全等三角形判定ASA讲解
全等三角形的判定ASA

全等三角形的判定ASA在初中数学的几何世界里,全等三角形是一个非常重要的概念。
而全等三角形的判定方法有多种,其中“ASA”(角边角)就是一种常用且重要的判定方法。
首先,咱们来理解一下什么是“ASA”。
“角边角”说的就是如果两个三角形的两个角及其夹边分别相等,那么这两个三角形就是全等的。
比如说,有三角形 ABC 和三角形 DEF。
如果角 A 等于角 D,角 B等于角 E,而且 AB 这条边和 DE 这条边相等,那么就能够得出三角形ABC 全等于三角形 DEF。
那为什么“ASA”能判定两个三角形全等呢?咱们来仔细想想。
如果两个角相等,那第三个角是不是肯定也相等?因为三角形的内角和是固定的 180 度嘛。
所以两个角相等了,第三个角也就跟着相等了。
再加上夹边相等,那这两个三角形的形状和大小就完全确定了。
就好像咱们用模具做东西,角度和边都确定了,做出来的东西肯定是一模一样的。
咱们通过具体的例子来感受一下“ASA”的魅力。
假设在三角形 ABC 中,角 A 是 60 度,角 B 是 40 度,AB 边的长度是 5 厘米。
然后有另一个三角形 DEF,角 D 是 60 度,角 E 是 40 度,DE 边也是 5 厘米。
那咱们就可以很确定地说,三角形 ABC 全等于三角形 DEF。
在实际做题的时候,怎么运用“ASA”来证明两个三角形全等呢?这就需要我们仔细观察题目中给出的条件。
比如说,题目可能会告诉我们两个三角形中的一组对应角相等,然后再告诉我们这两个角之间的夹边相等。
这时候,我们就要敏锐地意识到,可以用“ASA”来证明全等。
又或者,题目中可能会通过一些角度的计算,让我们得出两个角相等,然后再给出夹边相等的条件。
咱们再来说说“ASA”和其他全等三角形判定方法的关系。
“ASA”和“AAS”(角角边)有时候容易让人混淆。
但其实“AAS”可以通过三角形内角和定理转化为“ASA”。
而“SSS”(边边边)则是通过三条边的相等来判定全等,和“ASA”的角度和边的结合方式有所不同。
三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。
全等三角形判定(AAS)和(ASA)

全等三角形(三)AAS和ASA 【知识要点】1.角边角定理(ASA):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB∥CD,AE=CF,求证:AB=CD例2.如图,已知:AD=AE,A B EA C D∠=∠,求证:BD=CE.例3.如图,已知:A B DB A CDC∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD,AD=BC,O是BD中点,过O点的直线分别交DA和BC的延长线于E,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD中,AB=DC,AD=BC,点F在AD上,点E在BC上,AF=CE,EF的对角线BD交于O,请问O点有何特征?AAB D CEO123A F DOB E C【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .(4题)3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
第五讲 ASA全等三角形的判定

A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。
书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。
书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。
规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。
无论这个一边是“对边”还是“夹边”,只要对应相等即可。
(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。
求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。
第十二讲 三角形全等的判定定理3(ASA)(含解析)(人教版)

第十二讲三角形全等的判定定理3(ASA)【学习目标】1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.【新课讲解】知识点1:三角形全等的判定(“角边角”定理)1.文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).2.几何语言:在△ABC和△A′ B′ C′中,∴ △ABC≌△A′ B′ C′ (ASA).【例题1】已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.【答案】见解析。
【解析】证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA ).知识点2:用“角角边”判定三角形全等1.文字表述。
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.2.几何语言表述。
在△ABC和△A′B′C′中,∴ △ABC≌△A′B′C′(AAS).【例题2】如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.【答案】见解析。
【解析】证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∴△BDA≌△AEC(AAS).(2)证明:∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.知识点3:应用1.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.2.全等三角形对应边上的高也相等.【例题3】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.【答案】见解析。
全等三角形的判定(ASA)

04 边角边(sas)判定定理
定理内容
两个三角形中,如果两边和它们之间的夹角分别相等,则 这两个三角形全等。
用数学符号表示为:如果$Delta ABC cong Delta DEF$, 且$AB = DE, BC = EF, angle B = angle E$,则$angle A = angle D$。
三角形全等在几何证明中的应用
证明线段相等
通过构造两个全等的三角形 ,利用全等三角形的对应边 相等,证明两条线段相等。
证明角度相等
利用全等三角形的对应 角相等,证明两个角度
相等。
证明垂直关系
通过证明两个三角形全等, 利用全等三角形的对应角为 直角,证明两条线段垂直。
证明平行关系
通过证明两个三角形全等, 利用全等三角形的对应边平
第六步,根据第三步和第五步的 结论,可得 $AC = A'C'$。
第七步,由全等三角形的判定条 件,有 $triangle ABC cong triangle A'B'C'$。
定理应用
01
在几何证明中,角边角(asa)判定 定理常用于证明两个三角形全等 ,从而可以进一步推导出其他几 何性质和结论。
定理证明
其次,根据已知条件$AB = AB$和$AC = AC$,利用 SSS判定定理可得$triangle ABC cong triangle ACD$。
首先,由已知条件可知,$angle A = angle A$和 $angle B = angle B$,所以$angle C = angle C$ (三角形的内角和性质)。
全等三角形判定(ASA和AAS)

在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)
三角形全等的判定ASA

边角边相等(SAS)
如果两个三角形的两边长度相等,且 这两边所夹的角也相等,则这两个三 角形全等。
三角形全等的应用
解决几何问题
通过三角形全等关系,可以证明 线段相等、角相等、垂直关系等 ,从而解决各种几何问题。
制作精确图形
在几何作图或设计领域,三角形 全等关系可以用来制作精确的图 形或模型。
02
与平行线判定定理的联系
在三角形全等的判定中,常常需要利用平行线的性质来证明 两个三角形全等。例如,在ASA全等判定定理中,需要证明 两角及夹角的边相等,而夹角的边是通过平行线性质推导出 来的。
与勾股定理的联系
勾股定理是三角形全等判定中的重要工具。在证明两个直 等于斜边的平方。
02
全等关系具有传递性,即如果三 角形ABC与三角形DEF全等,那 么三角形DEF也与三角形ABC全 等。
三角形全等的条件
边边边相等(SSS)
角边角相等(ASA)
如果两个三角形的三边长度分别相等 ,则这两个三角形全等。
如果两个三角形有两个角分别相等, 且这两个角所夹的边也相等,则这两 个三角形全等。
ssa全等判定方法
总结词
两边及其夹角对应相等的两个三角形 全等。
详细描述
根据SSA全等判定定理,如果两个三 角形有两边长度相等且这两边所夹的 角相等,则这两个三角形全等。这个 定理在解决几何问题时非常有用。
aas全等判定方法
总结词
两角及其夹边对应相等的两个三角形 全等。
详细描述
根据ASA全等判定定理,如果两个三 角形有两个角相等且这两个角所夹的 边也相等,则这两个三角形全等。这 个定理是三角形全等判定的重要依据 之一。
asa全等定理的应用
总结词:广泛实用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪下来,与同伴进行比较,它们能否互相重合?
有两个角和这两个角的
夹边对应相等的两个三角
A
形全等。(简写成“角边
角”或“ASA”)
C 600 3cm 400
B
9
已知:任意△ABC,画一个
△A’B’C’,使A’B’=AB,∠A’
=C∠A,∠B’=∠B
画法:
D E
1、画A’B’=AB 2、在A’B’的同旁画
∠ACB=∠DBC,
∴△ABC≌△DCB( ASA )
补充例题 16
如果两个三角形有两个角及其中一角 的对边分别对应相等,那么这两个三角 形能全等吗?
〖探究方法〗——用逻辑推理方法证明
17
如图:如果两个三角形有两个角及其中一个角的对 边分别对应相等,那么这两个三角形是否一定全等?
已知:∠A=∠A′, ∠B=∠B′, AC=A′C′
22
符号语言:
A
D
B
E
C
F
在ABC和DEF中
在ABC和DEF中
B=E (已知)
BC=EF(已知)
B=E
C=F
C=F(已知)
AB=DE
ABC DEF(A.S.A.) ABC DEF(A.A.S.)
如果两个三角形有两个角、一条边 分别对应相等,那么这两个三角形能 全等吗?
求证:
例题变式
△ABC≌△A′B′C′ 证明∵ ∠A=∠A′, ∠B=∠B′ 又∠A+∠B+∠C=180° (三角形的内角和等于180°) 同理∠A′+∠B′+∠C′=180° ∴ ∠C=∠C′. 在△ABC和△A′B′C′中 ∵ ∠A=∠A′ AC=A′C′ ∠C=∠C′ ∴ △ABC≌△A′B′C′(A.S.A.)
那么最省事的办法是(
)c。
A 带①去 B带②去
C 带③去 D带①和②去
②
③
①
14
2、如图 , AC与BD相交于点O , 则:
A
1.图中可看出相等的是 _∠__A_O__B= _∠__C__O_D.
2.要证△BAO ≌ △ DOC 还需要 ____2_ 个条件.
B
*
O
*
3.请补充条件, 填写证明方案.பைடு நூலகம்
1. 两个角及这两 两 角的夹边分别对 种 应相等 情 2. 两个角及其中 况 一角的对边分别
C’ A
B ∠ DA’B’=∠A , ∠E B’A’ =∠B,
A’D、B’E交于点
C’。
∴△A’B’C’就是所
A'
B’ 要
画的三角形。
问:通过实验可以发现什么事实? 10
有两角和它们夹边对应 相等的两个三角形全等。
(简写成“角边角”或 “ASA” )
11
三角形全等的识别
归纳
如果两个三角形的两角及其夹边分别对应相 等,那么这两个三角形全等.
_∠__A__O_B_=__∠__C_O_ D
___O__A_=_O__C____
__∠__A__=_∠__C____
根据:__A__S_A__
15
3
如图,已知∠ABC=∠DCB, ∠ACB= ∠DBC,
求证: △ABC≌△DCB.
证明 在△ABC和△DCB中,
图 19.2.9
∠ABC=∠DCB, BC=CB
简记为 (A.S.A.) 或角边角
A
符 在ABC和DEF中
B
号 C
B=E(已知)
E
D F
语 言
BC=EF(已知)
C=F(已知)
ABC ≌ DEF(A.S.A.)
12
已知:如图,AB=A’B’,∠A=∠A∠’C,=∠C’
∠B=∠B’。
求证:△ABC≌ △A’B’C’
语
C=F
E
F言
AB=DE ABC DEF(A.A.S.)
21
做一做:如图,在Δ ABC和Δ A/ B/ C/ 中,已知 AB= A/ B/ ,∠B= ∠B /、 ∠C= ∠C / , 请说出Δ ABC≌ Δ A/ B/ C/ 的理由。
A
B
C
两角和其中一角的对边对应相等的两 个三角形全等。(简写成“角角边”或 “AAS”)
全等三角形的判定
回顾:
(1)给定三角形的一个条件: 可能出现的结果是: 一条边
一个角
(2)给定三角形的两个条件时:
可能出现的结果是: 两条边
两个角 一边一角
(3)给定三个条件时: 可能出现的结果是: 三个角
两边夹一角
两边对一角
三条边
两角一边
2
当两个三角形的两边及其夹角分别对应相等时,
两个三角形一定全等.(SAS)
C
A D
B
4
提出问题:小明不小心将一块三角形模具打 碎了,他是否可以只带其中的一块碎片到商 店去,就能配一块与原来一样的三角形模具 呢?如果可以,带哪块去合适?
要不要3块都带去?
②
③
①
带几块,带去了三角形的几个元素? 另外两块呢?
8
合作学习:有两个角和这两个角的夹边对应相等的
两个三角形一定全等吗?请用量角器和刻度尺画Δ ABC, 使BC=3, ∠B=400、 ∠C=600 将你画的三角形与其他同 学画的三角形比较,你发现了什么?
A
A'
B
C B'
C'
而当两个三角形的两条边及其中一边的对角分别对应
相等时,两个三角形未必一定全等.(SSA)
A
A
B
CB
D
3
两角一边呢
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件 (1) AC=AD ∠CAB= ∠DAB (SAS) ( 2 ) BC=BD ∠CBA= ∠DBA(SAS)
___O__A_=_O__C____ __∠__A_O__B_=_∠__C__OD ___O__B_=_O__D____ 根据:____S_A_S_
_∠__A_O_B__=_∠__C_O__D __O__B_=_O__D_____ _∠__B__=_∠__D_____ 根据:___A_S_A__
D
C
A
A'
C C' B
返回
证明:在△ABC 和△A’B’C中’ ∠__A_=__∠__A_’( 已知 ) A_B_=_A__’__B_’( 已知) ∠__B_=_∠__B_’_ ( 已知)
B' ∴△______≌AB△C______(ASA) A’B’C’
13
1、 某同学把一块三角形的玻璃打碎成了三
块,现在要到玻璃店去配一块完全一样的玻璃,
18
有两个角及其中一角的 对边分别对应相等的两个 三角形全等。
(简写成“角角边”或 “AAS”)
19
三角形全等的识别
(角边角)
(角角边)
20
三角形全等的识别
归纳
有两角及其中一角的对边分别对应相等 的两个三角形全等。
简记为 (AAS) 或角角边
A
符 在ABC和DEF中
B
号 C
B=E
D