习题9电磁感应与电磁场

合集下载

电磁感应与电磁场练习题及答案

电磁感应与电磁场练习题及答案

12
的大小关系为:
[C ]
(A) 21 = 212 ; (B) 21 > 12 ;
(C)

=
21
12

(D) 21 = 12 .
I
I
S 1 2S
2
6、电位移矢量的时间变化率 dD / dt 的单位是
(A)库仑/米2 ; (B)库仑/秒; (C)安培/米2 ; (D)安培•米2 .
解: (1)
U q 1 t i d t 1 0.2et t 0.2 (1 et )
C C0
C
0C
(2) 由全电流的连续性,得
I d i 0.2et
四、问答题
18、 简述方程

L
H
d
l

I


S
t
D
d
S
中各项的意义,并简述这个
方程揭示了什么规律.
C
(2) 非均匀的时变磁场 B Kx cost .
O B
v
D
解:(1) 由法拉第电磁感应定律:
B 1 xy
2
y tg x
x vt
x N
i

d
/d t

d dt
(1 2
B tg
x2)
1 B tg 2x d x /dt B tg v 2t
2
在导体MN内 i 方向由M向N.
[C]
7、在感应电场中电磁感应定律可写成
EK
为感应电场的电场强度.此式表明: L
d
l

d
dt
(A) 闭合曲线 L上 EK 处处相等;

电磁场练习题

电磁场练习题

电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。

为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。

练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。

求整个空间内的电势分布。

2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。

求两个带电板之间的电场强度。

3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。

求圆环轴线上离圆环中心距离为x处的电场强度。

练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。

求点A处的磁场强度。

2. 一个长直导线以λ的线密度均匀分布电流。

求距离导线距离为r处的磁场强度。

3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。

练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。

求电子做曲线运动的轨迹。

2. 有两个无限长平行导线,分别通过电流I1和I2。

求两个导线之间的相互作用力。

3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。

求电荷受到的合力。

练习题4:电磁场的应用1. 描述电磁波的基本特性。

2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。

3. 解释电磁场与电路中感应电动势和自感现象的关系。

根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。

通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。

希望读者能够认真思考每道练习题,尽量自行解答。

如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。

通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。

电磁场与电磁感应的关系

电磁场与电磁感应的关系

电磁场与电磁感应的关系电磁场和电磁感应是电磁学的两个重要概念,它们之间存在紧密的关系。

电磁场是指由电荷或电流所产生的物理场,而电磁感应则是指当一个导体磁通量发生变化时,在导体中会产生感应电动势。

本文将详细探讨电磁场和电磁感应之间的关系,并介绍它们在现实生活和科技应用中的重要性。

一、电磁场的基本原理电荷和电流都是产生电磁场的重要因素。

根据库仑定律,电荷之间的相互作用力与它们之间的距离成平方反比。

这意味着电荷会在周围形成一个电场,电场中的电荷会受到电场力的作用。

同样地,电流也会产生磁场,磁场中的磁感应强度会影响磁场中的电流。

二、电磁感应的原理电磁感应是指当导体中的磁通量发生变化时,在导体中会产生感应电动势。

磁通量是磁场线穿过某个面积的数量,用符号Φ表示。

根据法拉第电磁感应定律,当磁通量Φ发生变化时,感应电动势E的大小与磁通量的变化率成正比。

三、电磁场与电磁感应的关系电磁场和电磁感应之间存在着紧密的关系。

首先,电磁场的存在是电磁感应的基础。

只有当存在磁场时,导体才会感应出电动势。

其次,电磁感应也会产生磁场。

根据安培环路定律,当导体中有电流通过时,会形成闭合的磁场线。

这个磁场又会影响到其他导体中的电流。

在实际应用中,电磁感应的原理被广泛应用于发电机、变压器等设备中。

发电机通过旋转的磁场线穿过线圈,感应出电动势,从而转化为电能。

变压器利用电磁感应的原理来调整电压的大小。

另外,电磁场和电磁感应也在电磁波的传播中起着重要作用。

电磁波是一种由振荡的电场和磁场组成的波动现象,广泛应用于通信、无线电等领域。

总结起来,电磁场和电磁感应是相辅相成的概念。

电磁场的存在为电磁感应提供了基础,而电磁感应又反过来影响着电磁场的分布。

它们之间的关系不仅仅是理论上的联系,更在现实生活和科技应用中发挥着重要作用。

理解和掌握电磁场与电磁感应的关系,对于深入理解电磁学的原理和应用具有重要意义。

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

设单位长度电缆的自感为L,则单位长度电缆储存的磁能也可 设单位长度电缆的自感为 , 表示为
由方程
µ0I 2 1 R 1 2 2 LI = + ln R 2 4 4 π 1
µ0 1 R 2 可得出 L = + ln 从能量出发,求解自感系数 2 4 R π 1
10cm

dϕ 2 dB ei = = πr = π ×(10×10−2 )2 ×0.1 dt dt
= π ×10−3 = 3.14×10−3V
(3) 根据欧姆定律,圆环中的感应电流为 根据欧姆定律, ei π −3 −3
Ii = R = 2 ×10 =1.57×10 A
× × × × × × × × × × × ×
电场的电力线是同心圆, 且为顺时针绕向。 因此, 电场的电力线是同心圆 , 且为顺时针绕向 。 因此 , 圆环上 任一点的感生电场,沿环的切线方向且指向顺时针一边。 任一点的感生电场 , 沿环的切线方向且指向顺时针一边 。 其大小为
1 dB 1 E旋= r = ×10×10−2 ×0.1 2 dt 2
3、 在图示虚线圆内的所有点上,磁感 、 在图示虚线圆内的所有点上, 应强度B为 应强度 为 0.5T,方向垂直于纸面向里 , , 方向垂直于纸面向里, 且每秒钟减少0.1T。虚线圆内有一半径 且每秒钟减少 。 的同心导电圆环, 为 10 cm 的同心导电圆环,求: (1)圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向 (2)整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小
在圆柱与圆筒之间的空间距轴线r处 取一半径为 、厚为dr、 在圆柱与圆筒之间的空间距轴线 处,取一半径为r、厚为 、 单位长度的共轴薄壁圆柱壳、 单位长度的共轴薄壁圆柱壳、薄壁圆柱壳内磁能密度

第九章 电磁感应 电磁场(一)作业答案

第九章  电磁感应 电磁场(一)作业答案

一。

选择题[ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】dt dI LL -=ε,在每一段都是常量。

dtdI[ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于导线中的电动势 【分析】连接oa 与ob ,ob ab ob oab εεεε++=。

因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=⋅==⎰→→l d E ob ob εεoab ob d dB S dt dtφεε==-=- o ab oabd d dtdtϕϕ∴<[ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) 0ε= 221l B U U c a ω=- (B) 0ε= 221l B U U c a ω-=-(C)2B l εω=221l B U U c a ω=- (D) 2B l εω= 221l B U U c a ω-=-【分析】ab 边以匀速转动时 0=-=dtd abc φε 22l B l d B v U U U U L c b c a ω-=∙⎪⎭⎫⎝⎛⨯=-=-⎰→→→ t t tt t (b)(a)Bab clω图12-16[ B ]4.(自测提高2)真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ【分析】距离为a 的空间该点的磁感应强度大小为:aIB πμ20=磁能密度为 200022212⎪⎭⎫ ⎝⎛==a I B w m πμμμ [ B ]5.(自测提高5)用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图12-26所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向? 【分析】根据公式S dt B d l E S Ld d ⋅-=⋅⎰⎰⎰感,因为0<dtB d 且磁场方向垂直图面向里,所以感应电流为顺时针方向,再由于感应电流是涡电流,故选B 图。

高三物理练习题:电磁场与电磁感应

高三物理练习题:电磁场与电磁感应

高三物理练习题:电磁场与电磁感应一、选择题1. 以下哪个量可以描述电磁场线的方向?A. 电位差B. 电流强度C. 磁感应强度D. 电容量2. 在电磁振荡过程中,电磁场的能量主要以什么形式传递?A. 电子动能B. 磁场能量C. 电场能量D. 力学能量3. 假设在一个导体回路中,磁感应强度的变化速率为1 T/s,回路的面积为0.5 m²。

根据法拉第电磁感应定律,通过回路的感应电动势大小为多少?A. 0.5 VB. 0.25 VC. 2 VD. 1 V4. 两根平行长导线,通电方向相反,电流强度分别为 I 和 2I。

若两导线间距离为 d,根据安培力定律,两导线之间的力大小为多少?A. μ₀I²/dB. 2μ₀I²/dC. 3μ₀I²/dD. 4μ₀I²/d5. 若将一个长直导线中通以交变电流,导线周围将会形成一个:A. 强磁场B. 弱磁场C. 强电场D. 弱电场二、计算题1. 一个电磁铁的匝数为 1000,电流强度为 5A,导体的长度为 0.5m。

求这根导线中的磁感应强度大小。

2. 在一个磁感应强度为 0.3T 的电磁场中,一段长度为 0.2m 的导线的感应电动势为 5V。

求导线在电磁场中的速度大小。

三、应用题1. 一辆汽车在磁感应强度为 0.4T 的磁场中运行,汽车的轨道形状是一个圆形,半径为 100m。

若汽车以 30 m/s的速度通过磁场,求汽车所受的磁场力大小。

2. 在一个电磁场中,某导体棒以 20 m/s 的速度向右运动,导体棒的长度为 0.1m。

磁感应强度为 0.5T,导体棒的电阻为2Ω。

求导体棒在电磁场中消耗的功率大小。

四、解答题1. 简述什么是电磁感应现象,并举例说明。

2. 电流通过一个圆形线圈产生的磁场会对其自身产生什么影响?并解释其原因。

注意:以上所有题目均为高三物理相关的练习题,旨在拓展学生对电磁场与电磁感应的理解。

请同学们务必认真思考,并结合所学的知识解答。

大学物理-第九章 电磁感应 电磁场理论

大学物理-第九章 电磁感应 电磁场理论

2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1

r

R 2

域内且
wm
B2 2

8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题99-1在磁感应强度B 为0.4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S=5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得dtd m Φ-=εdt dSB =Bt 10=V 4108-⨯=ε9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环感应电动势的大小和方向及MN 两端的电压U M -U N .题9-2解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题9-39-3 如题9-3图所示,在两平行载流的无限长直导线的平面有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以d Id t的变化率增大,求:(1)任一时刻线圈所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε题9-49-4 如题9-4图所示,长直导线通以电流I =5 A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06 m ,宽a =0.04 m ,线圈以速度v =0.03 m/s 垂直于直线平移远离.求:d =0.05 m 时线圈中感应电动势的大小和方向.解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.9-5 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角(如题9-5图所示),B 的大小为B =kt (k 为正常数).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.题9-5图解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题9-6图9-6 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B 的方向如题9-6图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题9-6图(a)题9-6图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题9-6图(b)所示.9-7 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动.aO=3l,磁感应强度B 平行于转轴,如题9-7所示.试求:(1) ab 两端的电势差;(2) a ,b 两端哪一点电势高?题9-7图解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.9-8 北半球某地的磁场为4⨯10-5T ,磁场方向与水平方向成60o ,现将一根长1m 东西方向水平放置的均匀金属棒自由落下,求t=3s 时金属棒中感应电动势大小?解:根据动感电动势定义l d B v L⋅⨯=⎰)(ε自由下落,速度大小 gt v =,方向与重力加速度方向相同⎰⎰=⋅⨯=LLdl Bv l d B v 030sin )( ε 当t=3s 时,V L Bv 4010630sin -⨯==ε9-9 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为0L=In l d a aμπ-.题9-9图解: 如题9-9图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ9-10 两线圈顺串联后总自感为1.0 H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4 H.试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题9-11图9-11 一矩形截面的螺绕环如题7-11图所示,共有N 匝.试求:(1)此螺绕环的自感系数;(2)若导线通有电流I ,环磁能为多少?解:如题7-11图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=9-12 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ9-13 圆柱形电容器、外导体截面半径分别为R 1和R 2(R 1<R 2),中间充满介电常数为ε的电介质.当两极板间的电压随时间的变化为=k dUdt时(k 为常数),求介质距圆柱轴线为r 处的位移电流密度.解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=9-14 试证:平行板电容器的位移电流可写成d I =CdUdt.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗? 解:∵ CU q =SCUD ==0σ ∴ CU DS D ==Φ不是平板电容器时 0σ=D 仍成立 ∴ tUCI D d d =还适用.9-15 半径为R =0.10 m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,使两极板间电场的变化率为13=1.010dEdt⨯V/(m·s).求两极板间的位移电流,并计算电容器离两圆板中心联线r (r <R )处的磁感应强度B r 以及r =R 处的磁感应强度B R . 解: (1) tEt D j D ∂∂=∂∂=ε 8.22≈==R j S j I D D D πA(2)∵ S j I l H SD ld d 0⋅+=⋅⎰∑⎰取平行于极板,以两板中心联线为圆心的圆周r l π2=,则22d d 2r tE r j r H D πεππ== ∴ tEr H d d 20ε=tEr H B r d d 2000εμμ== 当R r =时,600106.5d d 2-⨯==tER B R εμ TtUC t ID D d d d d ==Φ。

相关文档
最新文档