数字逻辑第六版习题答案2
《数字逻辑》(白中英)(第六版)习题解答教学提纲

《数字逻辑》(白中英)(第六版)习题解答《数字逻辑》(白中英)(第六版)习题解答第1章开关理论基础1、将下列十进制数化为二进制数和八进制数:十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.011111100 7.37479.43 1001111.0110110 117.332、将下列二进制数转换成十进制数和八进制数:二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153、将下列十进制数转换成8421BCD码:1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014、一个电路有三个输入端A 、B 、C ,当其中有两个输入端为高电平时,输出X 为高电平,试列出真值表,并写出X 的逻辑表达式。
[解]: 先列出真值表,然后写出X 的逻辑表达式C AB C B A BC A X ++=5、求下列函数的值:当A,B,C 为0,1,0时: BC B A +=1 ))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,1,0时: BC B A +=0 ))((C B A C B A ++++=1 B C A B A )(+=1当A,B,C 为1,0,1时: BC B A +=0 ))((C B A C B A ++++=1 B C A B A )(+=06、用真值表证明恒等式 C B A C B A ⊕⊕=⊕⊕ 成立。
证明:所以由真值表得证。
7、证明下列等式 (1)B A B A A +=+证明:左边=B A A + =B A B B A ++)(=B A AB B A ++=B A AB AB B A +++ =B A A B B A )()(+++ =B A + =右边(2)BC AB C AB C B A ABC +=++证明:左边= C AB C B A ABC ++ = ABC C AB C B A ABC +++ =)()(C C AB B B AC +++ =AB AC + =右边(3)E CD A E D C CD A C B A A ++=++++)( 证明:左边=E D C CD A C B A A )(++++ =A+CD+A B C +CD E =A+CD+CD E =A+CD+E =右边(4) C B A C B A B A ++=C B C A B A ++ 证明:左边=C B A C B A B A ++ =C B A C AB C B A B A +++)( =C B C A B A ++=右边8、用布尔代数简化下列逻辑函数(1)B C CB C B A ABC A F ++++= B C CB C B A ABC A ++++=)( B C CB A ++= C B A ⊕+=(2)C B A D A B A D C AB CD B A F ++++= )D A D C AB ()C B A B A CD B A (++++= D A B A +=(3)C B ABCD D BC ABD D ABC F ++++= C B D BC ABD ABC +++= C B D B ABD ABC +++= )(C D AD AC B +++= )(D A C A B +++= D B C B AB ++=(4)C AB C B BC A AC F +++= C AB C B )BC A AC (⋅⋅+= )C B A )(C B )(BC AC (++++= )C B A )(BC ABC (+++= )BC ABC BC A (++= BC =10、用卡诺图化简下列各式 (1)C AB C B BC A AC F +++=C F =说明:卡诺图中标有0的格子代表C B BC A AC F 1++=,1F 则是标有0之外的其余格子。
数字逻辑 课后习题答案

4. 最简电路是否一定最佳?为什么?
解答
一个最简的方案并不等于一个最佳的方案。最佳方案应满足全面的性能指标 和实际应用要求。所以,在求出一个实现预定功能的最简电路之后,往往要根据 实际情况进行相应调整。
2. 数字逻辑电路具有哪些主要特点?
解答
数字逻辑电路具有如下主要特点:
● 电路的基本工作信号是二值信号。 ● 电路中的半导体器件一般都工作在开、关状态。 ● 电路结构简单、功耗低、便于集成制造和系列化生产。产品价格低
廉、使用方便、通用性好。 ● 由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可
第二章
1 假定一个电路中,指示灯 F 和开关 A、B、C 的关系为 F=(A+B)C
试画出相应电路图。 解答
电路图如图 1 所示。
图1
2 用逻辑代数的公理、定理和规则证明下列表达式:
(1) AB + AC = AB + AC (2) AB + AB + AB + AB = 1 (3) AABC = ABC + ABC + ABC
= (A + B) ⋅ (A + B) =B
( ) F = BC + D + D ⋅ B + C ⋅ (AC + B)
= BC + D + (B + C)(AC + B) = BC + D + BC(AC + B) = BC + D + AC + B = B + D + AC
数字逻辑考题及答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数字逻辑考题及答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容数字逻辑试题1答案一、填空:(每空1分,共20分)1、(20.57)8 =( 10.BC )162、(63.25) 10= ( 111111.01 )23、(FF)16= ( 255 )104、[X]原=1.1101,真值X= -0.1101,[X]补 = 1.0011。
5、[X]反=0.1111,[X]补= 0.1111。
6、-9/16的补码为1.0111,反码为1.0110 。
7、已知葛莱码1000,其二进制码为1111,已知十进制数为92,余三码为1100 01018、时序逻辑电路的输出不仅取决于当时的输入,还取决于电路的状态。
9、逻辑代数的基本运算有三种,它们是_与_ 、_或__、_非_ 。
10、,其最小项之和形式为_ 。
11、RS触发器的状态方程为__,约束条件为。
12、已知、,则两式之间的逻辑关系相等。
13、将触发器的CP时钟端不连接在一起的时序逻辑电路称之为_异_步时序逻辑电路。
二、简答题(20分)1、列出设计同步时序逻辑电路的步骤。
(5分)答:(1)、由实际问题列状态图(2)、状态化简、编码(3)、状态转换真值表、驱动表求驱动方程、输出方程(4)、画逻辑图(5)、检查自起动2、化简(5分)答:3、分析以下电路,其中RCO为进位输出。
(5分)答:7进制计数器。
4、下图为PLD电路,在正确的位置添 * ,设计出函数。
(5分)5分注:答案之一。
三、分析题(30分)1、分析以下电路,说明电路功能。
(10分)解: 2分该组合逻辑电路是全加器。
以上8分2、分析以下电路,其中X为控制端,说明电路功能。
数字逻辑课后习题答案

数字逻辑课后习题答案数字逻辑是计算机科学和电子工程学科的基础课程之一,其重要性不言而喻。
在数字逻辑课程中,课后习题是帮助学生巩固所学知识和提高解决问题能力的重要环节。
本文将针对数字逻辑课后习题答案进行详细的阐述和解释,以便读者更好地理解和掌握数字逻辑知识。
一、确定文章类型本文属于教育类型,主要针对数字逻辑课后习题答案进行阐述和解释。
二、梳理思路在梳理思路方面,我们可以采用分类讨论的方法,将数字逻辑课后习题按照不同的类型进行分类,例如:基础概念、逻辑门、二进制运算、时序逻辑等。
对于每一类题目,我们可以先回顾相关的知识点,然后给出详细的解题步骤和答案,最后对解题思路进行总结和归纳。
三、展开论述1、基础概念数字逻辑中的基础概念包括二进制、十六进制、ASCII码等。
这些概念是学习数字逻辑的基础,也是解决数字逻辑问题的关键。
例如,对于一个简单的十进制转二进制的问题,我们需要通过不断地二分法将十进制数转换为二进制数。
2、逻辑门逻辑门是数字逻辑中的基本单元,包括与门、或门、非门等。
这些逻辑门的应用是数字逻辑中的基本问题,例如,通过组合逻辑门实现一个简单的异或电路。
3、二进制运算二进制运算是数字逻辑中的基本运算,包括加法、减法、乘法等。
对于一个简单的二进制加法问题,我们需要通过逐位相加、进位相加的方法得到结果。
4、时序逻辑时序逻辑是数字逻辑中的重要部分,包括时序图、状态图、摩尔定律等。
对于一个简单的时序逻辑问题,我们需要通过分析状态转移表和状态转移图来理解时序逻辑的原理和应用。
四、总结归纳通过以上的分类讨论,我们可以发现数字逻辑课后习题的多样性,但它们都基于数字逻辑的基本原理和方法。
因此,在解决数字逻辑问题时,我们需要先理解基本概念和原理,然后运用逻辑思维和算法思维进行分析和推理,最终得到正确的答案。
数字逻辑是一门重要的学科,其课后习题是帮助学生巩固所学知识和提高解决问题能力的重要环节。
通过本文的阐述和解释,相信读者可以更好地理解和掌握数字逻辑知识,为今后的学习和工作打下坚实的基础。
数字逻辑考题及答案

数字逻辑试题1答案一、填空:(每空1分,共20分)1、(20.57)8=(10.BC)162、(63.25)10=(111111.01)23、(FF)16=(255)104、[X]原=1.1101,真值X=-0.1101,[X]补=1.0011。
5、[X]反=0.1111,[X]补=0.1111。
6、-9/16的补码为1.0111,反码为1.0110。
7、已知葛莱码1000,其二进制码为1111,已知十进制数为92,余三码为110001018、时序逻辑电路的输出不仅取决于当时的输入,还取决于电路的状态。
9、逻辑代数的基本运算有三种,它们是_与_、_或__、_非_。
10、FAB1,其最小项之和形式为_。
FA B AB11、RS触发器的状态方程为_Q n1SRQ n_,约束条件为SR0。
12、已知F1AB、F2ABAB,则两式之间的逻辑关系相等。
13、将触发器的CP时钟端不连接在一起的时序逻辑电路称之为_异_步时序逻辑电路。
二、简答题(20分)1、列出设计同步时序逻辑电路的步骤。
(5分)答:(1)、由实际问题列状态图(2)、状态化简、编码(3)、状态转换真值表、驱动表求驱动方程、输出方程(4)、画逻辑图(5)、检查自起动2、化简FABABCA(BAB)(5分)答:F03、分析以下电路,其中RCO为进位输出。
(5分)答:7进制计数器。
4、下图为PLD电路,在正确的位置添*,设计出FAB函数。
(5分)15分注:答案之一。
三、分析题(30分)1、分析以下电路,说明电路功能。
(10分)解:XY m(3,5,6,7)m(1,2,4,7)2分ABCiXY0000000101010010111010001101101101011111该组合逻辑电路是全加器。
以上8分2、分析以下电路,其中X为控制端,说明电路功能。
(10分)解:FXA B C XABCXABCXABCXABCXABC4分FX(ABC)X(A B C ABC)4分所以:X=0完成判奇功能。
数字逻辑题目及其答案和解析(1)一共60道题

第一部分:1.在二进制系统中,下列哪种运算符表示逻辑与操作?A) amp;B) |C) ^D) ~解析:正确答案是 A。
在二进制系统中,amp; 表示逻辑与操作,它仅在两个位都为1时返回1。
2.在数字逻辑中,Karnaugh 地图通常用于简化哪种类型的逻辑表达式?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是B。
Karnaugh 地图通常用于简化或门的逻辑表达式,以减少门电路的复杂性。
3.一个全加器有多少个输入?A) 1B) 2C) 3D) 4解析:正确答案是 C。
一个全加器有三个输入:两个加数位和一个进位位。
4.下列哪种逻辑门可以实现 NOT 操作?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是 D。
与非门可以实现 NOT 操作,当且仅当输入为0时输出为1,输入为1时输出为0。
5.在数字逻辑中,Mux 是指什么?A) 多路复用器B) 解码器C) 编码器D) 多路分配器解析:正确答案是 A。
Mux 是指多路复用器,它可以选择输入中的一个,并将其发送到输出。
6.在二进制加法中,下列哪个条件表示进位?A) 0 + 0B) 0 + 1C) 1 + 0D) 1 + 1解析:正确答案是 D。
在二进制加法中,当两个位都为1时,会产生进位。
7.在数字逻辑中,一个 JK 触发器有多少个输入?A) 1B) 2C) 3D) 4解析:正确答案是 B。
一个 JK 触发器有两个输入:J 和 K。
8.下列哪种逻辑门具有两个输入,且输出为两个输入的逻辑与?A) 与门B) 或门C) 异或门D) 与非门解析:正确答案是 A。
与门具有两个输入,只有当两个输入都为1时,输出才为1。
9.在数字逻辑中,下列哪种元件可用于存储单个位?A) 寄存器B) 计数器C) 锁存器D) 可编程逻辑门阵列解析:正确答案是 C。
锁存器可用于存储单个位,它可以保持输入信号的状态。
10.一个带有三个输入的逻辑门,每个输入可以是0或1,一共有多少种可能的输入组合?A) 3B) 6C) 8D) 12解析:正确答案是 C。
(2021年整理)数字逻辑第二章

(完整)数字逻辑第二章编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)数字逻辑第二章)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)数字逻辑第二章的全部内容。
第二章逻辑代数基础1 : 下列等式不正确的是()A:1+A=1B:1•A=AC:A+A´=1D:(A+B)´=A´+B´您选择的答案: 正确答案: D知识点:(A+B)´=A´•B´—-——-—-———-—--———————---——--—--——---------———-—--——-—---———-—————-———-----——2 : 已知Y=A+AB´+A´B,下列结果中正确的是()A:Y=AB:Y=BC:Y=A+BD:Y=A´+B´您选择的答案: 正确答案: C知识点:利用公式A+AB´=A和A+A´B=A+B进行化简—---—————-—--——----—--——--——-———-——-—-—-——-——--—-—---—-——--—--————--—--—--——3 : 下列等式不正确的是( )A:(ABC)´=A´+B´+C´B:(A+B)(A+C)=A+BCC: A(A+B)´=A+B´D:AB+A´C+BC=AB+A´ C您选择的答案:正确答案: C知识点:A(A+B)´=0-——-—---———-——-—--———-———---————-—-——---——--——-—--——--————————————-—-——--—-—4 :下列等式正确的是()A:A+AB+B=A+BB:AB+AB´=A+BC:A(AB)´=A+B´D:A(A+B+C)´=B´C´您选择的答案:正确答案: A知识点:AB+AB´=A;A(AB)´=AB´;A(A+B+C)´=0-—-—-———-—-—--——-—-—---—--——--—--—--—-—-——-——--—-----—--—-—--—-—-——--——--—-—5 :下列说法不正确的是()A:逻辑代数有与、或、非三种基本运算B:任何一个复合逻辑都可以用与、或、非三种基本运算构成C:异或和同或与与、或、非运算无关D:同或和异或互为反运算您选择的答案:正确答案: C知识点:异或和同或也是由与、或、非三种基本运算构成的复合运算-—--—-——-————---—-————--————-——————--——-———----------—----—--—---—----—-—-—-6 :下列说法不正确的是()A:利用代入定理可将基本公式中的摩根定理推广为多变量的形式B:将逻辑式Y中的所有“• "和“+”互换,“0 ”和“1”互换,就可得到Y´C:摩根定理只是反演定理的一个特例D:将逻辑式Y中的所有“• ”和“+”互换,“0 ”和“1”互换,就可得到YD您选择的答案: 正确答案: B知识点:区分反逻辑式和对偶式的变换方法:将逻辑式Y中的所有“•”和“+”互换,“0 ”和“1"互换,可得到YD;将逻辑式Y中的所有“•”和“+”互换,“0 ”和“1”互换,原变量和反变量互换,可得到Y´。
(完整版)数字逻辑课后习题答案

习题五5.1 分析图5.35所示的脉冲异步时序电路。
解:各触发器的激励方程和时钟方程为:;;1K J 11==1K ,Q J 232==1K ,Q Q J 3323==;CP CP 1=132Q CP CP == ∴各触发器的状态方程为:(CP 的下降沿触发);11n 1Q Q =+ (Q 1的下降沿触发);321n 2Q Q Q =+ (Q 1的下降沿触发)321n 3Q Q Q =+该电路是一能自启动的六进制计数器。
5.2 已知某脉冲异步时序电路的状态表如表5.29所示,试用D 触发器和适当的逻辑门实现该状态表描述的逻辑功能。
解:表5.29所示为最小化状态表。
根据状态分配原则,无“列”相邻(行相邻在脉冲异步时序电路中不适用。
),在“输出” 相邻中,应给AD 、AC 分配相邻代码。
取A 为逻辑0,如下卡诺图所示,状态赋值为:A=00,B=11;C=01;D=10。
于是,二进制状态表如下,根据D 触发器的激励表可画出CP 2、D 2、CP 1、D 1、Z 的卡诺图,得到激励函数和输出函数,以及画出所设计的脉冲异步时序电路。
得激励方程和输出方程:;22x CP =;32212x x Q x D ++=;3221x x Q CP +=;31211x Q x Q D +=。
)Q Q (x Q x Q x Z 2132313+=+=5.3 设计一个脉冲异步时序电路,该电路有三个输入端x 1、x 2和x 3,一个输出端Z 。
仅当输入序列x 1-x 2-x 3出现时,输出Z 产输出脉冲,并且与输入序列的最后一个脉冲重叠。
试作出该电路的原始状态图和状态表。
解:5.4 分析图5.36所示的电平异步时序电路。
解:(一)写出激励函数和输出函数表达式:;1112122y x y y x x Y ++=;1221121y x y x x x Y ++=12y x Z = (二)作状态流程表。
(三) 作时间图。
设输入状态的变化序列为00→01→11→10→00→10→11→01,初始总态为(12x x 12x x ,12y y )=(00,00)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W= AB+ACD X = BC+BD+BCD Y = CD+CD Z=D
A 0 0 0 0 0 1 1 1 1 1
B 0 1 1 1 1 0 0 0 0 1
C 1 0 0 1 1 0 0 1 1 0
D 1 0 1 0 1 0 1 0 1 0
W 0 0 0 0 0 0 0 0 1 1
X 0 0 0 0 1 1 1 1 0 0
Y 0 0 1 1 0 0 1 1 0 0
Z 0 1 0 1 0 1 0 1 0 1
这是一个余三码 至 8421 BCD 码转换的电路
7. 下图是一个受 M 控制的 4 位二进制码和格雷码的相互转换电路。M=1 时,完 成自然二进制码至格雷码转换;M=0 时,完成相反转换。请说明之
解:Y3=X3
Y2 X2 X3
F=F1F2 F1 F1 F1 F1
S3 S2 S1 S0 × × × × × × × × 0 0 1 1 0 1 0 1
F=F1F2 A AB AB 0
3. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能。
解: F1= AB C 真值表如下:
ABC A BC B C = A B C A BC ABC
Y2 0 0 0 1 0 1 1 1
Y3 1 0 0 0 0 0 0 0
Y1 A B C Y 2 BC A( B C )
于是得: Y 3 A B C A B C
10. 用两片双四选一数据选择器和与非门实现循环码至 8421BCD 码转换。
解:(1)函数真值表、卡诺图如下;
十进制数 0 1 2 3 4 5 6 7 8 9 8421码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 余三码 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100
W ( A, B, C , D ) (5,6,7,8,9) X ( A, B, C , D ) (1,2,3,4,9) Y ( A, B, C , D ) (0,3,4,7,8) Z ( A, B, C , D ) (0,2,4,6,8)
加数1(BCD) 加数2(BCD)
进位 +
加6判断修正 和BCD码
16. 设计二进制码/格雷码转换器 解:真值表
B 3 B 2 B1 B 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 G3 G2 G1 G0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
B3B2 B1B0 00
01 0110 0111 0100 0101
11 1010 1011 1000 1001
10 1100 1101
G 3 B3 G 2 B 2 B3 G1 B1 B 2 1111 得: G 0 B 0 B1
00 0000 01 0001 11 0010 10
Y 1 X 1 ( MX 2 MY 2) Y 0 X 0 ( MX 1 MY 1)
当 M=1 时 Y3=X3 Y2=X2⊕X3 Y1=X1⊕X2 Y0=X0⊕X1 Y3=X3 Y2=X2⊕X3 Y1=X1⊕Y2=X1⊕X2⊕X3 Y0=X0⊕Y1=X0⊕X1⊕X2⊕X3
当 M=0 时
M= 0 的真值表
X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 X1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 X0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
M= 1 的真值表
X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
Y6 4: 16线 译 码 器 D C B A A0 A1 A2 A3
Y0 Y1
Y5 Y7 Y9 Y1 Y3 Y9 Y0 Y4 Y8 Y0 Y4 Y8 Z Y X W
Y8
Y0 Y1
Y2 Y4 Y3
. . .
Y15
Y15
G1 G2AG2B
14. 使用一个 4 位二进制加法器设计 8421BCD 码转换成余三码转换器: 解:
01
11
10
1 1 1 1
1
1 1 1 1
F AB B D BC D A BC (或A C D)
9. 用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常; 红灯 亮表示有一台不正常;黄灯亮表示有两台不正常;红、黄灯全亮表示三台 都不正常。列出控制电路真值表,并选出合适的集成电路来实现。
B0 B1 B2 B3
1110
0011
G0 G1 G2 G3
EN
17. 设计七段译码器的内部电路,用于驱动共阴极数码管。解:七段发光二极管 为共阴极电路,各段为“1”时亮。
Ya
8421 BCD 码
A3 A2 A1 A0
七 段
Yb Yc Yd Ye Yf Yg f e
a g b c d
译码器
七段译码器真值表如下:
W(A,B,C,D) = Σ(5,6,7,8,9) = Y5+Y6+Y7+Y8+Y9= Y5 Y6 Y7 Y8 Y9 X(A,B,C,D) = Σ(1,2,3,4,9) = Y1+Y2+Y3+Y4+Y9= Y1 Y2 Y3 Y4 Y9 Y(A,B,C,D) = Σ(0,3,4,7,8) = Y0+Y3+Y4+Y7+Y8= Y0 Y3 Y4 Y7 Y8 Z(A,B,C,D) = Σ(0,2,4,6,8) = Y0+Y2+Y4+Y6+Y8= Y0 Y2 Y4 Y6 Y8
Ai 0 0 0 0 1 1 1 1 Bi 0 0 1 1 0 0 1 1 Ci-1 Si 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 Ci+1 0 0 0 1 0 1 1 1
可以写出以下表达式
S A BC ABC ABC ABC
S ABC ABC A BC ABC
C A B AC1+BC1
C A B AC1+BC1
C AB AC1+BC1
C AB AC1+BC1
要使进位琏速度最快,应使用“与或非”门。具体连接图如下。 若“与或非”门延迟时间为 t1, “非门”延迟时间为 t2,则完成一次 16 位加法运 算所需时间为:
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
F 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0
AB 00 CD 00 01 11 10
(2)画逻辑图:
11. 用一片 74LS148 和与非门实现 8421BCD 优先编码器
8:3优先编码器 I0 I2 I4 I6 I8 I9 I1 I3 I5 I7
0 1 2 3 4 5 6 7
EN Y0 Y1 Y2
Y0 Y1 Y2 Y3
ST
12. 用适当门电路,设计 16 位串行加法器,要求进位琏速度最快,计算一次加 法时间。 解:全加器真值表如下
C 0 1 0 1 0 1 0 1 F 0 1 1 0 0 0 0 1
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
当 B≠C 时, F1=A 当 B=C=1 时, F1=A 当 B=C=0 时, F1=0 F2= A B B C A C AB BC AC 真值表如下:
由真值表可知:M=1 时,完成 8421 BCD 码到格雷码的转换; M=0 时,完成格雷码到 8421 BCD 码的转换。 8. 已知输入信号 A,B,C,D 的波形如下图所示,选择适当的集成逻辑门电路,设计产生 输出 F 波形的组合电路(输入无反变量) 解: 列出真值表如下:
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
第二章
组合逻辑
1. 分析图中所示的逻辑电路,写出表达式并进行化简
A B
F
F = AB + B = AB
A B C F
F = AB BABC CABC = AB + AC + BC + BC = AB + BC + BC