南京林业大学试卷概率统计B(B)历届试卷附答案

合集下载

概率论与数理统计(B)卷参考答案

概率论与数理统计(B)卷参考答案

商学院课程考核试卷参考答案与评分标准 (B )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分)1.0.2;2. 0.4(2/5);3. 916; 4.(0.5,2); 5.2;6. 13;7. 7;8. 16; 9. 45; 10.32。

二、单项选择(每小题3分,共15分)1. C .;2. A .;3. B .;4. A .;5. D .。

三、计算题(第1题10分,其余5小题每题9分,共55分)1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。

那么8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分(1)由全概率公式064.02.02.003.08.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P ; 6分(2)由Bayes 公式375.0064.003.08.0)()|)(()|(=⨯==B P A B A P B A P 10分2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A⎩⎨⎧≤>-=-01)(2x x e x F x3分 (2)21)1()1(}11{--=--=<<-e F F X P6分 (3)⎩⎨⎧≤>='=-02)()(2x x e x F x f x9分 3. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分(2)324)(112==⎰⎰ydy dx x X E ;324)(121==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov9分4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P251100511--=-=⎰e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分52)1(1}0{1}1{---==-=≥e Y P Y P9分5. 似然函数∑=--=--==∏ni i i x n n n ni x in ex x x e x x x x L 11211121)();,,,(ααλαλααλλαλ 3分 ∑∑==--++=ni i ni ix xn n L 11ln )1(ln ln ln αλαλλ5分 令:0ln 1=-=∑=ni i x nd L d αλλ7分得λ的极大似然估计为:∑==ni i x n1ˆαλ9分6. 这是正态总体方差未知的条件下,均值的区间估计问题 2分08.0,5.1,35===s x nμ的95%置信区间为:⎪⎪⎭⎫ ⎝⎛+-n s t x n s t x )34(,)34(025.0025.0 6分 )5275.1,4725.1(3508.00322.25.1,3508.00322.25.1=⎪⎪⎭⎫⎝⎛⨯+⨯-= 9分。

统计学(B)试卷及答案

统计学(B)试卷及答案

6.算术平均数大小除受各组标志值大小影响外,还受到影响的因素是: A.各组单位数占总体单位数比重 C.标志值大小 ( ) B.各组标志值占总体标志总量比重 D.标志值数量的多少
2.下列指标中属于数量指标的有: A.新增人口数 C. 利 润 额 ( ) B.缺课人数 D. 粮 食 产 量
7.反映现象标志值变动程度最常用的指标是: A.标准差 C.平均差 ( ) B.全距 D.四分位差
pq p q
1 1 0 1
100% =103.66%
三、名词解释: (共 12 分,每小题 2 分)
Qp p1q1 p0 q1 =4(元) K q
p q p q
0
0 1 0
Qq p0 q1 p0 q0 =20000(元)(6 分)
5、解: x (2 分)
5
2001
2002 120
2003 125 25
2004 150 50
2005 195 95
2006 200
120 20 1
104 50 1.25 95 1.5
103 100 1.95
=20(万元) n
an =51% a0
一、计算题: (共 60 分,每小题 10 分)
1、 解:x 3071
4、×
5、√
6、√
7、
X x x , x x


2331.23≦X≦
V 3071

x
100% =14.67%
V 3072

x
100% =17.01%
3071 班成绩更稳定。 (6 分) 2、解: (每 3 个数字 1 分) 月份 当年实现利润额 (万元) 累计增长量(万元) 环比发展速度(%) 定基增长速度(%) 增长 1%的绝对值 (2)年平均利润增长量= (2 分) (3)年平均递增速度=

南京林业大学南方学院试卷概率论与数理统计A卷(48学时)

南京林业大学南方学院试卷概率论与数理统计A卷(48学时)

南京林业大学南方学院试卷课程 概率论与数理统计A 卷(48学时) 2008 ~2009学年第 2 学期一、填空题(每题3分,共30分): (1) 1. 试以三个事件A , B , C 的表示式表示下列事件“A 发生,而B 与C 都不发生” 可表示为 ; 2. 设某产品有100件,其中3件次品,现从中抽取3件(不放回抽样),求 “3件中恰有2件次品” 事件的概率为 ; 3. 设在一次随机试验中事件A 发生的概率为p ,现独立、重复做此实验,则直到第k(1,2,k =)次试验事件A 才发生的概率为 ;4.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则()P A B ⋃= ;(5) 5. 设X 服从两点分布,()(),1,0p X P q X P ====则()E X = ; 6. 设随机变量,12),1,0(~-=X Y N X )(Y E 为 ; 7. 将一枚骰子独立地先后掷两次,则两次掷出的点数之和为6的概率为 ; 8. 设随机变量(,)X Y 服从二维正态分布221212(,,,,)N μμσσρ ,则()D X = ; 9. 设n X X X ,,,21 是来自正态总体),(2σμN 的样本,其中μ未知,则2σ的置信水平为α-1的置信区间为 ;. 10. 设1,,n X X 是来自正态总体2(,)N u σ的一个样本,则__212()~nii XX σ=-∑ 。

二、(8分)轰炸机轰炸某目标,它飞到距目标4000m 、2000m 、1000m 上空的概率分别为0.5、0.3、 0.2,又设它在距目标4000m 、2000m 、1000m 上空投弹时的命中率分别为0.01、0.02、 0.1. 求目标被命中的概率。

三、(15分)设随机变量X 的概率密度为()⎪⎩⎪⎨⎧<-=其他0112x xCx f , 求1)C 值; 2)X 的分布函数()F x ; 3)⎭⎬⎫⎩⎨⎧<<-2121X P 。

概率统计B(48学时)练习题(演示版)

概率统计B(48学时)练习题(演示版)

概率统计习题习题一一填空题(1)设C B A ,,为三事件,试用C B A ,,的运算表示下列事件:C B A ,,中不多C B A ,,中至少有两个发生:BC AC AB ⋃⋃(2)设B A ,为二事件,试用B A ,的运算分别表示下列事件及其对立事件:B A ,都发生:,AB(2)设B A ,注:1A :两件均不合格,2A :一件合格,两件中有一件是不合格品即21A A ⋃; 两件中有一件是不合格品,另一件也是不合格即1A ,故516466)())(())((1614244221211211=⋅+=+=⋃⋃=⋃=C C C C A A P A A A P A A A P P (5)生产产品直到有10件正品为止,记录生产产品的总件数,写出该试验的样本空间。

{10,11,……}(6)假设7.0)(,4.0)(=⋃=B A P A P ,若B A 与互不相容,则3.0)()()(=-⋃=A P B A P B P ,若B A 与相互独立,则5.0)(),(4.04.07,0)()()()()(=+-=⋅+-⋃=B P B P B P A P A P B A P B P2甲乙丙三人各射一次靶,记-A “甲中靶”;-B “乙中靶”;-C “丙中靶”则用上述三事件的运算分别表示下列事件 (1)甲未中靶:A ; (2)甲中靶而乙未中靶B A(3)三人中只有丙未中靶:C AB (4)三人中恰好一人中靶:C B A C B A C B A ⋃⋃(5)三人中至少一人中靶C B A ⋃⋃ (6)三人中至少一人未中靶C B A ⋃⋃ (7)三人中恰好两人中靶:C B A BC A C AB ⋃⋃(8)三人中至少两人中靶AC BC AB ⋃⋃ (9)三人中均未中靶:C B A (10)三人中至多一人中靶C B A C B A C B A C B A ⋃⋃⋃ (11)三人中至多两人中靶C B A ABC ⋃⋃=3 20个运动队,任意分成甲乙两组(每组10队)进行比赛,已知其中有两个队是一级队,求这两个一级队: (1) 被分在不同组(A )的概率,;(2)被分在同一组(B )的概率。

南京林业大学试卷

南京林业大学试卷

南 京 林 业 大 学 试 卷课程 植物学(B 卷) 2011~12学年 第 2 学期一、 填空(每空0.5分,共15分)1、 细胞中的核酸有 1 和 2 两种,前者主要存在于 3 中,后者主要存在于 4 。

2、 植物的花序类型:樱花为 5 花序;杨树雄为 6 花序;无花果为 7 花序;凤梨为 8 花序;向日葵为 9 花序,一串红 10 花序。

3、 颈卵器植物包括__11__,__12__和 13 ;维管植物包括_14__,__15__和16 。

4、 在光学显微镜下,两纤维细胞所共的细胞壁从内向外依次为__17__、___18___ 和__19__三层。

5、 常见的叶片分裂有__20___、__21___、__22___三种。

常见的叶序有_23__、__24___、__25___、__26__、__27__。

6、 栽培品种的名称是由__28___、__29___和__30__三部分组成。

二、 选择题(每个2分,共20分)1、人们吃的豆芽,食用部分主要是 。

A 胚芽B 胚轴C 胚根D 子叶 2、双子叶木本植物茎的增粗主要是 分生组织活动的结果。

A 顶端分生组织B 居间分生组织C 侧生分生组织D 额外分生组织3、以下植物具有贮藏养料功能的变态叶是 。

A 马铃薯 B 水仙 C 竹 D 藕4、 苔藓植物体内水分和养分的输送途径是 。

A 导管B 筛管C 维管束D 细胞之间的传递5、以下果实中食用部分主要是胎座的是。

A 西瓜B 南瓜C 香蕉D 葡萄6、具备下列哪一项的植物,才能算是真正的陆生植物。

A 具有发达的根系B 具有发达的输导组织C 胚受到母体保护D 受精过程出现了花粉管7、银杏茎尖中,细胞染色体为12条,种子胚乳染色体为。

A 6条B 12条C 18条D 24条8、裸子植物比蕨类植物进化的最显著的特征是。

A有维管束B能够产生种子C没有孢子产生D植物体高大9、蜜腺一般位于萼片、花瓣、子房或花柱的。

A.顶部 B.上部 C.中部 D.基部10 根中的凯氏带结构主要出现在。

06-07-2概率统计B卷答案及评分标准

06-07-2概率统计B卷答案及评分标准

淮 海 工 学 院06 - 07 学年 第 2 学期 概率论与数理统计 试卷(B闭卷)答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1. 甲、乙两人谈判,设事件B A ,分别表示甲、乙无诚意,则B A ⋂表示----( C ) (A) 两人都无诚意 (B) 两人都有诚意(C) 甲必有诚意 (D) 乙必有诚意 2. 8台电视机有2台为次品,任取两台,恰有1台为次品的概率是----------------( B ) (A)41 (B) 73 (C) 21 (D) 433. 某台点钞机对面值为50元的人民币辨别真伪,其准确率为0.98,若利用它对50张面值为50元的人民币进行辨别,则出现1张辨别失误的概率为----------( B )(A) 02.0 (B) 4998.0 (C) 02.098.049 (D) 98.002.0494.设随机变量X 的密度函数⎩⎨⎧∈=其它,0),0(,)(b x x x f ,则常数b 等于--------------( C )(A)21(B) 1 (C) 2 (D) 25. 设X 是一随机变量,则下列各式中正确的是--------------------------------------( D )(A) )(25)5(X D X D -=- (B) )(5)5(X D X D -=-(C) )(5)5(X D X D =- (D) )(25)5(X D X D =- 6. 设μ=)(X E ,2)(σ=X D ,则≥<-)6(σμX P --------------------------( A ) (A)65 (B)76 (C)87 (D)987.设样本n X X X ,,21来自正态总体),(20σμN ,0σ为常数,μ未知,则μ的置信水平为α-1的置信区间为----------------------------------------------( A )(A))2(20ασZ n X ±(B))2(20ασZ n X ± (C))2(210ασ-±Z n X (D))2(210ασ-±Z n X 8.设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( D )时,一般采用统计量.)1(222σχS n -=(A) 2σ未知,检验0μμ=(B) 2σ已知,检验0μμ=(C) μ已知,检验202σσ= (D) μ未知,检验202σσ=二、计算题(本大题共4小题,每题7分,共28分)1.已知)(A P 31=,)(AB P =61,求)(A B P ,).(B A P解:)(A B P =)(AB P /)(A P =21-------------------------------------------------3=)(B A P )(B A P ----------------------------------------------------------------1=)(A P -)(AB P ----------------------------------------------------------2=61-------------------------------------------------------------------------12.设总体X 服从正态分布)1,10(N ,请写出X 的密度函数)(x f ,若8413.0)1(=Φ,9987.0)3(=Φ,求}139{≤≤X P . 解:2)10(221)(--=x ex f π--------------------------------------- 2由X 服从正态分布)1,10(N 知:)1,0(~10N X Z -=-----------1}139{≤≤X P =}31{≤≤-Z P ------------------------------ 1 =)3(Φ—)1(-Φ-------------------------1 =)1(Φ+)3(Φ—1------------------------1 =0.84 ---------------------------------1 3.设随机变量X 服从区间),0(e 的均匀分布, 求])1ln[(e X e Y +-=的概率密度)(y f Y .解:⎪⎩⎪⎨⎧≥≤<<=ex x e x ex f X ,0001)( ---------------------------------------------3∵])1ln[(e X e Y +-=为单调函数∴⎪⎩⎪⎨⎧≥≤<<--=2,1021)'(111)(y y y e e e e y f y Y ---------------------2=⎪⎩⎪⎨⎧≥≤<<--2,1021111y y y ee y ----------------------------------24.设二维随机变量),(Y X 的联合分布律 如右表 ,求k 及)1,2(F解:由112161414=+++k -------------------2 解得81=k -----------------------------------1=)1,2(F k 241+------------------321= ------------------------------1 三、问答题(本题8分)设样本321,,X X X 取自总体X ,X 为其样本均值,2,σμ==DX EX ,,X X -=112ˆμ,22ˆX X +=μ,33ˆX =μ为未知参数μ的三个估计量, 试问哪些为无偏估计量?在你选出的无偏估计量中,谁最有效?解:μμμμ=-=-=22ˆ11X E EX E ------1 μμμμ2ˆ22=+=+=EX X E E -----1 μμ==33ˆEX E ------------------------------1 31ˆ,ˆμμ∴ 是参数μ的无偏估计------------12222232113)31()31()35()313135(ˆσσμ=⎥⎦⎤⎢⎣⎡-+-+=--=X X X D D ---------2233)(ˆσμ==X D D ------------------------1 3ˆμD 最小,故33ˆX =μ最有效。

完整word版,大学概率统计试题及答案,推荐文档

完整word版,大学概率统计试题及答案,推荐文档

选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则()P A B = B ;(A) 0.7 (B) 0.58(C) 0.82(D) 0.12A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则()P A B = D ;(A) 0 (B) 0.42(C) 0.88(D) 1已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5(C) 0.8(D) 0.9袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: A ;(A) 815 (B) 415(C) 1225(D) 625袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: C ;(A) 815 (B) 415(C) 1225(D) 625在区间[0,1]上任取两个数,则这两个数之和小于12的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8(D) 1/16在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.1/2,通过第二个通道逃生成功的1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 C .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D)(2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 C 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

大学概率论与数理统计习题及参考答案

大学概率论与数理统计习题及参考答案

十一、两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个 邮筒内只有一封信的概率. 解: 设事件 A 表示“前两个邮筒内没有信”,设事件 B 表示“及第一个邮筒 内只有一封信”,则
22 P ( A) 2 0.25; 4 1 1 C2 C3 P( B) 0.375. 2 4

P A B P( A) P( B) P( AB)
P A B P( A) P( B)
AB A ( A B)
P ( AB ) P ( A) P ( A B)
P ( AB ) P ( A) P ( A B) P ( A) P ( B)
3 2 1 C3 C3 C9 27 1 ; 则 P B 0 3 P B1 ; 3 220 C 12 220 C 12 1 2 3 C3 C9 C9 108 84 P B 2 ; P B . 3 3 3 220 C 12 C 12 220
设 A 表示事件“第二次取到的都是新球”,
解: 设事件 A 表示“最强的两队被分在不同的组内”,则
10 基本事件总数为: C 20 9 1 事件 A 含基本事件数为: C 18 C2
9 1 C 18 C2 P A 0.5263. 10 C 20

P A 1 P A

8 2C 18 C 22 1 10 C 20
解法1设事件a表示报警系统a有效事件b表示报警系统b有效由已知0862093092006808508006893从而所求概率为解法20012015080988001211三为防止意外在矿内同时设有两种报警系统a与b每种系统单独使用时效的概率系统a为092系统b为093在a失灵的条件下b有效的概率为0851发生意外时这两个报警系统至少有一个有效的概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档