(1.4.1)--第0-4讲为什么要学习微波技术(一)

合集下载

微波知识培训(1)

微波知识培训(1)

终端站:处于微波线路的两端或分支线路终点。它只对一个方向收信和发信。 终端站可以上下所有的支路信号,并可以作为监控系统的集中监视站或主站。 中间站:处于线路中间,只完成微波信号的放大和转发,不上下话路。设备比较简单。 再生中继站:处于线路中间,可以在本站上下部分支路。还可沟通干线上两方向间的通信。可作监控系统的主站或受控站。 再生中继站只能采用基带中继方式。 枢纽站:处于干线上,完成数个方向的通信任务,可以上下全部或部分支路信号。 监控系统中,枢纽站一般作为主站
微波的定义
微波Microwave: 微波是一种电磁波,微波射频为300MHz~300GHz,是全部电磁波频谱的一个有限频段。 微波一般称为厘米波。 根据微波传播的特点,可视其为平面波。 平面波沿传播方向是没有电场和磁场纵向分量的,所以称为横电磁波,记为TEM波。有时我们把这种电磁波简称为电波。
微波频率划分
微波设备由室内单元 (IDU)、室外单元 (ODU)、 网管系统、同轴电缆和天线组成
一跳系统之间的通信
IDU的作用
IDU主要把业务数据、辅助数据、网管及交换数据按一 定数据格式复接成帧,传给调制解调模块,调制解调模 块再完成基带调制解调、中频变频等功能。
行业内其他厂家的IDU构架
IDU 610
但微波也存在着相应的缺点:应具备视距传输条件,两站之间传输的距离不是很远;频率必须申请;通信质量受环境的影响较大;通信容量不能做到很大。
光纤、微波传输方式比较
光 纤
微 波
传输媒介
光纤
自由空间
抗自然灾害能力


灵活性
较低

建设费用


建设周期


传输速率

《微波技术》课程教学大纲

《微波技术》课程教学大纲

《微波技术》课程教学大纲一、课程基本信息课程编号:08030010课程中文名称:微波技术课程英文名称:microwave technology课程性质:专业指定选修课考核方式:考查开课专业:电子信息工程、通信工程、信息对抗技术开课学期:5总学时:40+16总学分:3.5二、课程目的和任务《微波技术》是研究微波信号的产生、放大、传输、发射、接收和测量的学科。

通过讲述传输线理论、理想导波系统理论、微波网络理论,使学生掌握传输线的工作状态和特性参量、波导的场结构和传输特性,了解常用微波元件的基本结构和工作原理,具有解决微波传输基本问题的能力。

三、教学基本要求(含素质教育与创新能力培养的要求)1.掌握传输线的基本理论和工作状态,具有分析传输线特性参量的基本能力,掌握阻抗圆图和导纳圆图的基本构成和应用,了解阻抗匹配的基本方法和原理。

2.掌握矩形波导的一般理论与传输特性,掌握矩形波导主模的场分布与相应参数,了解圆波导、同轴线、带状线和微带线等传输线的工作原理、结构特点、传输特性和分析方法。

3.掌握微波网络的基本理论,重点包括微波网络参量的基本定义、基本电路单元的参量矩阵、微波网络组合的网络参量、微波网络的工作特性参量,了解二端口微波网络参量的基本性质,具有分析二端口微波网络工作特性参量的基本能力。

4.掌握阻抗变换器、定向耦合器、微带功分器、波导匹配双T的结构特点、工作原理、分析方法及其主要用途,了解电抗元件、连接元件、衰减器和移相器、微波滤波器和微波谐振器等微波元件的结构特点和工作原理。

四、教学内容与学时分配第一章绪论(2学时)微波的概念及其特点,微波技术的发展和应用,微波技术的研究方法和基本内容。

第二章传输线理论(13学时)1.传输线方程及其求解2.传输线的特性参量3.均匀无耗传输线工作状态分析4.阻抗圆图及其应用5.传输线的阻抗匹配第三章微波传输线(9学时)1.理想导波系统的一般理论2.导波系统的传输特性3.矩形波导4.带状线5.微带线第四章微波网络(9学时)1.波导等效为平行双线2.微波元件等效为微波网络3.二端口微波网络4.基本电路单元的参量矩阵5.二端口微波网络的组合及参考面移动的影响6.二端口微波网络的工作特性参量7. 多端口微波网络第五章常用微波元件(7学时)1.阻抗变换器2.定向耦合器3.波导匹配双T4.微波滤波器第六章实验教学(16)五、教学方法及手段(含现代化教学手段)以课堂讲授为主,适当配合课堂讨论,充分使用多媒体教学;以学生自学为辅,学生可以通过网络课堂和微波网站在线学习。

微波技术的应用原理与应用领域

微波技术的应用原理与应用领域

微波技术的应用原理与应用领域简介微波技术是指利用微波的特殊性质和特定的工作频率来实现各种应用的一种技术。

微波是指频率范围介于0.3GHz到300GHz之间的电磁波,其波长范围在1厘米到1毫米之间。

微波技术在通信、雷达、无线电频谱、医疗设备等领域都有广泛的应用。

应用原理微波技术的应用原理主要包括以下几个方面:1.电磁波传输特性:微波在传输过程中具有直线传播、穿透力强等特性。

微波可以通过大气、云层、建筑物等障碍物传播,因此在通信中得到广泛应用。

2.共振吸收特性:许多物质在特定的频率下对微波具有较强的吸收能力,这种现象被称为共振吸收。

通过利用物质对微波的共振吸收特性,可以实现微波加热、物质检测等应用。

3.多径传播特性:微波在传输中常常会经历多个路径的传播,这种现象被称为多径传播。

通过对多径传播的研究和利用,可以提高通信中的传输质量和可靠性。

4.功率与频率关系:微波功率的传输和控制与频率有密切的关系。

不同频率的微波在功率传输上有不同的特性,因此在应用中需要根据具体需求选择合适的频率。

应用领域微波技术具有广泛的应用领域,以下列举几个常见的应用领域:通信微波技术在通信领域有着重要的应用。

通过利用微波的直线传播特性,可以实现远距离的通信。

微波通信设备通过天线传输微波信号,实现无线通信。

微波通信设备通常用于长距离通信、卫星通信等场合。

雷达雷达是利用微波技术进行探测和测量的装置。

微波雷达通过发射微波信号并接收其回波来实现目标检测和距离测量。

微波雷达具有高精度、强干扰抗性等优点,被广泛应用于军事、气象、航空等领域。

无线电频谱微波技术在无线电频谱管理中发挥着重要的作用。

通过合理利用微波频段的特性,可以实现无线电频谱的高效利用和管理。

微波技术对无线电频谱的分配和规划起到了重要的指导作用。

医疗设备微波技术在医疗设备中有着广泛的应用。

例如,微波加热被广泛应用于肿瘤治疗,通过利用细胞对微波的共振吸收特性,可以实现对肿瘤组织的精确治疗。

微波技术基础

微波技术基础

微波技术基础第一篇:微波技术基础微波技术是指在微波频段内进行无线电波传输和工作的技术。

微波频段的频率范围为300MHz至300GHz,是一种高频电磁波。

微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。

本篇文章主要介绍微波技术的基础知识。

1、微波的特点微波的特点是波长短、频率高、传输能力强、穿透力强、反射和绕射能力弱。

由于微波波长短,具有高频率和短时间间隔,相应的能量高,因此可以携带大量信息。

微波具有很强的穿透力,可以穿透一些物质。

但它对金属等导电材料的反射和绕射能力非常弱。

2、微波的应用微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。

其中,通信是微波技术应用最广的领域。

无线电视也用到了微波技术,它具有大带宽和高清晰度等优点。

雷达是一种利用微波波段特殊频率特性进行目标侦察和跟踪的技术。

医疗成像是微波技术的另一个应用领域,例如计算机断层扫描,实现肿瘤发现和诊断。

3、微波的发射方式微波发射方式包括波束走向和波束展宽两类。

波束走向是指将微波束对准目标以达到传送信息的目的。

波束展宽是指通过微波辐射,以实现信息的传输。

微波发射方式的选择应根据不同的应用场景来确定,例如在通信中应选择波束走向,而在雷达中应选择波束展宽。

4、微波的传输损耗微波在传输过程中会发生一定的损耗。

导致这种损耗的原因主要包括传输路径的衰减、反射和绕射效应、电磁波散射等。

传输路径的衰减是微波传输损耗最主要的原因。

它可以通过加强发射功率、缩短传输距离、采用大口径天线等措施来降低影响。

5、微波天线天线是微波技术的重要组成部分,它能将高频率的电磁波转换成物理信号,实现信息的传输。

微波天线种类繁多,包括Horn天线、微带天线、反射天线、缝隙天线等。

微波天线的使用应根据具体应用需求来选择。

例如,在雷达中,反射天线和缝隙天线可以实现高精度的指向和定位,而微带天线则可以被制成很小的尺寸,方便安装和使用。

6、微波放大器微波放大器的作用是放大微波信号,以便在传输中降低信号衰减。

微波技术基础课程学习知识要点

微波技术基础课程学习知识要点

《微波技术基础》课程复习知识要点(2007版)第一章 “微波技术基础引论”知识要点廖承恩主编的《微波技术与基础》是国内较为经典的优秀教材之一,引论部分较为详细的介绍了微波的工作波段、特点及其应用,大部分应用背景取材于微波通讯占主导地位的上世纪80’s / 90’s 年代。

在科技迅猛发展的今天,建议同学们关注本网站相关联接给出的最新发展动态,真正做到学以致用,拓展自己的知识面,特别是看看微波在现代无线和移动通信、射频电路设计(含RFID )、卫星定位、宇航技术、探测技术等方面的应用,不要局限于本书的描述。

(Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons ….. NATURE| Vol 449|20 September 2007)1本章的理论核心是在对导行波的分类的基础上推导了导行系统传播满足的微波的波段分类、特点与应用(TE 、TM 、TEM )和基本求解方法,给出了导行系统、导行波、导波场满足的方程;(Halmholtz Eq 、横纵关系)、本征值---纵向场法、非本征值---标量位函数法(TEM )。

{重点了解概念、回答实际问题,比如考虑一下如按如下的份类,RFID 涉及那些应用?全球定位系统GPS 呢?提高微波工作频率的好处及实现方法?}1.微波的定义 把波长从1米到1毫米范围内的电磁波称为微波。

微波波段对应的频率范围为: 3×108Hz ~3×1011Hz 。

电磁场与微波技术教学资料微波技术的正确使用方法

电磁场与微波技术教学资料微波技术的正确使用方法
选择合适火力
根据需要加热的物品和加热时间,选择合适的火 力档位。
放置物品
将需要加热的物品放入微波炉内,注意避免金属 物品直接接触微波炉内壁或门体,以防产生火花 或电击。
观察加热过程
在加热过程中,注意观察物品加热情况,避免过 热或加运行
不要让微波炉空载运行,以防损坏设备或产 生安全隐患。
电磁场与微波技术教学资料微 波技术的正确使用方法

CONTENCT

• 微波技术简介 • 微波技术的正确使用方法 • 微波技术在各领域的应用案例 • 未来微波技术的发展趋势和展望
01
微波技术简介
微波技术的定义
微波技术是指利用波长在1mm至1m之间的高频电 磁波进行信息传输、处理、存储和测量的技术。
03
20世纪60年代
随着固态电子技术的进步,固态微波器件开始取代电 子管。
04
20世纪80年代
随着微电子技术的发展,微波集成电路成为研究热点 。
05
21世纪初
随着新材料和纳米技术的发展,新型微波器件不断涌 现,微波技术的应用领域不断拓展。
02
微波技术的正确使用方法
选择合适的微波设备
80%
确定使用需求
解冻
微波炉可以快速解冻冷冻食品 ,使其更容易烹饪。
杀菌消毒
微波炉产生的微波可以杀死食 物中的细菌和病毒,提高食品 安全性。
微波技术在工业生产中的应用
干燥物料
微波技术可用于工业生产中的物料干燥,提高生产效 率和产品质量。
塑料加工
微波技术可用于塑料加工中的熔融、固化等环节,提 高生产效率和产品质量。
化学反应
04
未来微波技术的发展趋势和展望
新材料和新技术的发展

微波原理与技术总结

微波原理与技术总结

一:微波技术知识要点综述:主要介绍了微波的波段、特点及其应用,在科技迅猛发展的今天,我们要关注最新发展动态,真正做到学以致用,拓展自己的知识面,为后续课程打好基础。

核心是在对导行波的分类的基础上推导了导行系统传播满足的微波的波段分类、特点与应用(TE 、TM 、TEM )和基本求解方法,给出了导行系统、导行波、导波场满足的方程;本征值---纵向场法、非本征值---标量位函数法(TEM )。

1.微波的定义— 把波长从1米到1毫米范围内的电磁波称为微波。

在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,一般情况下,微波又可划分为分米波、厘米波和毫米波三个波段。

2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。

3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。

4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。

一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。

二:传输线理论知识要点:本章主要研究了均匀传输线的一般理论传输线的计算方法等问题。

传输线理论本质上属于以为分布参数电路理论。

传输线即可以作为传输媒介,也可以用来制作各种类型的器件,如谐振电路、滤波器、阻抗匹配电路、脉冲形成网络等等,求解本章问题可以采用前半部分的理论推导方式,也可采用本章后半部分介绍的圆图方法,简便的得出问题的答案。

关键概念:传输线、基本方程、传波常数、分布参数阻抗、反射系数、驻波系数、无耗工作状态(特例)、有耗工作状态、电压驻波比、史密斯圆图(工具)、阻抗匹配1. 传输线可用来传输电磁信号能量和构成各种微波元器件。

谈谈对微波技术与天线课程的理解

谈谈对微波技术与天线课程的理解

微波技术与天线课程是电子工程专业中重要的一门课程,它涉及到电磁场理论、电磁波传播、微波器件与天线设计等内容,对于培养学生的电磁场理论基础、微波技术应用能力具有重要意义。

本文将从以下几个方面来探讨微波技术与天线课程的理解:一、微波技术的基本概念微波是指波长在1mm至1m范围内的电磁波,它具有高频高速传输、小型化、高效率等特点,广泛应用于通信、雷达、无线电频率识别等领域。

微波技术是指对微波进行产生、传输、接收和应用的技术的总称,它是电子工程领域的一个重要分支。

二、微波技术的原理与应用微波技术的原理主要包括微波的产生与调制、微波的传输与损耗、微波的接收与检测等内容,其应用涵盖无线通信、卫星通信、雷达系统、微波加热和医学影像等领域。

学习微波技术课程,可以使学生了解微波的基本特性、传输特性和应用特性,培养学生分析和解决实际工程问题的能力。

三、天线的基本原理与设计方法天线是一种能够发射或接收电磁波的装置,它在微波通信、卫星通信、雷达系统等领域起着至关重要的作用。

天线的基本原理包括辐射机制、辐射特性和阵列天线设计等内容,学习天线课程可以使学生掌握天线的工作原理和设计方法,培养学生进行天线工程设计与研发的能力。

四、微波技术与天线课程在电子工程中的重要性微波技术与天线课程作为电子工程专业的核心课程之一,对于培养学生的电磁场理论基础、微波技术应用能力、天线工程设计能力具有重要意义。

通过学习微波技术与天线课程,可以使学生全面了解微波技术与天线工程领域的最新发展动态,为学生将来从事相关领域的工作打下坚实的理论基础。

微波技术与天线课程在电子工程专业中具有重要地位,通过系统地学习与研究,可以培养学生对微波技术与天线工程领域的深刻理解和应用能力,为学生的专业发展和工程实践提供有力支持。

希望学生们能够重视微波技术与天线课程的学习,积极参与课程实践与科研创新,提高自身的专业素养和未来的就业竞争力。

微波技术与天线课程在电子工程专业中的地位不容忽视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.4 为什么要学“微波技术”:掌握完整 电路、电磁波基本概念和原理的需要
(1)“微波技术”课主要学习微波技术基础,包含新 的重要的电路分析、电磁场与电磁波基本概念和原理。
(2)这些概念和原理是对以往所学电路分析、电磁 场理论(电磁场与电磁波)等课程的重要补充。
(3)掌握这些知识是电子通信相关学科学习者和从业 人员的必备素质。
实例二:单根空心金属管
加载功率问题(:1)空心金属管能否用来连接 源和负载?(2)为何使用?(3)何时使用? (4)如何使用?
信 号 源
Zg E g
微波技术→波导理论

ZL 载
实例一:双导线 微波技术→传输线理论。
双导线作用:将信号源功率加到负载上源自信 号 源Zg E g
理想导体双导线

ZL 载
l 问题:实际电路中负载吸收功率远小于信号源输出功 率(例如 10%或更小),为什么?
已知:(1)双导线为理想导体无耗;(2)信号源、导 线、负载间不存在任何虚连、虚焊问题;(3)信号源、负 载无任何故障。
相关文档
最新文档