完整版锁相环工作原理.doc

合集下载

锁相环原理

锁相环原理

锁相环原理一、锁相环是什么?锁相环是一种利用相位同步产生电压,去调谐压控振荡器以产生目标频率的负反馈控制系统。

锁相环就是通过负反馈控制系统,让压控振荡器的固有振荡频率fo 和输入的参考信号fi 的相位保持在误差允许范围内,从而让振荡频率fo达到和参考信号fi 同步相位频率的目的。

一般来说,参考信号fi 的信号特性更好,通过锁相系统提高振荡频率fo的信号特性,同时还可以将参考信号fi 转化为你想要的任意(最好整数倍)频率信号。

二、基本理论1.工作原理最基础的锁相环系统主要包含三个基本模块:鉴相器(Phase Detector:PD)、环路滤波器(L00P Filter:LF)其实也就是低通滤波器,和压控振荡器(Voltage Controlled Oscillator:VCO)。

有了这三个模块的话,最基本的锁相环就可以运行了。

但我们实际使用过程中,锁相环系统还会加一些分频器、倍频器、混频器等模块。

(这一点可以类比STM32的最小系统和我们实际使用STM32的开发板)我们从锁相系统开始运行的那一刻进行分析,这个时候鉴相器有两个输入信号,一个是输入的参考信号Vin,另一个是压控振荡器的固有振荡信号Vout。

这个时候由于两个信号的频率不相同,会因为频差而产生相位差,如果不对压控振荡器进行任何操作,那么相位差会不断累积,从而跨越2Π角度,从零重新开始测相位,如图3所示。

这便是测量死区,明明相位在不断变大,但鉴相器只能测出0~2Π的范围,测出的相位差最大便是2Π,这样就导致了鉴相器的输出电压只能在一定的范围内波动。

理想状态是让这两个信号的相位差一直保持在2Π的范围内,不进入测量死区。

那么在系统刚开始的时候,鉴相器测出两个信号的相位差,将相位差时间信号转化为误差电压信号输出(具体转化过程见鉴相器讲解)。

通过环路滤波器转化为压控电压加到压控振荡器上,使压控振荡器的输出频率Vout逐步同步于输入信号Vin,直到两个信号的频率逐渐同步,相位差也在测量误差范围内,那么整个系统就稳定下来了。

(完整版)锁相环工作原理

(完整版)锁相环工作原理

基本组成和锁相环电路1、频率合成器电路频率合成器组成:频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射信号源,发射信号源主要由锁相环和VCO电路直接产生。

如图3-4所示。

在现在的移动通信终端中,用于射频前端上下变频的本振源(LO),在射频电路中起着非常重要的作用。

本振源通常是由锁相环电路(Phase-Locked Loop)来实现。

2.锁相环:它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域3.锁相环基本原理:锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。

⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。

在PLL中,压控振荡器实际上是把控制电压转换为相位。

1、压控振荡器的输出经过采集并分频;2、和基准信号同时输入鉴相器;3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4、控制VCO,使它的频率改变;5、这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。

锁相环电路是一种相位负反馈系统。

一个完整的锁相环电路是由晶振、鉴相器、R分频器、N分频器、压控振荡器(VCO)、低通滤波器(LFP)构成,并留有数据控制接口。

锁相环电路的工作原理是:在控制接口对R分频器和N分频器完成参数配置后。

晶振产生的参考频率(Fref)经R分频后输入到鉴相器,同时VCO的输出频率(Fout)也经N分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式输出,并通过LFP滤波,加到VCO的调制端,从而控制VCO的输出频率,使鉴相器两输入端的输入频率相等。

(完整版)锁相环工作原理

(完整版)锁相环工作原理

基本组成和锁相环电路1、频率合成器电路频率合成器组成:频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射信号源,发射信号源主要由锁相环和VCO电路直接产生。

如图3-4所示。

在现在的移动通信终端中,用于射频前端上下变频的本振源(LO),在射频电路中起着非常重要的作用。

本振源通常是由锁相环电路(Phase-Locked Loop)来实现。

2.锁相环:它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域3.锁相环基本原理:锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。

⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。

在PLL中,压控振荡器实际上是把控制电压转换为相位。

1、压控振荡器的输出经过采集并分频;2、和基准信号同时输入鉴相器;3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4、控制VCO,使它的频率改变;5、这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。

锁相环电路是一种相位负反馈系统。

一个完整的锁相环电路是由晶振、鉴相器、R分频器、N分频器、压控振荡器(VCO)、低通滤波器(LFP)构成,并留有数据控制接口。

锁相环电路的工作原理是:在控制接口对R分频器和N分频器完成参数配置后。

晶振产生的参考频率(Fref)经R分频后输入到鉴相器,同时VCO的输出频率(Fout)也经N分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式输出,并通过LFP滤波,加到VCO的调制端,从而控制VCO的输出频率,使鉴相器两输入端的输入频率相等。

锁相环(PLL)的工作原理

锁相环(PLL)的工作原理

锁相环(PLL)的工作原理1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。

锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。

锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。

因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。

锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。

锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,锁相环组成的原理框图如图8-4-1所示。

锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。

2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。

鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。

则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。

即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为:(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。

三相锁相环原理(一)

三相锁相环原理(一)

三相锁相环原理(一)三相锁相环简介•什么是三相锁相环?•锁相环的基本原理基本原理•基本元件:相位比较器、低通滤波器、增益放大器、VCO (Voltage Controlled Oscillator)•工作流程:1.通过相位比较器比较输入信号与反馈信号的相位差2.相位差经过低通滤波器进行平滑处理3.平滑后的信号经过增益放大器放大4.放大的信号作为VCO的控制电压,调节VCO的频率三相锁相环的特点•高精度的频率锁定能力•快速的跟踪能力•极低的噪声和抖动•抗干扰性强三相锁相环的应用•通信系统中的时钟恢复•激光锁模技术•信号生成和恢复•数字信号处理等领域三相锁相环的发展趋势•高集成度•低功耗•多功能化•高性能、高可靠性结语三相锁相环作为一种常用且重要的控制系统,广泛应用于各个领域。

随着科技的不断进步,它将越来越受到重视,并在各个方面得到不断优化和改进。

相信未来的三相锁相环将成为更加高效、稳定和可靠的控制技术。

什么是三相锁相环?三相锁相环是一种常见的控制系统,用于通过调节输出频率来实现输入和反馈信号之间的相位锁定。

它由相位比较器、低通滤波器、增益放大器和VCO(Voltage Controlled Oscillator)组成,可以用于许多领域,如通信系统、激光锁模技术和数字信号处理等。

锁相环的基本原理锁相环的基本原理是根据反馈信号和输入信号之间的相位差调整输出信号的频率,以实现相位锁定。

它主要通过以下几个步骤来实现:1.相位比较器:相位比较器比较输入信号和反馈信号的相位差,并生成一个误差信号。

2.低通滤波器:误差信号经过低通滤波器进行平滑处理,以去除高频噪声和干扰。

3.增益放大器:平滑后的信号经过增益放大器放大,以增强控制信号的幅度。

4.VCO控制:放大后的信号作为VCO的控制电压,调节VCO的频率,使其与输入信号的频率相匹配。

通过调节频率,锁相环实现了输入和反馈信号的相位锁定。

三相锁相环的特点三相锁相环具有以下几个特点:•高精度的频率锁定能力:三相锁相环可以实现非常精确的频率锁定,对输入信号的变化能够及时做出反应并进行调整。

锁相环的基本原理锁相环基本原理及其应用

锁相环的基本原理锁相环基本原理及其应用

锁相环的基本原理锁相环基本原理及其应用锁相环的基本原理锁相环基本原理及其应用锁相环及其应用所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简称环路,通常用PLL表示。

锁相环路是由鉴相器(简称PD)、环路滤波器(简称LPF或LF)和压控振荡器(简称VCO)三个部件组成闭合系统。

这是一个基本环路,其各种形式均由它变化而来PLL概念设环路输入信号v= Viomimsin(ωit+φi)环路输出信号v= Vosin(ωot+φo)——其中ωo=ωr+△ωo通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。

PLL构成由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。

PLL原理从捕捉过程→锁定A.捕捉过程(是失锁的)a. b.φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。

φe(t)由鉴相器产生误差电压v(t)=f(φde)完成相位误差—电压的变换作用。

v(t)为交流电压。

dc.v(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生d控制角频差△ω0,使ω0随ωi变化。

B.锁定(即相位稳定)a. b.一旦锁定φe(t)=φe∞(很小常数)v(t)= V(直流电压)ddω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。

ωr为VCO固有振荡角频率。

)锁相基本组成和基本方程(时域)各基本组成部件鉴相器(PD)数学模式v(t)=AsinφdDe(t)相位模式环路滤波器(LPF) 数学模式v(t)=A(P) v(t)cFd相位模式压控振荡器(VCO)数学模式相位模式环路模型相位模式:指锁相环(PLL)输入相位和输出相位的反馈调节关系。

相位模型:把鉴相器,环路滤波器和压控振荡器三个部件的相位模型依次级联起来就构成锁相相位模型。

第1章锁相环路的基本工作原理

第1章锁相环路的基本工作原理

《 锁相技术》
图1-13 锁相环路的相位模型
第1章 锁相环路的基本工作原理
第3节 环路的动态方程
按图1-13的环路相位模型,不难导出环路的动态方程
e (t) 1(t) 2(t)
2 (t )
KoUd
F
( p) p
sine
(t
)
将(1-27)式代入(1-26)式得
(1-26) (1-27)
pe (t) p1(t) KoUd F ( p) sine(t) (1-28)
负号对环路的工作没有影响,分析时可以不予考虑。 故传输算子可以近似为
F ( p) 1 p 2 p1
(1-22)
式中τ1=R1C。(1-22)式传输算子的分母中只有一个 p,是一个积分因子,故高增益的有源比例积分滤波器又 称为理想积分滤波器。显然,A越大就越接近理想积分 滤波器。此滤波器的频率响应为
《 锁相技术》
第1章 锁相环路的基本工作原理
第2节 环路组成
锁相环路为什么能够进入相位跟踪,实现输出与输 入信号的同步呢?因为它是一崐个相位的负反馈控制 系统。这个负反馈控制系统是由鉴相器(PD)、环路滤 波器(LF)和电压控制振荡器(VCO)*三个基本部件组成 的,基本构成如图1-4。
《 锁相技术》
F ( p) A1 p 2 1 p1
式中τ1=(R1+AR1+R2)C;τ2=R2C; A是运算放大器无反馈时的电压增益。 若运算放大器的增益A很高,则
《 锁相技术》
第1章 锁相环路的基本工作原理
图1-9 无源比例积分滤波器的组成与对数频率特性
《 锁相技术》
(a)组成;(b)频率特性
第1章 锁相环路的基本工作原理
令环路增益

锁相环原理

锁相环原理

1锁相环的基本原理1.1 锁相环的基本构成锁相环路(PLL)是一个闭环的跟踪系统,它能够跟踪输入信号的相位和频率。

确切地讲,锁相环是一个使用输出信号(由振荡器产生的)与参考信号或者输入信号在频率和相位上同步的电路。

在同步(通常称为锁定)状态,振荡器输出信号和参考信号之间的相位差为零,或者保持常数。

如果出现相位误差,一种控制机理作用到振荡器上,使得相位误差再次减小到最小。

在这样的控制系统中,实际输出信号的相位锁定到参考信号的相位,因而我们称之为锁相环。

锁相环在无线电技术的许多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛的应用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。

锁相环通常由鉴相器(PD),环路滤波器(LF)和压控振荡器(VCO)三个基本部件组成。

如图1-1所示:VCOLFPD图1-1 锁相环的基本构成在PLL中,PD是一个相位比较器,比较基准信号(输入信号)(t)与输出信号(t)之间的相位偏差,并由此产生误差信号;LF是一个低通滤波器,用来滤除中的高频成分,起滤波平滑作用,以保证环路稳定和改善环路跟踪性能,最终输出控制电压;VCO是一个电压/频率变换装置,产生本地振荡频率,其振荡频率受控制,产生频率偏移,从而跟踪输入信号的频率。

整个锁相环路根据输入信号与本地振荡信号之间的相位误差对本地振荡信号的相位进行连续不断的反馈调节,从而达到使本地振荡信号相位跟踪输入信号相位的目的。

1.1.1 鉴相器鉴相器是一个相位比较器,比较两个输入信号的相位,产生误差相位,并转换为误差电压。

鉴相器有多种类型,如模拟乘法器型、取样保持型、边沿触发数字型等,其特性也可以是多种多样的,有正弦特性、三角特性、锯齿特性等,作为原理分析,通常使用正弦特性的鉴相器,理由是正弦理论比较成熟,分析简单方便,实际上各种鉴相特性当信噪比降低时,都趋向于正弦特性。

常用的正弦鉴相器可以用模拟乘法器与低通滤波器的串接作为模型,如图1-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本组成和锁相环电路
1、频率合成器电路
频率合成器组成:
频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射
信号源,发射信号源主要由锁相环和VCO 电路直接产生。

如图3-4 所示。

在现在的移动通信终端中,用于射频前端上下变频的本振源(LO ),在射频电路中起着非常
重要的作用。

本振源通常是由锁相环电路(Phase-Locked Loop )来实现。

2.锁相环:
它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域
3.锁相环基本原理:
锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD 或 PC):是完成相位比较的单元, 用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF): 是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的
作用 .通常由电阻、电容或电感等组成,有时也包含运算放大器。

⑶压控振荡器(VCO ):振
荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。

在PLL 中,压控振荡器实际上是把控制电压转换为相位。

1、压控振荡器的输出经过采集并分频;
2、和基准信号同时输入鉴相器;
3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;
4、控制 VCO ,使它的频率改变;
5、这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。

锁相环电路是一种相位负反馈系统。

一个完整的锁相环电路是由晶振、鉴相器、R 分频器、N 分频器、压控振荡器(VCO )、低通滤波器(LFP)构成,并留有数据控制接口。

锁相环电路的工作原理是:在控制接口对R 分频器和N 分频器完成参数配置后。

晶振产生
的参考频率( Fref)经 R 分频后输入到鉴相器,同时VCO 的输出频率( Fout)也经 N 分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式
输出,并通过 LFP 滤波,加到 VCO 的调制端,从而控制 VCO 的输出频率,使鉴相器两输入端的
输入频率相等。

锁相环电路的计算公式见公式:
Fout=(N/R)Fref
由公式可见,只要合理设置数值N 和 R,就可以通过锁相环电路产生所需要的高频信号。

4.锁相环芯片
锁相环的基准频率为13MHz ,通过内部固定数字频率分频器生成5KHz 或 6.25KHz 的参考频率。

VCO 振荡频率通过IC1 内部的可编程分频器分频后,与基准频率进行相位比较,产
生误差控制信号,去控制VCO,改变VCO的振荡频率,从而使VCO输出的频率满足要求。

如图 3-5 所示。

N=F VCO /F R
N:分频次数
F VCO: VCO 振荡频率
F R:参考频率
失锁检测器:
如果锁相环失锁,IC1 第 14 脚送出一个低电平信号,CPU 第 40 脚 PLL/LD 接收到失锁
信号后,关闭发射通道,发射机停止工作。

如图3-6 所示。

如果 IC1 的 LD 管脚上出现低电平,则处于失锁状态,从D10, R50 获得直流电压,且C63 产生的提供给微处理器(IC10) 的 PLL/LD 管脚电压降低。

当微处理器 (IC10) 检测到此情况时,
不能进行发射,无视通话转换开关输入信号。

如图3-6 所示。

5、锁相环的应用
1.锁相环在调制和解调中的应用
(1 )调制和解调的概念
为了实现信息的远距离传输,在发信端通常采用调制的方法对信号进行调制,收信端接收到信号
后必须进行解调才能恢复原信号。

所谓的调制就是用携带信息的输入信号u 来控制载波信号u 的参数,使载波信号的某一个参数随
i C
输入信号的变化而变化。

载波信号的参数有幅度、频率和位相,所以,调制有调幅(AM )、调频( FM )和调相(PM )三种。

调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点
是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波
信号的幅度相等,相位随输入信号幅度的变化而变化。

调幅波和调频波的示意图如图8-4-4 所示。

上图的( a)是输入信号,又称为调制信号;图(b)是载波信号,图( c )是调幅波和调频波信号。

解调是调制的逆过程,它可将调制波u 还原成原信号u 。

O i
2.锁相环在调频和解调电路中的应用
调频波的特点是频率随调制信号幅度的变化而变化。

由8-4-6 式可知,压控振荡器的振荡频率取
决于输入电压的幅度。

当载波信号的频率与锁相环的固有振荡频率ω 相等时,压控振荡器输出
信号的频率将保持ω不变。

若压控振荡器的输入信号除了有锁相环低通滤波器输出的信号u 外,
0 c
还有调制信号u ,则压控振荡器输出信号的频率就是以ω 为中心,随调制信号幅度的变化而变化i0
的调频波信号。

由此可得调频电路可利用锁相环来组成,由锁相环组成的调频电路组成框图如图
8-4-5 所示。

根据锁相环的工作原理和调频波的特点可得解调电路组成框图如图8-4-6 所示
3.锁相环在频率合成电路中的应用
在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。

但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合成技术,可以获得多频率、高稳
定的振荡信号输出。

输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振信号频率小的称为锁相分频器电路。

常见故障维修实例。

相关文档
最新文档