六点定位法则的正确理解与应用

合集下载

理解六层次的几个图

理解六层次的几个图
03
六层次的重要性
01
层次化的结构有利于协议的设计和开发,降低了系统设计和 实现的复杂性。
02
各层之间相互独立,某一层的改变不会影响其他层,有利于 系统的模块化和标准化。
03
通过接口进行通信,使得各层之间的通信更加规范和可靠。
03 第一个图:环境层次
环境对个体的影响
提供生存条件
环境为个体提供必要的生存条件,如空气、水、食物 等。
身份ห้องสมุดไป่ตู้能力的影响
身份对行为的影响
个体的能力发展往往受到其身份认同的制 约或促进,身份的转变可能要求个体具备 新的能力或技能。
个体的行为方式通常与其身份认同保持一 致,身份的转变可能导致行为的改变或调 整。
08 第六个图:精神层次
精神追求与意义探寻
精神追求
人们渴望在精神层面得到满足,追求内心的平静、喜悦、爱 和智慧等。
分析六层次模型在解 决问题中的优势
汇报范围
介绍六层次模型的基本概念和原理 通过案例分析和实践应用展示六层次模型的实际效果
详细阐述每个层次的含义、作用和应用方法
总结六层次模型的价值和意义,并提出未来研究方向和 应用前景
02 理解六层次概述
六层次定义与特点
物理层
01
定义了通信设备的机械、电气、功能和规程特性,为数据端设
环境与个体相互作用
双向影响
环境和个体之间存在双向影响的关系, 环境塑造个体,同时个体也能改变环 境。
动态平衡
环境与个体之间的相互作用是一个动 态平衡的过程,双方在不断调整中达 到一种相对稳定的状态。
04 第二个图:行为层次
行为模式与习惯
行为模式
指个体或群体在特定情境下所表现出来的一系列相对稳定的行为方式。行为模 式受到文化、社会、个人经验等多种因素的影响,具有一定的可预测性和稳定 性。

六点定位法则的正确理解与应用

六点定位法则的正确理解与应用

六点定位原理图3-4 工件的六个自由度图3-5 长方体形工件的定位一、六点定位原则一个尚未定位的工件,其位置是不确定的。

如图 3-29 所示,将未定位的的工件(长方体)放在空间直角坐标系中,长方体可以沿 X 、 Y 、 Z 轴移动有不同的位置,也可以绕 X 、 Y 、 X 轴转动有不同的位置,分别用、、和、、表示。

用以描述工件位置不确定性的、、、、、合称为工件的六个自由度。

其中、、称为工件沿 X 、 Y 、 Z 轴的移动自由度,、、称为工件绕 X 、 Y 、 Z 轴的转动自由度。

工件要正确定位首先要限制工件的自由度。

设空间有一固定点,长方体的底面与该点保持接触,那么长方体沿 Z 轴的移动自由度即被限制了。

如果按图 3-30 所设置六个固定点,长方体的三个面分别与这些点保持接触,长方体的六个自由度均被限制。

其中 XOY 平面上的呈三角形分布的三点限制了、、三个自由度; YOZ 平面内的水平放置的两个点,限制了、二个自由度; XOZ 平面内的一点,限制了一个自由度。

限制三个或三个以上自由度的称为主要定位基准。

这种用适当分布的六个支承点限制工件六个自由度的原则称为六点定位原则。

支承点的分布必须适当,否则六个支承点限制不了工件的六个自由度。

例图 3-30 中XOY 平面内的三点不应在一直线上,同理, YOZ 平面内的两点不应垂直布置。

六点定位原则是工件定位的基本法则,用于实际生产时起支承作用的是有一定形状的几何体,这些用于限制工件自由度的几何体即为定位元件。

表 3-10 为常用定位元件能限制的工件自由度。

二、由工件加工要求确定工件应限制的自由度数工件定位时,影响加工精度要求的自由度必须限制;不影响加工精度要求的自由度可以限制也可以不限制,视具体情况而定。

按照工件加工要求确定工件必须限制的自由度是工件定位中应解决的首要问题。

例如图 3-31 所示为加工压板导向槽的示例。

由于要求槽深方向的尺寸 A 2 ,故要求限制 Z 方向的移动自由度;由于要求槽底面与 C 面平行,故绕 X 轴的转动自由度和绕 Y 轴的转动自由度要限制;由于要保证槽长 A 1 ,故在 X 方向的移动自由度要限制;由于导向槽要在压板的中心,与长圆孔一致,故在 Y 方向的移动自由度和绕 Z 轴的转动自由度要限制。

六点定位法则

六点定位法则

六点定位法则六点定位法则的正确理解与应用六点定位法则是指导夹具设计的基本原则,已沿用了几十年,但法则本身并不完善,对法则的理解和应用也存在许多混乱之处,因此有必要对六点定位法则进行再探讨。

1.传统六点定位法则的含义工件定位的实质就是使工件在夹具中占据确定的位置,因此工件的定位问题可转化为在空间直角坐标系中决定刚体坐标位置的问题来讨论。

在空间直角坐标系中,刚体具有六个自由度,即沿X、Y、Z轴移动的三个自由度和绕此三轴旋转的三个自由度。

用六个合理分布的支承点限制工件的六个自由度,使工件在夹具中占据正确的位置,称为六点定位法则。

人们在阐述六点定位法则时常以图1所示铣不通槽的例子来加以说明:a1、a2、a3三个点体现主定位面A,限制X、Y方向的旋转自由度和Z方向的移动自由度;a4、a5两个点体现侧面B,限制X方向的移动自由度和Z方向的旋转自由度;a6点体现止推面C,限制Y方向的移动自由度。

这样,工件的六个自由度全部被限制,称为完全定位。

当然,定位只是保证工件在夹具中的位置确定,并不能保证在加工中工件不移动,故还需夹紧。

定位和夹紧是两个不同的概念。

图12.传统六点定位法则存在的问题(1)a1~a6在有的专著中称为六个定位点,在有的文献中则称为六个支承点,事实上这是两个不同的概念。

支承点应是安装在夹具上直接与工件接触的具体定位元件,如支承钉、支承板、V形块等,在加工过程中它们还要参与平衡切削力、重力、夹紧力等;而定位点应是一个抽象概念,是指定位方式对自由度的限制。

限制一个自由度称为一个定位点,与支承点的多少无关。

例如,工件直接以平面定位时,应限制三个自由度,只应有三个定位点,而事实上此时的支承点远不止三个。

而且在一些特殊情况下,工件定位时根本就无具体的支承点,如常见的在车床上用四爪卡盘夹紧工件,用千分表找正,此时并没有具体的支承点参与定位,工件位置的确定是由千分表来完成的,这种定位方式在无支承点的情况下同样可以实现定位。

六点定位原理范文

六点定位原理范文

六点定位原理范文一、背景随着科技的发展,人们对于室内定位系统的需求也越来越大。

传统的卫星定位系统(GPS)在室内定位上并不准确,因为信号会受到建筑物的干扰而变弱。

为了解决这个问题,研究人员提出了六点定位原理,通过在建筑物内安装多个参考点来增强信号的强度和准确性。

二、原理移动设备在进行定位时,会通过接收设备收集到这六个参考点的信号强度。

根据信号强度的变化,系统可以计算出移动设备距离参考点的相对位置。

通过对这六个相对位置进行三角定位计算,可以得出移动设备的三维坐标。

具体来说,六点定位原理包括以下几个步骤:1.参考点安装:首先,在建筑物内选择合适的位置安装六个参考点。

这些参考点可以是Wi-Fi接入点、蓝牙信标或其他无线通信设备。

2.信号收集:移动设备在进行定位时,会通过接收设备收集到这六个参考点的信号强度。

通常使用无线通信模块(如Wi-Fi模块)进行信号收集。

3.信号处理:接收设备将收集到的信号强度传输给定位系统。

定位系统将对这些信号进行处理和分析,计算出移动设备相对于参考点的位置。

4.三角定位计算:根据得到的相对位置信息,定位系统利用三角定位算法计算移动设备的实际坐标。

5.定位结果输出:计算完成后,定位系统将移动设备的坐标信息输出到相应的终端设备上。

三、应用1.室内导航:通过六点定位原理,移动设备可以在室内环境中进行准确的导航。

例如,人们在商场、机场等大型建筑物内可以通过手机APP导航,定位到具体的商店、登机口等目的地。

2.室内定位服务:六点定位原理可以提供个性化的室内定位服务。

例如,根据用户的喜好和位置,系统可以推荐附近的餐厅、商店等服务设施。

3.室内监控:六点定位原理也可以用于室内监控系统。

通过将摄像头与参考点进行关联,系统可以实时监控建筑物内的人流和安全状况。

4.室内定位分析:六点定位原理还可以用于室内定位数据的分析。

通过收集和分析用户的位置数据,可以对室内环境进行优化和改进,提供更好的用户服务和体验。

《机床夹具设计》工件的定位

《机床夹具设计》工件的定位

第1章工件的定位●理解六点定位原理。

●常用定位元件限制的自由度。

●工件定位方式:完全定位、不完全定位、过定位和欠定位。

●常用定位元件的设计。

●定位误差的分析和计算。

●根据零件工序加工要求,确定定位方式。

●根据零件工序加工要求,确定定位方案。

●掌握定位元件的设计方法。

●掌握定位误差的分析和计算。

1.1工作场景导入【工作场景】如图1.1所示,钢套零件在本工序中需钻φ5mm孔,工件材料为Q235A钢,批量N=2000件。

钢套零件三维图如图1.2所示。

【加工要求】(1)φ5mm孔轴线到端面B的距离20±0.1mm。

(2)φ5mm孔对φ20H7孔的对称度为0.1mm。

本任务是设计钻φ5mm孔的钻床夹具定位方案。

图1.1钢套零件钻φ5mm工序图图1.2钢套零件三维图【引导问题】(1)仔细阅读图1.1,分析零件加工要求,各工序尺寸的工序基准是什么?(2)工件定位与夹紧的概念是什么?分析它们分别是由什么装置实现的?(3)六点定位原理是什么?(4)什么是完全定位、不完全定位、过定位和欠定位?(5)常用定位元件有哪些?定位元件限制的自由度?(6)定位方案设计的基本原则是什么?定位元件的要求是什么?(7)定位误差如何分析和计算?(8)企业生产参观实习。

①生产现场机床夹具的组成是什么?②生产现场机床夹具使用的定位元件有哪些?③生产现场机床夹具定位时限制几个自由度?1.2基础知识【学习目标】理解六点定位原理,分析常用定位元件限制的自由度,确定工件的定位方式,常用定位元件的设计,定位方案设计的基本原则,定位误差的分析和计算。

1.2.1工件定位的基本原理1.概述为了达到工件被加工表面的技术要求,必须保证工件在加工过程中的正确位置。

夹具保证加工精度的原理是加工需要满足3个条件:①一批工件在夹具中占有正确的位置;②夹具在机床上的正确位置;③刀具相对夹具的正确位置。

显然,工件的定位是极为重要的一个环节。

本章就要讨论工件的定位问题。

第四章 夹具设计

第四章   夹具设计

图为一个长 方形工件在四 爪单动卡盘上, 用划线盘按欲 加工孔的找正 线进行装夹的 情况。
(二)、六点定位原理
1、刚体的六个自由度
任何刚体在空间都 有六个自由度,它们 分别是沿空间直角坐 标系X、Y、Z轴方向的
移动自由度(X、Y Z)
和绕三轴的转动自由 度(X、Y、Z)。
2、工件定位之目的
是使工件在机床上(或夹具中)占有正确的位置,也就是 使 它相对于刀具刀刃有正确的相对位置。
将双联齿轮工件装在 心轴上,当工件孔径大, 心轴直径小,其间无配 合关系,则不起定位作 用,这时靠百分表来检 测齿圈外圆表面找正。 找正时,百分表顶在齿 圈外圆上,插齿机工作 台慢速回转,停转时调 整工件与心轴在径向的 相对位置,经过反复多 次调整,即可使齿圈外 圆与工作台回转中心线 同轴,则可保证齿形加 工与工件内孔的同轴度。
第四章 夹具设计
一、夹具的定义、分类、功用及组成
一、机床夹具及其组成
1、机床夹具
机床夹具是在机床 上用以装夹工件的一种装 置,其作用是使工件相对 于机床或刀具有个正确的
位置,并在加工过程中保
持这个位置不变。
2、机床夹具的组成
(1).定位元件:确定工件在夹具中位置的元件。
(2).导向元件:用以引导刀具或调整刀具相对于夹具的位置。
工件在机床或夹具中的装夹有三种方法:
1、夹具中装夹 是将工件装夹在夹具中,由夹具上的定位 元件来确定工件的位置,由夹具上的夹紧装 置进行夹紧。夹具通过定位原件安装在机床 的一定位置,并用夹紧元件夹紧。
这种装夹方法由夹具来保证定位夹紧,易于保证加 工精度要求,操作简单方便,效率高,应用十分广泛。 但需要制造或购买夹具,因此多用于成批、大批和大量 生产中。

机械制造技术基础考试重点及答案

机械制造技术基础考试重点及答案

1.理解大、小制造的概念。

CIRP定义:制造包括制造企业的产品设计、材料选择、制造生产、质量保证、管理和营销一系列有内在联系的运作和活动。

[大制造、广义理解]狭义理解:生产过程从原材料(半成品)→成品直接起作用的那部分工作内容,包括毛坯制造、零件加工、产品装配、检验、包装等具体操作(物质流)。

[小制造]2.掌握机械加工工艺过程的定义,知道工序、安装、工位、工步、走刀的含义。

采用机械加工方法直接改变毛坯的形状、尺寸、各表面间相互位置及表面质量,使之成为合格零件的过程,称为机械加工工艺过程。

工序——是指由一个或一组工人在同一台机床或同一个工作地,对一个或同时对几个工件所连续完成的那一部分机械加工工艺过程。

安装——在一道工序中,工件每经一次装夹后所完成的那部分工序称为安装。

工位——工件在机床上占据每一个位置所完成的那部分工序称为工位。

工步——指在加工表面不变、切削刀具不变的情况下所连续完成的那部分工序。

(在一个工步内,若有几把刀具同时加工几个不同表面,称此工步为复合工步)走刀——同一加工表面加工余量较大,可以分作几次工作进给,每次工作进给所完成的工步称为一次走刀。

3.掌握常用的机械加工方法(车、铣、刨、磨、拉、钻等),知道各种方法可以用来加工哪类几何表面,,同时掌握切削加工的成形运动,并能区分主运动、进给运动、定位和调整运动。

主运动指直接切除工件上的余量形成加工表面的运动。

主运动的速度即切削速度,用v(m/s)表示。

进给运动指为不断把余量投入切削的运动。

进给运动的速度用进给量(f—mm/r)或进给速度(vf —mm/min)表示。

定位和调整运动使工件或刀具进入正确加工位置的运动。

如调整切削深度,工件分度等。

4.掌握机床和夹具的基本组成及各部分的作用。

机床组成:1)动力源:为机床提供动力(功率)和运动的驱动部分2)传动系统:包括主传动系统、进给传动系统和其他运动的传动系统,如变速箱、进给箱等部件3)支撑件(机床大件):用于安装和支承其它固定的或运动的部件,承受重力和切削力,如床身、底座、立柱等4)工作部件:包括①与主运动和进给运动的有关执行部件,如主轴及主轴箱、工作台及其溜板、滑枕等安装工件或刀具的部件;②与工件和刀具有关的部件,如自动上下料装置、自动换刀装置、砂轮修整器等;③与上述部件或装置有关的分度、转位、定位机构和操纵机构等。

六点定位原理

六点定位原理

XZXZ
一个长定位套
XZ
XZXZX Z X Z
典型定位元件得定位分析
定位情 况

圆顶


和 锥
图示

孔心

限制的
自由度
固定顶尖
XYZ
浮动顶尖
锥度心轴
YZ
XY ZY Z
定位原理分析例一
解:定位分析 :
心轴得大端面限制得自由度为:
Y 、X 、Z
心轴得长銷限制得自由度为:
X 、Y 、X 、Y
支承板定位,限制工件得三个自由度: Y 、X (、保Z 证各孔
得轴心线垂直于工件底面);
两支承销定位,限制工件二个自由度: Z 、(Y保证工件二
小孔得位置尺寸H); 削边销定位,限制一个自由度: X(保证工件二小孔与大
孔中心得对称位置尺寸A)。
属于完全定位,且能保证工件得加工精度要求,方案正确。
未受约束得刚体,在空间得位置就是不确定得,它具有六
个自由度:
X
、Y
、Z
、X
、Y
、Z。为使刚体在空间具有确定得
位置,就必须限制其六个自由度。
定位就就是用各种形状不同得定位元件,来限制工件得
自由度。
六点定位原理:用六个支承点分别限制工件得六个自由
度从而使工件在夹具中得到正确加工位置得方法称为六点定 位原理、
过定位一般就是不允许得。
过定位分析
、Z X
X
Y
Z
a)
X
X Y
a2)
Z X
X Y
Z X
a1)
X Y
a3)
过定位
消除过定位及其干涉得途径:
1、 改变定位元件结构,消除对自由度得重复 限制,如长销改成短销;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六点定位原理图3-4 工件的六个自由度图3-5 长方体形工件的定位一、六点定位原则一个尚未定位的工件,其位置是不确定的。

如图 3-29 所示,将未定位的的工件(长方体)放在空间直角坐标系中,长方体可以沿 X 、 Y 、 Z 轴移动有不同的位置,也可以绕 X 、 Y 、 X 轴转动有不同的位置,分别用、、和、、表示。

用以描述工件位置不确定性的、、、、、合称为工件的六个自由度。

其中、、称为工件沿 X 、 Y 、 Z 轴的移动自由度,、、称为工件绕 X 、 Y 、 Z 轴的转动自由度。

工件要正确定位首先要限制工件的自由度。

设空间有一固定点,长方体的底面与该点保持接触,那么长方体沿 Z 轴的移动自由度即被限制了。

如果按图 3-30 所设置六个固定点,长方体的三个面分别与这些点保持接触,长方体的六个自由度均被限制。

其中 XOY 平面上的呈三角形分布的三点限制了、、三个自由度; YOZ 平面内的水平放置的两个点,限制了、二个自由度; XOZ 平面内的一点,限制了一个自由度。

限制三个或三个以上自由度的称为主要定位基准。

这种用适当分布的六个支承点限制工件六个自由度的原则称为六点定位原则。

支承点的分布必须适当,否则六个支承点限制不了工件的六个自由度。

例图 3-30 中XOY 平面内的三点不应在一直线上,同理, YOZ 平面内的两点不应垂直布置。

六点定位原则是工件定位的基本法则,用于实际生产时起支承作用的是有一定形状的几何体,这些用于限制工件自由度的几何体即为定位元件。

表 3-10 为常用定位元件能限制的工件自由度。

二、由工件加工要求确定工件应限制的自由度数工件定位时,影响加工精度要求的自由度必须限制;不影响加工精度要求的自由度可以限制也可以不限制,视具体情况而定。

按照工件加工要求确定工件必须限制的自由度是工件定位中应解决的首要问题。

例如图 3-31 所示为加工压板导向槽的示例。

由于要求槽深方向的尺寸 A 2 ,故要求限制 Z 方向的移动自由度;由于要求槽底面与 C 面平行,故绕 X 轴的转动自由度和绕 Y 轴的转动自由度要限制;由于要保证槽长 A 1 ,故在 X 方向的移动自由度要限制;由于导向槽要在压板的中心,与长圆孔一致,故在 Y 方向的移动自由度和绕 Z 轴的转动自由度要限制。

这样,在加工导向槽时,六个自由度都应限制。

这种六个自由度都被限制的定位方式称为完全定位。

图 3-31 的导板如在平面磨床上磨平面,要求保证板厚 B ,同时加工面与底面应平行,这时,根据加工要求只需限制、、三个自由度就可以了。

这种根据零件加工要求实际限制的自由度少于六个的定位方法称为不完全定位。

如工件在某工序加工时,根据零件加工要求应限制的自由度而未被限制的定位方法称为欠定位。

欠定位在零件加工中是不允许出现的。

如果某一个自由度同时由多于一个的定位元件来限制,这种定位方式称为过定位或重复定位。

如图 3-32 所示为一个零件在自由度上有左右两个支承点限制,这就产生了过定位。

(三)完全定位和不完全定位工件的六个自由度完全被限制的定位称为完全定位。

按加工要求,允许有一个或几个自由度不被限制的定位称为不完全定位。

(四)欠定位和过定位按工序的加工要求,工件应该限制的自由度而未予限制的定位,称为欠定位。

在确定工件定位方案时,欠定位时绝对不允许的。

工件的同一自由度背二个或二个以上的支撑点重复限制的定位,称为过定位。

在通常情况下,应尽量避免出现过定位。

消除过定位及其干涉一般有两个途径:其一是改变定位元件的结构,以消除被重复限制的自由度;其二是提高工件定位基面之间及夹具定位元件工作表面之间的位置精度,以减少或消除过定位引起的干涉。

常用定位元件1)支承钉图2-26所示为国家标准规定的三种支承钉,其中A型多用于精基准面的定位,B 型多用于粗基准面的定位,C型则多用于工件的侧面定位。

2)支承板图2-27所示为国家标准规定的两种支承板,其中B型用的较多,A型由于不利于排屑,多用于工件的侧面定位。

3)定位销定位销的构造如图2-28所示。

定位销与工件孔配合部分尺寸公差通常按g6或f7确定。

圆柱销定位通常限制了工件的两个移动自由度。

当要求孔销配合只在一个方向上限制工件自由度时,可采用菱形销,见图2-29a。

有时工件也可用圆锥销定位,见图2-29b,圆锥销定位限制了工件的三个移动自由度。

4)心轴工件在心轴上定位通常限制了除绕自身轴线转动和沿自身轴线移动以外的四个自由度。

图2-30a、b所示为刚性心轴,其中a为间隙配合心轴;b为过盈配合心轴。

除刚性心轴外,在生产中还经常使用弹性心轴(图2-30c)、液塑心轴、自动定心心轴等。

这些心轴在定位同时将工件夹紧,使用很方便。

图2-31所示为小锥度心轴,这类心轴的定位表面带有很小的锥度,一般为K=1∶1000~1∶5000。

工作时,工件楔紧在心轴上,靠孔的微小弹性变形而形成的一段接触长度lk,由此产生的摩擦力带动工件回转,而不需另加夹紧装置。

小锥度心轴定心精度高,可达0.005mm~0.0lmm。

5)定位套工件以外圆柱面为基准在夹具中定位主要有两种形式,一种是定心定位,一种是支承定位。

定心定位的定位元件主要是套筒(包括锥套)和卡盘。

套筒定位长径比较大时,限制工件四个自由度(两个移动,两个转动,见图2-32a);套筒定位长径比较小时,只限制工件两个自由度(图2-32b)。

使用锥套定位时,通常限制工件三个移动自由度(图2-32c)。

工件以外圆表面支承定位时常用的定位元件是V型块。

V形块是由两个互成角的平面组成的定位元件。

用V形块定位时,对中性好,装卸工件方便,且可用于非完整外圆表面的定位。

用V 形块定位也有长短之分,长的V形块可限制工件四个自由度,而短的(窄的)V形块只能限制两个自由度。

V形块的尺寸关系如图2-32所示,V形块夹角有60°、90°、120°三种,其中以90°用得最多。

尺寸C和h是加工V形块时所必需的。

而最后检验和调整其位置时,则是利用一个直径等于基准面基本尺寸D的量规,放在V形块上,测量其高度H。

由图2-33可知:(2-7)当α=90°时,有:(2-8)典型定位元件的定位分析在实际生产中,工件总是通过定位元件实现其在夹具或机床上的定位。

定位元件有多种形式,常用的有支承钉、支承板、定位销、定位套、心轴、V型块等,其中多数已标准化。

表2.10给出一些典型定位元件的定位分析,请读者特别注意其限制的自由度。

六点定位法则的正确理解与应用六点定位法则是指导夹具设计的基本原则,已沿用了几十年,但法则本身并不完善,对法则的理解和应用也存在许多混乱之处,因此有必要对六点定位法则进行再探讨。

1 传统六点定位法则的含义工件定位的实质就是使工件在夹具中占据确定的位置,因此工件的定位问题可转化为在空间直角坐标系中决定刚体坐标位置的问题来讨论。

在空间直角坐标系中,刚体具有六个自由度,即沿X、Y、Z轴移动的三个自由度和绕此三轴旋转的三个自由度。

用六个合理分布的支承点限制工件的六个自由度,使工件在夹具中占据正确的位置,称为六点定位法则。

人们在阐述六点定位法则时常以图1所示铣不通槽的例子来加以说明:a1、a2、a3三个点体现主定位面A,限制 X、Y方向的旋转自由度和 Z方向的移动自由度;a4、 a5两个点体现侧面B,限制 X方向的移动自由度和Z方向的旋转自由度; a6点体现止推面C,限制 Y方向的移动自由度。

这样,工件的六个自由度全部被限制,称为完全定位。

当然,定位只是保证工件在夹具中的位置确定,并不能保证在加工中工件不移动,故还需夹紧。

定位和夹紧是两个不同的概念。

图1图2<H1.2 h1 传统六点定位法则存在的问题1.a1~a6在有的专著中称为六个定位点,在有的文献中则称为六个支承点,事实上这是两个不同的概念。

支承点应是安装在夹具上直接与工件接触的具体定位元件,如支承钉、支承板、V形块等,在加工过程中它们还要参与平衡切削力、重力、夹紧力等;而定位点应是一个抽象概念,是指定位方式对自由度的限制。

限制一个自由度称为一个定位点,与支承点的多少无关。

例如,工件直接以平面定位时,应限制三个自由度,只应有三个定位点,而事实上此时的支承点远不止三个。

而且在一些特殊情况下,工件定位时根本就无具体的支承点,如常见的在车床上用四爪卡盘夹紧工件,用千分表找正,此时并没有具体的支承点参与定位,工件位置的确定是由千分表来完成的,这种定位方式在无支承点的情况下同样可以实现定位。

2.六点定位法则源于刚体力学,与夹具设计的实际情况并不完全一致。

一方面,夹具和工件均是弹性体,在定位、尤其夹紧时易产生弹性变形;另一方面,定位副之间大多存在间隙。

而传统的六点定位法则忽略了弹性变形和间隙的存在。

事实上,弹性变形和间隙的存在对工件的定位有重要影响。

3.过定位问题是夹具设计和使用中的敏感问题。

文献和专著中一般将过定位定义为“几个定位支承点重复限制同一个自由度,这种现象称为过定位。

……在确定工件定位方案时,一般不能出现过定位”。

但事实上在夹具设计和应用中,过定位的情况并不少见,而且一些过定位夹具使用效果不错。

如图3a所示定位方式,平面限制X、 Y方向的旋转自由度和Z方向的移动自由度,芯轴限制X、 Y方向的旋转自由度和移动自由度,两种定位方式重复限制X、 Y方向的旋转自由度,按现行的过定位定义属过定位,应避免使用,但在实际加工中却常用这种定位方式来滚切齿轮,如图2所示。

因此必须对过定位有一个准确的解释,以避免在过定位问题上造成混乱。

3 对六点定位法则的再探讨在用传统的六点定位法则确定工件定位方案和判断是否属于过定位时,很多人忽略了定位副误差的影响。

事实上,夹具和工件的定位面以及定位元件的误差对定位影响很大。

图3a所示定位方式虽然属于过定位,但只要工件和夹具定位面的尺寸、形状、位置均无误差,芯轴和端面都能与夹具定位元件的工件表面相吻合,相互之间对自由度的限制就不会发生矛盾。

显然,这种状态下的定位是成功的,该夹具是可以使用的。

故不应简单地根据自由度被重复限制就判定定位方案属于过定位。

如图3b所示,当工件定位面存在垂直度误差时,端面和芯轴对X、 Y方向旋转自由度的限制就会发生矛盾。

如按平面定位,工件应放平;如按芯轴定位,工件则应垂直。

一批工件的内孔和芯轴之间的实际间隙是变化的,当间隙变化时则会形成如图3b、 3c所示的两种定位情况,这样工件在夹具中的位置就不确定,导致过定位。

若夹具定位面与芯轴存在垂直度误差,也会产生类似情况。

显然,重复限制自由度不一定会产生过定位,定位副误差才是产生过定位的主要原因。

图3由于存在误差而使两种定位方式之间产生矛盾称为干涉。

在干涉范围内,若有A、 B两种定位方式重复限制某一自由度,设计时必须确定以某一种定位方式为主。

相关文档
最新文档