列主元素消去法求解方程组

合集下载

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要....................................................................................... 错误!未定义书签。

第1章绪论 ......................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

列主元消去法解方程组实验报告

列主元消去法解方程组实验报告

实验名称:列主元消去法解方程组1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。

而在用高斯消去法解Ax=b时,其中设A为非奇异矩阵,可能出现的情况,这时必须进行带行交换的高斯消去法。

但在实际计算中即使但其绝对值很小时,用作除数,会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。

因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。

为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数,以便减少计算过程中舍入误差对计算解的影响。

一种方式是完全主元消去法,这种消去法是在每次选主元时,选择为主元素。

这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。

实际计算中我们常采用部分选主元的的消去法。

列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。

2 实验目的和要求运用matlab编写一个.m文件,要求用列主元消去法求解方程组(实现PA=LU):要求输出以下内容:(1)计算解x;(2) L,U;(3)整形数组IP(i)(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1)算法原理设有线性方程组Ax=b,其中设A为非奇异矩阵。

方程组的增广矩阵为第1步(k=1):首先在A的第一列中选取绝对值最大的元素,作为第一步的主元素:,然后交换(A,b)的第1行与第i1行元素,再进行消元计算。

设列主元素消去法已经完成第1步到第k-1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定ik使(2)如果,则A为非奇异矩阵,停止计算。

(3)如果ik≠k,则交换[A,b]第ik行与第k行元素。

(4)消元计算消元乘数满足:(5)回代求解计算解在常数项b(n)内得到。

22列主元消去法

22列主元消去法
资源环境学科
输入A, b , n , EPS
for k = 1 : n − 1
图2-1 列主元消元法算法框图
选取主元素 alk
| alk |≤ EPS
Yes
l≠k
换行 No
消元
No
k ← k +1
Yes
输出无解信息
Yes
| A( n , n )| EPS ≤
No
End
输出解 x
回代求解
8
x1 =
b
( 1) 1
−a x −a x = −0.491 058 20 a
( 1) 12 2 ( 1) 11 ( 1) 13 3
事实上,方程组的准确解为 事实上 方程组的准确解为
资源环境学科
x* = ( −0.491058221,−0.050886077,0.367257387 )T
7
二 、 Gauss
1 1 2 A = ( A, b ) → 0.000100 1 1
1 2 1 → 0 1.00 1.00
m21 = 0.000100
0.9999
回代后得到
0.9998
x1 = 1.00 , x2 = 1.00
这是一个相当不错的结果
10 −8 2 3 1 A = ( A, b) = − 1 3.712 4.623 2 − 2 1.072 5.643 3
资源环境学科
10 −8 很小, 绝对值最大 的列元素为a13 = −2 , 因此1,3行交换
5
− 2 1.072 5.643 3 r1 ⇔ r3 → − 1 3.712 4.623 2 10 −8 2 3 1

不定方程组的通解

不定方程组的通解

不定方程组的通解一、引言在数学中,方程是研究数量关系的基本工具之一。

方程可以分为线性方程和非线性方程两大类。

而不定方程组则是非线性方程组的一个重要分支。

不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。

本文将介绍不定方程组的通解及其求解方法。

首先会对不定方程组进行定义和分类,并介绍一些常见的不定方程组问题。

然后会详细介绍如何求解一般形式的不定方程组,并给出具体示例。

最后会总结本文所介绍的内容,并展望不定方程组在数学中的应用。

二、定义和分类2.1 定义不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。

2.2 分类根据未知数和系数之间的关系,不定方程组可以分为以下几类:2.2.1 线性不定方程组线性不定方程组是指所有未知数都只有一次幂,并且系数都是常数的情况。

例如:3x + 4y = 75x - 2y = 12.2.2 二次不定方程组二次不定方程组是指至少有一个未知数的平方项,并且系数可以是常数或者其他未知数的情况。

例如:x^2 + y^2 = 25x^2 - y = 72.2.3 指数不定方程组指数不定方程组是指至少有一个未知数的指数项,并且系数可以是常数或者其他未知数的情况。

例如:3^x + 4^y = 135^x - 2^y = 9三、求解方法3.1 线性不定方程组的通解求解方法线性不定方程组的通解求解方法主要有以下几种:3.1.1 列主元素消去法列主元素消去法是线性代数中常用的一种求解线性方程组的方法。

通过选取系数矩阵中每一列中绝对值最大的元素作为主元,然后进行消去操作,最终得到行简化阶梯形矩阵。

根据行简化阶梯形矩阵可以直接得到线性方程组的通解。

3.1.2 克拉默法则克拉默法则是一种利用行列式求解线性方程组的方法。

通过构造增广矩阵,并计算系数矩阵和常数向量的行列式,可以得到线性方程组的解。

3.1.3 矩阵求逆法矩阵求逆法是一种利用矩阵的逆求解线性方程组的方法。

通过将系数矩阵和常数向量构造成增广矩阵,然后求出系数矩阵的逆矩阵,最后将逆矩阵与常数向量相乘,可以得到线性方程组的解。

列主元消去法matlab实验报告

列主元消去法matlab实验报告

列主元消去法matlab实验报告列主元消去法是一种常用的线性方程组求解方法,它通过选取主元元素来消去其他元素,从而简化方程组的求解过程。

本文将以Matlab为工具,对列主元消去法进行实验研究,并给出相应的实验报告。

我们需要明确列主元消去法的基本原理。

列主元消去法的核心思想是选取每一列的主元素,通过消去其他元素,从而将方程组转化为上三角形或下三角形的形式。

具体来说,通过选取第一列的主元素,将第一列下方的元素消去;然后选取第二列的主元素,将第二列下方的元素消去;依此类推,直到最后一列。

这样,我们就得到了一个上(下)三角形的方程组,可以通过回代(代入)的方法求解。

接下来,我们使用Matlab编写代码,实现列主元消去法。

首先,我们需要输入一个线性方程组的系数矩阵A和常数向量b,其中A 是一个n×n的矩阵,b是一个n×1的向量。

然后,我们通过选取主元素的方式进行消去操作,得到一个上三角形的方程组。

最后,我们通过回代(代入)的方法求解方程组的解。

具体实现的代码如下所示:```matlabfunction x = gauss_elimination(A, b)n = size(A, 1); %方程组的个数% 消元过程for k = 1:n-1[~, p] = max(abs(A(k:n, k))); %选取主元素 p = p + k - 1;% 交换第k行和第p行temp = A(k, :);A(k, :) = A(p, :);A(p, :) = temp;temp = b(k);b(k) = b(p);b(p) = temp;% 消去操作for i = k+1:nfactor = A(i, k) / A(k, k);A(i, :) = A(i, :) - factor * A(k, :);b(i) = b(i) - factor * b(k);endend% 回代(代入)过程x = zeros(n, 1);x(n) = b(n) / A(n, n);for i = n-1:-1:1x(i) = (b(i) - A(i, i+1:n) * x(i+1:n)) / A(i, i);endend```接下来,我们将使用一个具体的例子来说明列主元消去法的求解过程。

Guass列选主元消去法和三角分解法

Guass列选主元消去法和三角分解法

Guass列选主元消去法和三⾓分解法 最近数值计算学了Guass列主消元法和三⾓分解法解线性⽅程组,具体原理如下:1、Guass列选主元消去法对于AX =B1)、消元过程:将(A|B)进⾏变换为,其中是上三⾓矩阵。

即:k从1到n-1a、列选主元选取第k列中绝对值最⼤元素作为主元。

b、换⾏c、归⼀化d、消元2)、回代过程:由解出。

2、三⾓分解法(Doolittle分解)将A分解为如下形式由矩阵乘法原理a、计算U的第⼀⾏,再计算L的第⼀列b、设已求出U的1⾄r-1⾏,L的1⾄r-1列。

先计算U的第r⾏,再计算L的第r列。

a)计算U的r⾏b)计算L的r列C#代码: 代码说明:Guass列主消元法部分将计算出来的根仍然储存在增⼴矩阵的最后⼀列,⽽Doolittle分解,将分解后的结果也储存⾄原来的数组中,这样可以节约空间。

using System;using System.Windows.Forms;namespace Test{public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Cannel_Button_Click(object sender, EventArgs e){this.textBox1.Clear();this.textBox2.Clear();this.textBox3.Clear();boBox1.SelectedIndex = -1;}public double[,] GetNum(string str, int n){string[] strnum = str.Split(' ');double[,] a = new double[n, n + 1];int k = 0;for (int i = 0; i < n; i++){for (int j = 0; j < strnum.Length / n; j++){a[i, j] = double.Parse((strnum[k]).ToString());k++;}}return a;}public void Gauss(double[,] a, int n){int i, j;SelectColE(a, n);for (i = n - 1; i >= 0; i--){for (j = i + 1; j < n; j++)a[i, n] -= a[i, j] * a[j, n];a[i, n] /= a[i, i];}}//选择列主元并进⾏消元public void SelectColE(double[,] a, int n){int i, j, k, maxRowE;double temp; //⽤于记录消元时的因数for (j = 0; j < n; j++){maxRowE = j;for (i = j; i < n; i++)if (System.Math.Abs(a[i, j]) > System.Math.Abs(a[maxRowE, j]))maxRowE = i;if (maxRowE != j)swapRow(a, j, maxRowE, n); //与最⼤主元所在⾏交换//消元for (i = j + 1; i < n; i++){temp = a[i, j] / a[j, j];for (k = j; k < n + 1; k++)a[i, k] -= a[j, k] * temp;}}return;}public void swapRow(double[,] a, int m, int maxRowE, int n){int k;double temp;for (k = m; k < n + 1; k++){temp = a[m, k];a[m, k] = a[maxRowE, k];a[maxRowE, k] = temp;}}public void Doolittle(double[,] a, int n){for (int i = 0; i < n; i++){if (i == 0){for (int j = i + 1; j < n; j++)a[j, 0] = a[j, 0] / a[0, 0];}else{double temp = 0, s = 0;for (int j = i; j < n; j++){for (int k = 0; k < i; k++){temp = temp + a[i, k] * a[k, j];}a[i, j] = a[i, j] - temp;}for (int j = i + 1; j < n; j++){for (int k = 0; k < i; k++){s = s + a[j, k] * a[k, i];}a[j, i] = (a[j, i] - s) / a[i, i];}}}}private void Exit_Button_Click(object sender, EventArgs e){this.Close();}private void Confirm_Button_Click(object sender, EventArgs e){if (this.textBox2.Text.Trim().ToString().Length == 0){this.textBox2.Text = this.textBox1.Text.Trim();}else{this.textBox2.Text = this.textBox2.Text + "\r\n" + this.textBox1.Text.Trim();}this.textBox1.Clear();}private void Calculate_Button_Click(object sender, EventArgs e){string str = this.textBox2.Text.Trim().ToString();string myString = str.Replace("\n", " ").Replace("\r", string.Empty);double[,] a = new double[this.textBox2.Lines.GetUpperBound(0) + 1, this.textBox2.Lines.GetUpperBound(0) + 2];a = GetNum(myString, this.textBox2.Lines.GetUpperBound(0) + 1);if (boBox1.Text == "Guass列主消元法"){Gauss(a, this.textBox2.Lines.GetUpperBound(0) + 1);for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++){this.textBox3.Text = this.textBox3.Text + "\r\nX" + (i + 1) + "=" + a[i, this.textBox2.Lines.GetUpperBound(0) + 1]; }}else if (boBox1.Text == "Doolittle三⾓分解法"){this.textBox3.Enabled = true;Doolittle(a, this.textBox2.Lines.GetUpperBound(0) + 1);bel3.Text = "分解后的结果:";this.textBox3.Clear();this.textBox3.Text += "L矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j < i){this.textBox3.Text += a[i, j].ToString() + "\t";}else if (i == j){this.textBox3.Text += "1\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}this.textBox3.Text += "\r\nU矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j >= i){this.textBox3.Text += a[i, j].ToString() + "\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}}}private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode == Keys.Enter){if (this.textBox1.Text.Trim().ToString().Length == 0){Calculate_Button_Click(sender, e);}else{Confirm_Button_Click(sender, e);}}}private void button1_Click(object sender, EventArgs e){this.textBox2.Enabled = true;}}} 运⾏截图: ⾄此完毕。

列主元素消去法

列主元素消去法列主元素消去法(Gauss-Jordan 消元法)是一种线性代数中常用的消元方法,用于求解线性方程组的解。

这种方法的基本思想是,将线性方程组的增广矩阵通过一系列的初等变换,化为一个阶梯矩阵或行简化阶梯矩阵,从而得到线性方程组的解。

具体步骤如下:构造增广矩阵,即将系数矩阵和常数矩阵组合成一个矩阵。

将增广矩阵转化为一个上三角矩阵(也叫阶梯矩阵)。

反向消元,将阶梯矩阵转化为一个行简化阶梯矩阵。

根据简化矩阵求解方程组。

这种方法的优点是计算简单、容易理解,且可避免误差的积累。

但是,如果矩阵的规模较大,运算量会很大,计算时间较长。

此时可以使用更高效的算法,如LU分解、QR分解等。

假设有一个 $n$ 个未知量和 $n$ 个方程的线性方程组,可以写成矩阵形式如下:$Ax = b$其中,$A$ 是一个 $n \times n$ 的系数矩阵,$x$ 是一个 $n \times 1$ 的未知量向量,$b$ 是一个 $n \times 1$ 的常数向量。

为了求解 $x$,可以将方程组的增广矩阵表示如下:$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_{1} \ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_{2} \ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} & b_{n} \end{bmatrix}$ 其中,$a_{ij}$ 表示矩阵的第 $i$ 行第 $j$ 列的元素。

列主元素Gauss消去法Jacobi迭代法原理及计算方法

一、 列主元素Gauss 消去法、Jacobi 迭代法原理及计算方法1. 列主元素Gauss 消去法:1.1 Gauss 消去法基本原理设有方程组Ax b =,设A 是可逆矩阵。

高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。

1.2 列主元Gauss 消去法计算步骤将方程组用增广矩阵[]()(1)ijn n B A b a ⨯+== 表示。

1). 消元过程对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。

(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。

(4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算.ij ij ik kj a a l a =-2). 回代过程(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。

(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑2. Jacobi 迭代法2.1 Jacobi 迭代法基本原理Jacobi 迭代法的基本思想是对n 元线性方程组b Ax =,.,n n R b R A ∈∈将其变形为等价方程组f Bx x +=,其中.,,n n n n R x R f R B ∈∈∈⨯B 成为迭代矩阵。

从某一取定的初始向量)0(x 出发,按照一个适当的迭代公式 ,逐次计算出向量f Bx x k k +=+)()1( ( 1,0=k ),使得向量序列}{)(k x 收敛于方程组的精确解.(1)输入1,,,,)0(=k n xb A ε,. (2) )(1,1)0()1(∑≠=-=n j i i j ij i iii x a b a x )1,0(n i = (3)判断 ε≤--≤≤)0()1(10max i i n i x x ,若是,输出1)1(2)1(1,,n x x x ,若否,置1+=k k ,)1()0(i i x x =,)2,1(n i =。

计算方法 课后习题答案

5.依据下列函数表分别建立次数不超过3的 插值多项式和 插值多项式,并验证插值多项式的唯一性。
0
1
2
4
1
9
23
3
解:
(1)Lagrange插值多项式
=
=
=
=
(2)Newton插值多项式
一阶差商
二阶差商
三阶差商
0
0
1
1
1
9
8
2
2
23
14
3
3
4
3
-10
由求解结果可知:
说明插值问题的解存在且唯一。
6.已知由数据 构造出的 插值多项式 的最高次项系数是6,试确定 。
解:因为第一列中10最大,因此把10作为列主元素
得到方程组
3。举例说明一个非奇异矩阵不一定存在LU分解。
例如:设
与题设相矛盾,所以一个非奇异矩阵不一定存在LU分解。
4。下列矩阵能否分解为LU(其中L为单位下三角矩阵,U为上三角矩阵)?若能分解,那么分解是否唯一?
解:
设 B可以进行LU分解,则B=
计算得
5。对下列给定的矩阵A作LU分解,并利用分解结果计算A-1。
解:
L= U=

6。用Doolittle分解法解方程组
解:A= =
其中L= U=
由Ly= 解得y=
由Ux=y,解得x=
7。用Crout分解法接方程组。
解:
由Ly=b= 得y=
由Ux=y= 得x=
8。用平方根法求解方程组
解:易知 是对称矩阵,可求得
注意到这里 是三重零点, 是单零点,故插值余项为
20.求作次数 的多项式 ,使满足条件
并列出插值余项。

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)二、原理及步骤分析设nn ij R a A ⨯∈=][)1(,nn Rb b b b ∈=],,,[)1()2(2)1(1 。

若约化主元素),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。

如果在消元过程中发现某个约化主元0)(=k kk a , 则第K 次消元就无法进行。

此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。

为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。

相应过程为:(1)选主元:在子块的第一列中选择一个元)(k k i k a 使)(max k ik ni k kk i a a k ≤≤=并将第k 行元与第k i 行元互换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档