六点定位原理

合集下载

2六点定位原理的应用

2六点定位原理的应用

2六点定位原理的应用1. 六点定位原理简介六点定位原理,也称为六点定位算法,是一种基于三角测量的定位方法。

该方法通过测量目标物体与至少三个参考点的距离,以及目标物体与参考点之间的角度关系,来确定目标物体的空间坐标位置。

2. 六点定位原理的工作原理六点定位原理基于三角测量原理,假设有三个参考点A、B、C,它们的位置已知。

目标物体P与这三个参考点之间的距离已知,我们需要确定目标物体P的坐标位置。

首先,通过测量目标物体P与参考点A、B、C之间的距离,我们可以得到三个距离值,分别为d1、d2、d3。

其次,我们计算参考点A和目标物体P之间的夹角α,参考点B和目标物体P 之间的夹角β,以及参考点C和目标物体P之间的夹角γ。

最后,利用三角学原理,我们可以根据上述距离和角度信息,通过数学计算的方式确定目标物体P的坐标位置。

3. 六点定位原理的应用领域六点定位原理广泛应用于以下领域:3.1 室内定位在室内环境中,六点定位原理可以用于实现准确的室内定位。

通过在室内设置多个参考点,结合六点定位原理,可以确定移动设备在室内的准确位置,为用户提供各种定位服务,如导航、定位追踪等。

3.2 航空航天六点定位原理在航空航天领域也有重要应用。

飞行器的导航和定位是航空航天工程中的关键问题之一。

通过采用六点定位原理,可以实现航空器在三维空间中的准确定位,确保飞行器的安全和精准导航。

3.3 机器人导航在机器人领域,六点定位原理可以用于实现机器人的准确导航。

通过在机器人周围设置多个参考点,结合六点定位原理,可以确定机器人的精确位置,实现智能导航、避障等功能。

3.4 海洋勘探在海洋勘探领域,六点定位原理可以应用于水下设备的定位。

通过在水下设置多个参考点,结合六点定位原理,可以确定水下设备的准确位置,为海洋勘探研究提供定位数据支持。

4. 六点定位原理的优势和局限性4.1 优势六点定位原理具有以下优势:•定位精度高:通过测量多个点的距离和角度信息,可以实现较高的定位精度。

什么是六点定位原理

什么是六点定位原理

什么是六点定位原理
六点定位原理是一种用于确定物体空间位置的方法。

它基于一个简单的观察:当一个物体在三维空间中移动时,我们可以通过观察该物体在不同位置上的六个特征来确定其准确位置。

这六个特征分别是:三个坐标轴上的位置(x、y、z)和三个欧
拉角(俯仰角、偏航角、滚转角)。

坐标轴上的位置定义了物体在空间中的位置,而欧拉角则定义了物体围绕自身坐标轴的旋转程度。

通过测量物体在不同位置上的这六个特征,并利用三角学和几何学的原理进行计算和推导,可以精确确定物体在三维空间中的位置。

与其他定位方法相比,六点定位原理具有较高的精度和准确性。

由于它基于物体在空间中的真实位置和旋转角度进行计算,可以有效地避免误差积累和歧义。

六点定位原理在许多领域都有广泛应用。

例如,在机器人导航中,机器人可以通过测量其周围环境中固定物体的六个特征来确定自身的位置和姿态。

在虚拟现实技术中,通过追踪用户头部的六个特征,可以实现对用户视角的准确跟踪和呈现。

此外,在航空航天、医疗设备和工业生产等领域,六点定位原理也被广泛应用于精确定位和姿态控制的问题上。

总之,六点定位原理是一种基于物体在空间中位置和旋转角度的观察记录和计算,用于确定物体在三维空间中位置的方法。

它具有高精度和准确性,并在多个领域有广泛应用。

六点定位原理

六点定位原理

六点定位原理在机械制造和加工领域,六点定位原理是一个极其重要的基础性概念。

它就像是一座基石,支撑着整个精密制造体系的大厦。

那什么是六点定位原理呢?简单来说,就是用六个合理分布的支撑点,来限制工件的六个自由度,从而使工件在空间中的位置完全确定。

我们先得明白啥是自由度。

想象一下一个放在空间中的物体,它可以沿着三个坐标轴移动,分别是 X 轴、Y 轴和 Z 轴,这就有了三个移动的自由度。

同时,这个物体还能绕着这三个坐标轴转动,这又产生了三个转动的自由度。

所以,一个物体在空间中总共有六个自由度。

六点定位原理中的这六个支撑点,可不是随便乱放的。

它们得精心布置,才能有效地限制住这六个自由度。

比如说,在一个平面上,如果我们用三个不在同一直线上的支撑点,就可以限制工件沿 X 轴和 Y轴的移动,以及绕 Z 轴的转动。

这三个支撑点就像是三把“锁”,把工件在这个平面上的自由度给“锁住”了。

再往上,如果我们在工件的侧面再设置两个支撑点,这两个支撑点就能够限制工件沿 Z 轴的移动以及绕 X 轴的转动。

这两个点又给工件加上了两把“锁”。

最后,在工件的顶部或者底部,设置一个支撑点,这个点就能限制工件绕 Y 轴的转动。

这样,六个支撑点就把工件的六个自由度全部限制住了,工件在空间中的位置就被完全确定了下来。

六点定位原理在实际的生产加工中有着广泛的应用。

比如说,在车床上加工一个轴类零件,我们需要把这个轴牢牢地固定住,不让它在加工过程中发生移动或者转动。

这时候,就可以运用六点定位原理,通过卡盘和顶尖等装置,给这个轴提供六个合理分布的支撑点,让它稳稳地待在那里,接受我们的加工。

在夹具设计中,六点定位原理更是起着关键的指导作用。

夹具设计师需要根据工件的形状、尺寸和加工要求,巧妙地布置这六个支撑点,以确保工件能够被精确地定位和夹紧。

如果支撑点布置得不合理,就可能导致工件在加工过程中出现位置偏差,影响加工精度,甚至可能造成废品。

而且,六点定位原理也不是绝对死板的。

简述六点定位原理

简述六点定位原理

简述六点定位原理六点定位是一种常用的定位方法,通过收集或测量目标物体在不同位置上的信号强度来推算目标物体的位置。

这种定位方法主要应用于室内定位、室内导航和物体追踪等领域。

下面将详细介绍六点定位原理的相关内容。

1. 发送信号源:六点定位中的一种基本方法是利用无线信号作为发送信号源。

常见的信号源包括无线电、WiFi、蓝牙、红外线等。

这些信号源通过向周围发送无线信号,并在信号源周围突然中断,可以推算出目标物体的位置。

2. 接收器:接收器是用于接收信号源发出的信号。

在六点定位中,可以使用多个接收器来接收信号源发出的信号,并根据信号的强度来推算目标物体的位置。

接收器可以是专用的硬件设备,也可以是智能手机、平板电脑等装备内置的无线收信模块。

3. 信号强度:信号源发出的信号会经过物体的阻挡和衰减。

接收器通过测量信号强度来判断目标物体的位置。

信号强度是一个基本的定位参数,可以根据信号源和接收器之间的距离、传输介质的特性等因素进行计算和推算。

4. 多点定位:六点定位一般需要至少三个接收器来接收信号源发出的信号。

根据接收器接收到的信号强度,可以确定目标物体与每个接收器之间的距离,进而通过三角定位等方法计算目标物体的准确位置。

如果使用更多的接收器,可以提高定位的准确性和可靠性。

5. 数据处理:接收到信号强度后,需要进行一系列的数据处理操作。

这包括信号强度的滤波、数据校正、测量误差的修正等。

数据处理能够提高定位的精度和可靠性,减少误差的影响。

6. 地图匹配:在六点定位中,将目标物体的位置与现有的地图进行匹配是一个重要的步骤。

在定位过程中,可以使用预先构建好的地图,或者通过实时采集数据构建地图。

地图匹配可以进一步提高定位的准确性,同时可以用于导航和路径规划等应用。

以上是关于六点定位原理的相关参考内容。

六点定位是一种利用无线信号和接收器进行目标物体定位的方法,通过测量信号强度和多点定位等技术,可以实现室内定位、室内导航以及物体追踪等应用。

六点定位原理

六点定位原理

机械制造技术六点定位原理图2-44 工件在空间中的自由度知识点: 六点定位原理1、六点定位原则任何未定位的工件在空间直角坐标系中都具有六个自由度,即沿三个坐标轴的移动自由度和绕三个坐标轴的转动自由度1、2、3限制的自由度: 4、5点限制的自由度:6点限制:u“六点定位原理”的注意问题⑴定位就是限制自由度,通常用合理布置定位支承点的方法来限制工件的自由度。

⑵定位支承点限制工件自由度的作用,应理解为定位支承点与工件定位基准面始终保持紧贴接触。

若二者脱离,则意味着失去定位作用。

⑶一个定位支承点仅限制一个自由度,一个工件仅有六个自由度,所设置的定位支承点数目,原则上不应超过六个。

⑷分析定位支承点的定位作用时,不考虑力的影响,定位和夹紧是两个概念,不能混淆:工件的某一自由度被限制,是指工件在这一方向上有确定的位置,并非指工件在受到使其脱离定位支承点的外力时,不能运动,即夹紧。

⑸定位支承点是由定位元件抽象而来的,在夹具中,定位支承点总是通过具体的定位元件体现。

2、完全定位与不完全定位0.1A B30±0.120±0.056.3600-0.2A 50YX6.36.30.1B(2)不完全定位根据工件的加工要求,并不需要限制工件的全部自由度,这样的定位称为不完全定位。

如图2-46所示为在车床进行孔的车削加工。

工件采用完全定位方式还是不完全定位方式,主要由工件的工序加工要求决定。

但反过来讲,不管采用上面哪一种定位方式,都要满足工件的加工要求。

图2-46 不完全定位(3)欠定位工件定位时,应该限制的自由度没有被完全限制的定位方式称为欠定位。

实际定位时,不允许欠定位。

如图2-47所示,工件在支承1和两个圆柱销上定位,按此定位方式,不能限制自由度,属于欠定位。

不能确定工件在X方向上的位置,如图中的双点划线和虚线位置,因此,也不能确定钻出的孔的位置,无法保证尺寸A的精度。

只有在X方向设置一个止推销后,工件在X方向才能取得确定的位置。

六点定位原理的应用

六点定位原理的应用

六点定位原理的应用六点定位原理(hexapod positioning principle)是一种先进的定位和运动控制技术。

它通过六个执行器或驱动器来实现精确的位置控制和姿态调节。

六点定位原理的应用广泛,包括航空航天、机器人、医疗设备和工业自动化等领域。

六点定位原理的核心是通过调节六个点的位置和角度来实现目标物体的位姿控制。

结构上,六点定位系统由一个中央平台和六个活塞式调节器组成。

中央平台用于支撑和控制目标物体,而六个调节器则用于调整物体的位置和姿态。

通过适当的控制驱动器,可以实现六个自由度的位置和姿态控制。

实际应用中,六点定位原理具有以下几个重要的优势。

首先,六点定位原理具有高精度的定位能力。

通过六个调节器的协调工作,可以在微米甚至更小的范围内实现目标物体的位置控制。

这种高精度的定位能力可以满足许多精密装配和测量的要求。

其次,六点定位原理具有良好的稳定性和刚度。

由于六个调节器的支撑作用,目标物体可以在各个方向上保持稳定的姿态。

这对于需要保持固定位姿的应用非常重要,比如航空航天中的卫星定位和姿态调整。

第三,六点定位原理具有良好的适应性。

通过灵活地调整六个调节器的位置和角度,可以适应不同形状和大小的目标物体。

这种适应性使得六点定位原理在实际应用中具有广泛的适用性,可以满足不同领域的需求。

另外,六点定位原理还可以与其他传感器和控制系统相结合,实现更复杂的功能和任务。

比如,在机器人领域,六点定位原理可以与视觉系统和力觉传感器相结合,实现自动化装配和操作。

在医疗设备领域,六点定位原理可以与影像检测和导航系统相结合,实现精确的手术定位和导航。

综上所述,六点定位原理是一种重要的定位和运动控制技术,具有高精度、稳定性和适应性的优势。

在航空航天、机器人、医疗设备和工业自动化等领域中,六点定位原理的应用已经得到了广泛的认可和应用。

随着技术的不断进步和应用领域的拓展,相信六点定位原理将在更多领域中发挥重要的作用。

六点定位原理

六点定位原理
定位原理
六点定位原理
任何一个物体在空间直角坐标系中都有 6 个自由度—— 用 X , Y , Z , a, b , c 表示 要确定其空间位置,就需要限制其 6 个自由度 Z 将 6 个支承抽象 为6个“点”,6个 点限制了工件的 6 个自由度,这就是 六点定位原理。
Y X
图 2-13 六点定位原理
定位原理
过定位分析
Z
Z
Y
Y
Y
Y
X
X
a) 图2-19 过定位示例
b)
9
①工件本身相对于某个点、线是完全对称的,则工件 绕此点、线旋转的自由度无法被限制(即使被限制也 无意义)。例如球体绕过球心轴线的转动,圆柱体绕 自身轴线的转动等。
②工件加工要求不需要限制某一个或某几个自由度。 如加工平板上表面,要求保证平板厚度及与下平面的 平行度,则只需限制 3 个自由度就够了。
3
5
定位原理
过定位
过定位 —— 工件某一个自由度(或某几个自由度) 被两个(或两个以上)约束点约束,称为过定位。 过定位是否允许,要视具体情况而定:
1)如果工件的定位面经过机械加工,且形状、尺寸、 位置精度均较高,则过定位是允许的。有时还是必要 的,因为合理的过定位不仅不会影响加工精度,还会 起到加强工艺系统刚度和增加定位稳定性的作用。
2)反之,如果工件的定位面是毛坯面,或虽经过机械 加工,但加工精度不高,这时过定位一般是不允许的, 因为它可能造成定位不准确,或定位不稳定,或发生 定位干涉等情况。
6
定位原理
过定位分析(桌子与三角架)
图2-17 过定位分析
7
定位原理
过定位分析
Z Z
Y
Y

六点定位原理名词解释

六点定位原理名词解释

六点定位原理名词解释
六点定位原理是指,在机械制造过程中,通过确定工件上至少六个点的位置来保证工件相对于机床的精确定位。

这六个点通常被称为定位孔、定位面、定位台等。

通过这些点的位置来确定工件的几何中心和位移,进而调整机床的位置和姿态,确保工件在加工过程中的精度和稳定性。

在使用六点定位原理时,需要注意以下几点:
1. 定位点的数量和位置应该尽可能多样化,以确保工件的稳定定位和加工精度;
2. 定位点应该在工件上分布均匀,以避免过度集中导致工件变形;
3. 定位点的形状和尺寸应该与工件的形状和尺寸相匹配,以确保定位的准确度和可靠性;
4. 定位孔、定位面等部件的加工精度应该达到机床的要求,以确保定位的精度和稳定性。

六点定位原理是机械制造中常用的定位方式之一,它广泛应用于各种机床、夹具和工件的定位和加工过程中,是保证加工精度和产品质量的重要手段之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图: 六点定位原理
10
以工件外圆定位
① V形块
用V形块定位,工件的定位基准始终处在V形块两定位 面的对称面中,对中性好。
结构尺寸已标准化,斜面夹角有60°90°120° 如下图所示: 长V形块定位限制工件四个自由度: X、 Y、 X、 Y 短V形块定位限制工件二个自由度:X 、 Y
长销小平面组合
Y Z Y Z
短销大平面组合
图示
限制的 自由度
Z
X Y Z Y Z
X Y Z Y Z
36
典型定位元件的定位分析
工件 的定 位面
夹具的定位元件
定位情 况
固定锥销
浮动锥销
固定锥销和浮动锥销 组合

圆 锥 销
图示
限制的 自由度
X Y Z

25
完全定位举例
故定位性质:为完全定位。
Z
短销
Y
挡销
支承板
Y X
26
必须限制的自由度分析 举例1:在长方形工件毛坯上,用铣刀铣槽、铣台阶面和
铣平面。试分析必须限制的自由度有哪些?允许不限制 的自由度又有哪些?(如下图举例1所示)
X

27
必须限制的自由度分析
举例2:如上右图所示,在
球体的中心加工一个不透孔, Z 台阶面 试分析必须限制的自由度有哪 些?允许不限制的自由度又有 哪些?

定位支承点是抽象的,通过具体定位元件来体现。 工件应限制几个自由度,由工件加工技术条件来确定。
9
六点定位原理举例
在XOY平面内布置了3个支承点,工件被限制的自由度为 三个:Z 、 X、 Y
Z
5 6 4 2 1 3
Y
支承元 件
X
在XOZ平面内布置了 2个支承点,工件被 限制的自由度为二 个: Y、 Z ; 在YOZ平面内布置了 1个支承点,工件被 限制的自由度为一 个: X 。
定位与夹紧的区别: 定位是使工件占有一个正确的位置,夹紧是使
工件保持这个正确位置。定位与夹紧在夹具设计中是两个非常重要的概 念,两者既有紧密联系,缺一不可,但在概念上又有严格区别: 定位的作用是 确定工件在夹具中相对于刀具处于一个正确的加工位置,而夹紧的作用是 保证工件在加工过程中始终保持由定位所确定的正确加工位置, 夹紧不能 代替定位
29
过定位分析
.
Z
X
Z
X
X Y Z X a)
X Y Z X a1)
X
Y a2)
X
Y a3)
30
过定位
消除过定位及其干涉的途径:
1. 改变定位元件结构,消除对自由度的重复 限制,如长销改成短销; 2. 提高工件定位基面之间的位置精度,提高 夹具定位元件之间的位置精度,减少或消 除过定位引起的干涉,精加工时可增加刚 度和定位稳定性。(如:两个山形导轨)
六点定位原理基本概念 六点定位原理基本概念
1
基本概念
装夹的基本概念
装夹:将工件安放在机床上或夹具上进行定位和 夹紧的操 作过程。 定位:使一批工件在机床上或夹具上相对于刀具处在正确的加工位置的 操作过程。 夹紧:工件在夹具中定位后,将其压紧、夹牢,使工件在加工过程中, 始终保持定位时所取得的正确加工位置。 夹紧的作用:保持工件在夹具中由定位所获得的正确加工位置,使工件 在加工时不至于由于切削力等外力作用而破坏已取得的正确定位。
8
六点定位原理

关于“六点定位”的几个问题:

定位限制自由度,几“点”定位不能机械地理解成几 个接触点; 限制自由度应理解为:


定位支承点与工件定位基准面始终保持紧贴接触;

定位支承点数目原则上不应超过工件自由度数目; 自由度被限制,是指工件在此方向上有确定的位置:

不考虑外力的影响(注:定位和夹紧的区别);
Z Y
Y
解:由于加工的孔必须位于
球的中心,孔还有深度要求, 故:必须限制的自由为: X 、 X Y、 Z
们并不影响孔的加工精度。)
球面 X
(其余的三个自由度允许不限制,它
28
过定位
过定位造成的后果:
(1)使工件或夹具元件变形,引起加工误差; (2)使部分工件不能安装,产生定位干涉(如一面两销) 过定位一般是不允许的。
Z
X 心轴 例一题图
X
心轴 改进方案一
X
心轴 改进方案二
33
图: 定位方案分析一
典型定位元件的定位分析
工 件 的 定 位 面
夹具的定位元件
定位情况
1个支承钉
2个支承钉
3个支承钉


支 承 钉
图示
限制的自 由度
X
Y Z
Z
X
Y
34
典型定位元件的定位分析
工 件 的 定 位 面 定位情 况
19
定位心轴
定位心轴
主要用于盘套类零件的 定位: 长心轴限制工件4个自 由度(如b)图所示)。 短心轴限制工件2个移 动自由度,如c)图所示。 (不能限制转动自由度) a)图所示,为带台阶面 的定位心轴:限制5个自由 度。
20
大锥度心轴定位
大锥度心轴定位
Y
Z X
大锥度心轴定位限制工件五个自由度:
用三爪卡盘定位的定位分析,主要看工件的定位表面
与三爪卡盘的相对长度的多少:
Y
相对夹持长度长
Z
X Y
生产中常采用在三爪 与工件之间设置一钢 丝圆环,以减少相对 夹持长度。
Z
相对夹持长度短
X

当相对夹持长度长时,限制工件四个自由度: 当相对夹持长度短时,限制工件二个自由度:
X、 Y、 X、 Y
24
生产中的实际定位
⑴ 完全定位 举例:连杆工件在由定位支承板、短銷和挡銷组成 的夹具中定位,试对此定位方案进行定位分析。 (如下图所示) 解:写出各定位元件所限制的自由度: 支承板限制工件三个自由度: 短銷限制工件二个自由度: Z 、 X、 Y 挡銷限制工件一个自由度: X 、 Y Z


基准——(续) 设计基准 零件图上用以确定点、线、面位置的基准。 定位基准 零件加工、测量和装配过程中使用的基准。分为工序基准、定位基 准、度量基准和装配基准。 几点注意: 作为基准的点、线、面在工件上不一定存在,而常常由基准面来体 现; 基准可以是没有面积的点或线,但基准面一定是有面积的; 基准包含尺寸之间的联系和位置之间的关系(如平行度、垂直度 等)。
5
六点定位原理
一个自由的物体,它对三个相互垂直的坐标系来说,有六个活动可能性,其中
三种是移动,三种是转动。习惯上把这种活动的可能性称为自由度,因此空间 任一自由物体共有六个自由度。
6
六点定位原理
采用六个按一定规则布置的支承点,限制工件的六个自由度,使工件 在机床或夹具中占有正确的位置。
7
六点定位原理
X、 Y、 Z、 X、 Y
21





双顶尖定位
Y
Z
X
固定顶尖
活顶尖
图: 双顶尖定位
固定顶尖限制工件三个自由度: X 、 Y、 Z 活顶尖限制工件二个自由度: X、 Y
22
夹具设计——定位状态
完全定位 工件的6个自由度均被限制,称为“完全定位”。 不完全定位(部分定位) 工件6个自由度中有1个或几个自由度未被限制。 欠定位 工件加工时必须限制的自由度未被完全限制; 不能保证工件的正确安装,不允许。 过定位(重复定位) 工件某一个自由度(或某几个自由度)同时被两个(或两个以上)定位 支承点限制。(过定位将影响工件的加工精度,有时甚至无法对工件进 行安装定位,故应避免)
2
工件在夹具中的定位(重点和难点)
工件定位目的:使同批工件在机床或夹具上有 正确的加工位置。 用夹具定位涉及到三层关系:(1)工件在夹具 上的定位;(2)夹具相对于机床的定位;(3)工 件相对于机床的定位——间接通过夹具来保证的。 本章主要讨论工件在夹具上的定位原理。
工件定位以后必须通过一定的装置产生夹紧力, 使工件保持在准确的位置上。这种产生夹紧力的装 置就是夹紧装置。
夹具的定位元件
一块条形支承板
二块条形支承板
一块矩形支承板
平 面
支 承 板
图示
限制的 自由度
Y Z
Z
X
Y
Z X Y35典型定位元件的定位分析
定位情 况 短圆柱销 长圆柱销 两段短圆柱销
图示

圆 柱 销
限制的 自由度
定位情 况
Y Z
菱形销
Y Z Y Z
Y Z
X Y Z Y Z
37
典型定位元件的定位分析
定位情 况 V 形 块 一块短V形块 两块短V形块 一块长V形块
图示

圆 柱 面
定 位 套 限制的 自由度
X
Z
X
Z
X
Z
X
Z
X
Z
定位情 况
图示
一个短定位套
两个短定位套
一个长定位套
限制的 自由度
解:定位分析:
三爪卡盘限制工件四个自由度(三爪与工件的相对夹持长度 较长): X 、 Y、 X、 Y 左顶尖限制工件三个自由度:X 、 Y、 Z 右顶尖限制工件二个自由度:X 、 Y 分析可知,这属于过定位。 改进方案:去掉三爪定位,采用双顶尖定位。(部分定位)
X
Z
X
Z
X
Z
相关文档
最新文档