何都必须在定 义域内或给定的范围内进行. (2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将 不等式右边3转化为f(2)从而不能应用函数的单调性求解, 导致此种错误的原因是没有熟练掌握单调性的含义及没弄 清如何利用题目中的已知条件或者不能正确地将抽象不等 式进行转化.
类型四
Hale Waihona Puke 抽象函数的单调性与最值解题准备:抽象函数是近几年高考的热点,研究这类函数性质 的根本方法是“赋值”,解题中要灵活应用题目条件赋值 转化或配凑.
【典例4】 函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)1,并且当x>0时,f(x)>1. (1)求证:f(x)是R上的增函数; (2)若f(4)=5,解不等式f(3m2-m-2)<3.
2.直接法:运用已知的结论,直接得到函数的单调性.如一次函 数、二次函数、反比例函数的单调性均可直接说出. 了解以下结论,对直接判断函数的单调性有好处: (1)函数y=-f(x)与函数y=f(x)的单调性相反;
(2)当f(x)恒为正或恒为负时,函数
单调性相反;
1 y f ( x)
与y=f(x)的
f ( x1 ) f ( x2 ) ③ 0; x1 x2 f ( x1 ) f ( x2 ) ④ 0. x1 x2 其中能推出函数y=f(x)为增函数的命题为________.
答案:①③
函数的单调性与最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -x C .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5log y u =为()0,+∞ 上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k ⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >.故当)12,x x ∈+∞时,()()12f x f x <,即函数在)+∞上单调递增.当(12,x x ∈时,()()12f x f x >,即函数在(上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,-∞单调递增,在()上单调递减. 综上,函数f (x )在(,-∞和)+∞上单调递增,在()和(上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1. 问题转化为m 2-2am +1≥1, 即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性及最值之二
一、例题讲解
例1.已知函数32()1f x x ax x =+++,a ∈R .
(Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.
例2、已知函数32()(3)x f x x x ax b e -=+++
(1)如3a b ==-,求()f x 的单调区间;
(1)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明: βα-<6.
例3.已知函数32()1f x x ax x =+++,a ∈R .
(Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.
例4.已知a 是实数,函数())f x x a =-。
(Ⅰ)求函数()f x 的单调区间;Ⅱ)设)(a g 为()f x 在区间[]2,0上的最小值。
(i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。
二、课后作业
1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是
( )
A. )2,(-∞
B.(0,3)
C.(1,4)
D. ),2(+∞ 2.(2009天津重点学校二模)已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b =
)9
1(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >> B .a b c >> C .c a b >> D .b c a >>
3.(2009浙江文)若函数2()()a f x x a x
=+∈R ,则下列结论正确的是 ( ) A.a ∀∈R ,()f x 在(0,)+∞上是增函数 B.a ∀∈R ,()f x 在(0,)+∞上是减函数
C.a ∃∈R ,()f x 是偶函数
D.a ∃∈R ,()f x 是奇函数
4.(2007年福建理11文)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x > 时,()0()0f x g x ''>>,,则0x <时 ( )
A .()0()0f x g x ''>>,
B .()0()0f x g x ''><,
C .()0()0f x g x ''<>,
D .()0()0f x g x ''<<,
5.( 08年湖北卷)若21()ln(2)2
f x x b x =-++∞在(-1,+)上是减函数,则b 的取值 范围是
( )
A . [1,)-+∞
B . (1,)-+∞
C . (,1]-∞-
D . (,1)-∞- 6(2009辽宁卷文)若函数2()1
x a f x x +=+在1x =处取极值,则a = 7.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 .
8.(2009北京文)(本小题共14分)设函数3()3(0)f x x ax b a =-+≠.
(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;
(Ⅱ)求函数()f x 的单调区间与极值点.
9.(2009山东卷文)(本小题满分12分)
已知函数321
()33f x ax bx x =+++,其中0a ≠
(1)当b a ,满足什么条件时,)(x f 取得极值?
(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.
10、(北京市西城区2008年4月高三抽样测试)已知函数()ln f x x x =.
(Ⅰ)求()f x 的最小值;
(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.
11.(2009陕西卷理)(本小题满分12分) 已知函数1()ln(1),01x
f x ax x x -=++≥+,其中0a >
()I 若()f x 在x=1处取得极值,求a 的值;
()II 求()f x 的单调区间;
(Ⅲ)若()f x 的最小值为1,求a 的取值范围。
12.(2008年北京卷18)已知函数22()(1)x b
f x x -=-,求导函数()f x ',并确定()f x 的单调
区间.
13已知32()(,0]f x x bx cx d =+++-∞在上是增函数,在[0,2]上是减函数,
且()0,2,(2)f x αβαβ=≤≤有三个根。
(1)求c 的值,并求出b 和d 的取值范围。
(2)求证(1)2f ≥。
(3)求||βα-的取值范围,并写出当||βα-取最小值时的()f x 的解析式。
14.(2009厦门北师大海沧附属实验中学)已知函数()bx ax x x f --=233,其中b a ,为实数. (Ⅰ) 若()x f 在1=x 处取得的极值为2,求b a ,的值;
(Ⅱ)若()x f 在区间[]2,1-上为减函数,且a b 9=,求a 的取值范围.。