第4章-材料力学的基本概念11知识讲解

合集下载

工程力学C 第4章 材料力学的基本假设和基本概念

工程力学C 第4章 材料力学的基本假设和基本概念

拉-弯组合变形
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
静载荷 交变载荷 即: 外力 动载荷 冲击载荷
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
应力 强度 外力 内力 应变 刚度
4.3.2 内力与截面法
F1
M1 F3
为什么?
Fn
答:它们的应力不同,细杆的应力大。
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
4.4
应力的概念
4.4.1 应力: 分布内力的集度或单位面积上的内力。 4.4.2 应力的定义 1. 截面上任一点C的全应力
DEPARTMENT OF ENGINEERING MECHANICS KUST
第二篇
Mechanics of Materials
材料力学
DEPARTMENT OF ENGINEERING MECHANICS KUST
第四章 材料力学的基本假设 和基本概念
Basic Assumptions and Concepts of Material Mechanics
FS FN M
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
2. 截面法: 显示并求内力的方法。 步骤:P97 • 分二留一; • 内力代弃; • 内外平衡。 例4.1 :P97 注意: 内力与截面的形状和大 小无关,只与外力有关。

《材料力学》课程讲解课件第四章弯曲内力

《材料力学》课程讲解课件第四章弯曲内力

x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在

第4章 材料力学的基本概念

第4章 材料力学的基本概念

弹性杆件的外力与内力
材料力学中的内力不同于工程静力学中物体系统中各 个部分之间的相互作用力,也不同于物理学中基本粒子之 间的相互作用力,而是指构件受力后发生变形,其内部各
点(宏观上的点)的相对位置发生变化,由此而产生的附
加内力,即变形体因变形而产生的内力。 例如受拉的弹簧,其内力力图使弹簧恢复原状;人用手提
弹性杆件的外力与内力
作用在结构构件上的外力包括外加载荷和约束力, 二者组成平衡力系,外力分为体积力和表面力,简 称体力和面力。体力分布于整个物体内,并作用在 物体的每一个质点上。重力、磁力以及由于运动加 速度在质点上产生的惯性力都是体力。面力是研究 对象周围物体直接作用在其表面上的力。
Jiangsu Polytechnic University - Gao Guangfan
提出保证构件具有足够强度、刚度和稳定性的设计 准则与设计方法。 材料力学课程就是讲授完成这些工作所必需的基础 知识。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性

取任意一部分分析,由平衡方程计算出各个内 力分量的大小与方向。

考察另一部分的平衡,验证所得结果的正确性。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性

材料力学 第4章 材料力学的基本假设与基本概念

材料力学 第4章 材料力学的基本假设与基本概念
1 kPa = 1×103Pa 1 MPa = 1N/mm2 = 1×106Pa 1 GPa = 1×109Pa
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.4 应变的概念
引例:
图示拉杆F 中画上的微小正方形F
4.5 杆件变形的基本形式 四、剪切
螺 栓 连 接
图4-6
(b) b
n
FS 0 , FN F , M Fa
mO
an m
F
mO
F
思考:如何求解截面n-n上的内力?
(a) 图4-6
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.3 应力的概念
2
2 2
C 2
C
2
C
2
M2 FN2
MFMS222
FN2 FN2
FS2 FS2
若不计B、C截面的受力情况,随着外力的增加,构件
将在哪一段先被拉断?
4.3 应力的概念
轴力除以横截面面积而得到的物理量比轴力本身更接 近于揭示材料破坏的规律。但是这种笼统地取平均值的方 法没有体现出横截面上可能存在的内力分布不均匀的事实。
4.1 材料力学的基本假设 三、各向同性假设
假设物体内任一点处沿各个方向的力学性能都相同。
各方向力学性能相同的材料称为各向同性材料,反之则是各 向异性材料。
四、线性弹性假设
假设构件卸载后的所有变形都能恢复, 且在加载时力与变形成正比关系。
F

《工程力学》第4章 材料力学的基本概念

《工程力学》第4章 材料力学的基本概念
➢ 描写弹性体在各点处线变形程度的量称为线应
变或正应变”, 分别用 表示。
4.5 正应变与剪应变
(直角改变量)
➢ 在切应力作用下的微元体产生剪切变形; ➢ 剪切变形程度用微元体直角的改变量度量;
➢ 微元直角改变量称为切(或剪)应变, 用
表示。
4.5 正应变与剪应变
正负号规定
>0
<0
正应力 拉为正,压为负
32/60
4.4 杆件横截面上的应力----正应力与剪应力定义

悬臂梁在集中力作用下,各个横截面上的弯矩不 相等;
固定端处的横截面上弯矩最大,该截面上各点处 内力不相等;
如何度量某点处内力的强弱程度----应力。
33/60
4.4 杆件横截面上的应力----正应力与剪应力定义
FP1 FP2
y
➢形变--形状的改变 物 体 的 形 状 可 用 它 各 部 分 的 长 度 和 角 度 来 表 示 , 因此,物体的形变可以归结为长度的改变和角度 的改变。
➢应变--可分为正应变(线应变)和切应变两种。
40/60
4.5 正应变与剪应变
x
dx
x x
u
x
u+du
x
du dx
➢ 在正应力作用下的微元,沿着正应力方向产生 伸长和垂直于正应力方向产生缩短,这种变形 称为线变形;
DFR
DA
p ΔFR ΔA
x
p
lim
ΔFR
z
ΔA0 ΔA
➢极限值反映了内力在该点处的强弱程度; ➢内力在一点的强弱程度称为集度。
34/60
4.4 杆件横截面上的应力----正应力与剪应力定义
➢应力是内力在一点处的集度; ➢应力可以理解为单位面积的内力; ➢工程构件,大多数情形下,内力非均匀分布,集度 的定义不仅准确而且重要,因为“ 破坏”或“ 失效” 往往从内力集度最大处开始; ➢单位为Pa或MPa(1kg·f、bar) ,工程上多用 MPa。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学概念及基础知识

材料力学概念及基础知识

材料⼒学概念及基础知识⼀、基本概念1 材料⼒学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的⽭盾。

2 强度:构件抵抗破坏的能⼒。

3 刚度:构件抵抗变形的能⼒。

4 稳定性:构件保持初始直线平衡形式的能⼒。

5 连续均匀假设:构件内均匀地充满物质。

6 各项同性假设:各个⽅向⼒学性质相同。

7 内⼒:以某个截⾯为分界,构件⼀部分与另⼀部分的相互作⽤⼒。

8 截⾯法:计算内⼒的⽅法,共四个步骤:截、留、代、平。

9 应⼒:在某⾯积上,内⼒分布的集度(或单位⾯积的内⼒值)、单位Pa。

10 正应⼒:垂直于截⾯的应⼒(σ)11 剪应⼒:平⾏于截⾯的应⼒( )12 弹性变形:去掉外⼒后,能够恢复的那部分变形。

13 塑性变形:去掉外⼒后,不能够恢复的那部分变形。

14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。

⼆、拉压变形15 当外⼒的作⽤线与构件轴线重合时产⽣拉压变形。

16 轴⼒:拉压变形时产⽣的内⼒。

17 计算某个截⾯上轴⼒的⽅法是:某个截⾯上轴⼒的⼤⼩等于该截⾯的⼀侧各个轴向外⼒的代数和,其中离开该截⾯的外⼒取正。

18 画轴⼒图的步骤是:①画⽔平线,为X轴,代表各截⾯位置;②以外⼒的作⽤点为界,将轴线分段;③计算各段上的轴⼒;④在⽔平线上画出对应的轴⼒值。

(包括正负和单位)19 平⾯假设:变形后横截⾯仍保持在⼀个平⾯上。

20 拉(压)时横截⾯的应⼒是正应⼒,σ=N/A21 斜截⾯上的正应⼒:σα=σcos2α22 斜截⾯上的切应⼒:α=σSin2α/223 胡克定律:杆件的变形时与其轴⼒和长度成正⽐,与其截⾯⾯积成反⽐,计算式△L=NL/EA(适⽤范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。

25 弹性模量(E)代表材料抵抗变形的能⼒(单位Pa)。

26 应变:变形量与原长度的⽐值ε=△L/L(⽆单位),表⽰变形的程度。

27 泊松⽐(横向变形与轴向变形之⽐)µ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:⽐例阶段、屈服阶段、强化阶段、劲缩阶段。

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析

材料力学的基本知识与原理解析材料力学是研究材料在外界力作用下的力学性质和变形规律的学科。

它是现代工程学的基础学科之一,对于工程设计、材料选择和结构分析具有重要的意义。

本文将从材料力学的基本概念、应力与应变关系、材料的弹性与塑性行为以及材料失效等方面进行解析。

一、基本概念材料力学研究的对象是材料的内部结构和外部力的相互作用。

材料可以是金属、陶瓷、塑料等各种物质的组合体。

材料力学的基本概念包括应力、应变、弹性模量、屈服强度等。

应力是指单位面积上的力,可以分为正应力和剪应力。

应变是指物体单位长度的变化量,可以分为线性应变和剪切应变。

弹性模量是衡量材料抗拉伸变形能力的指标,屈服强度则是材料开始发生塑性变形的临界点。

二、应力与应变关系应力与应变之间存在一定的关系,这种关系被称为应力-应变关系。

对于线性弹性材料来说,应力与应变之间呈线性关系,可以用胡克定律来描述。

胡克定律表示应力与应变成正比,比例常数为弹性模量。

然而,在材料的应力超过一定临界值后,材料会发生塑性变形,此时应力与应变的关系就不再呈线性关系。

三、材料的弹性与塑性行为材料的弹性行为是指材料在外力作用下能够恢复原状的能力。

弹性行为是材料力学中最基本的性质之一。

当外力作用消失时,材料会恢复到原来的形状和尺寸。

然而,当外力超过材料的屈服强度时,材料会发生塑性变形。

塑性变形是指材料在外力作用下会永久性地改变其形状和尺寸。

塑性变形会导致材料的强度降低和损伤积累,最终可能导致材料的失效。

四、材料失效材料失效是指材料在使用过程中不再满足设计要求或无法继续承受外界力的情况。

材料失效可以分为强度失效和稳定性失效两种。

强度失效是指材料在外力作用下超过其强度极限而发生破坏。

稳定性失效是指材料在长期使用过程中,由于材料的内部缺陷或损伤积累导致材料的性能逐渐下降,最终无法继续使用。

材料失效对于工程结构的安全性和可靠性具有重要影响,因此,对于材料失效机理的研究和预测是材料力学的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lim FQ
A0 A
单位均为Pa(N/m2)或MPa (MN/m2)
2020/6/28
14
4.4.2 正应力、切应力与内力分量之间的关系
内力分量是截面上分布内力系的简化结果。
dA FN dA y M z dA z M y
如果仅仅根据平衡条件,只能确定横截面上的内力分量与 外力之间的关系,不能确定各点处的应力。因此,确定横 截面上的应力还需 增加其他条件。
2020/6/28
3
4.1.3 小变形假定
小变形假定:假定物体在外力作用下所产生的变形
与物体本身的几何尺寸相比是很小的。根据这一假定,
当考察变形固体的平衡问题时,一般可以略去变形的
影响,因而可以直接应用工程静力学方法。
2020/6/28
4
4.2 弹性杆件的外力与内力
4.2.1 外力
作用在结构构件上的外力包括外加载荷和约束力,
考察另一部分的平衡,以验证所得结果的正确性。
2020/6/28
10
需要指出的是,当用假想截面将杆件截开,考察其
中任意一部分平衡时。实际上已经将这一部分当作
刚体。所以所用的平衡方法与在工程静力学中的刚
体平衡方法完全相同。
4.3 弹性体受力与变形特征
作用在每一部分上的外力必须与截面上分布内力相平衡,组成
平衡力系。这是弹性体受力、变形的第一个特征。这表明,弹件
体由变形引起的内力不能是任意的。
弹 性 体 受 力 后 发 生 的 变 形 也 不 是 任 意 的 , 必 须 满 足 协 调
(compatibility)一致的要求。这是弹性体受力、变形的第二个特 征。
此外,弹性体受力后发生的变形还与材料的力学性能有关,这
平均应力(average stress) 即内力在某一区域的平均值
FR A
当该面积无限小时,其极值便能反应该点处的内力强弱程度,
也即集度(density), 应力就是内力在一点处的集度。
2020/6/28
13
正应力(normal stress)
lim FN
A0 A
切应力(shear stress)
2020/6/28
7
由材料的连续性假定,截面 上连续分布的内力系可以向 截面形心简化为一个合力和 主矩
内力分量FN将使杆件产生沿轴线方向的伸长或压缩 变形,称为轴向力,简称轴力(normal force)
内力分量FQy和FQz将使两个相邻截面分别产生沿y和z 方向的相互错动,这种变形称为剪切变形,这两个内力
2020/6/28
15
4.5 正应变与切应变
微元体或微元(element)
如果将弹性体看作由许多微单元体所组成,这些微 单元体简称微元体或微元。
弹性体整体的变形则是所有微元变形累加的结果。 而微元的变形则与作 用在其上的应力有关。
6
4.2.3 截面法(section method) 具体操作:
用一假想截面将处于平衡状态下的承载物体截为A、B两部分, 如图所示。为了使其中任意一部分保持平衡,必须在所截的截 面上作用某个力系,这就是A、B两部分相互作用的内力。
根据牛顿第三定律, 作用在A部分截面上的内力与作用在B部 分同一截面上的内力在对应的点上,大小相等、方向相反。
2020/6/28
2
4.1.2 各向同性假定
各向同性假定(isotropy assumption):假定弹性 体在所有方向上均具有相同的物理和力学性能。根据 这一假定,可以用一个参数描写各点在各个方向上的 某种力学性能。
大多数工程材料虽然微观上不是各向同性的,例 如金属材料,其单个晶粒呈结晶各向异性(anisotropy of crystallographic),但当它们形成多晶聚集体的金 属 时,呈随机取向,因而在宏观上表现为各向同性。
第4章-材料力学的基本概念11
4.1 关于材料的基本假定 4.1.1 均匀连续性假定
homogenization and continuity assumption
假定材料无空隙、均匀地分布于物体所占的整个空间。
认为物体的全部体积内材料是均匀、连续分布的。
好处:
物体内的受力、变形等力学量可以表示为各点坐 标的连续函数,从而有利于建立相应的数学模型。
二者组成平衡力系。
外力分为体积力和表面力,简称体力和面力。
体力分布于整个物体内,并作用在物体的每一个质
点上。重力、磁力以及由子运动加速度在质点上产生 的惯性力都是体力。
面力是研究对象周围物体直接作用在其表面上的力。
2020/6/28
5
4.2.2 内力与内力分量
材料力学中的内力不同于工程静力学中物体系统中各个
举例:
A FAx=0
FAy
2020/6/28
F
FP
M’
mM
F’
FBy
9
截面法步骤:
首先应用工程静力学方法,确定作用在杆件上的所 有未知的外力。
在所要考察的横截面处,用假想截面将杆件截开, 分为两部分。
考察其中任意一部分的平衡,在截面形心处建立合 适的直角坐标系,由平衡方程计算出各个内力分量的 大小与方向。
部分之间的相互作用力,也不同于物理学中基本粒子之间的相
互作用力,
而是指构件受力后发生变形,其内部各点(宏观上的点)的
相对位置发生变化,由此而产生的附加内力,即变形体因变形
而产生的内力。
这种内力确实存在,例如受拉的弹簧,其内力力图 使弹
簧恢复原状;人用手提起重物时,手臂肌肉便产生内力等等。
2020/6/28
分量称为剪力(shearing force)。
内力偶Mx将使杆件的两个相邻截面产生绕杆件轴线的 相对转动,这种变形称为扭转变形,该内力偶为扭矩。
2020/6/28
8
内力偶My和Mz将使杆件的两个相邻截面产生绕横截 面上的某一轴线的相对转动,从而使杆件在xz、xy平 面 内 发 生 弯 曲 变 形 , 这 两 个 内 力 偶 为 弯 矩 (bending moment)。
表明,受力与变形之间存在确定的关系,称为物性关系。
2020/6/28

11
变形后两部分相互重叠
变形后两部分相互分离 变形后两部分协调一致
在外力作用下,弹性体的变形应使弹性体各相 邻部分,既不能断开,也不能 发生重叠的现象,
2020/6/28
12
4.4 杆件横截面上的应力
材料力学不仅要确定其系统内 力系的合力及其分量,而且还 要确定横截面上的内力分布情 况,确定那些位置的内力最大, 即最危险的位置。
相关文档
最新文档