郑州市八校联考高一数学

合集下载

2023届高三第一次八省八校T8联考高考数学试卷-含答案详解

2023届高三第一次八省八校T8联考高考数学试卷-含答案详解

绝密★启用前2023届高三第一次学业质量评价(T8联考)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 复数z 满足1+zi +zi 2=|1−√3i|,则z = A. 1+iB. 12+12iC. −12−12iD. −12+12i2. 若集合M ={x|2x >4},N ={x|log 3x ≤1},则M ∪N =( ) A. {x|2<x ⩽3} B. {x|x >0} C. {x|0<x <2或x >2}D. R3. 已知S n 是数列{a n }的前n 项和,则“a n >0”是“{S n }是递增数列”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 方差是2.4,平均数是2D. 平均数是3,众数是25. 已知sin(α+π6)−cosα=12,则sin(2α+π6)=( ) A. −12B. 12C. −34D. 34……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知圆台上底面半径为1,下底面半径为3,球与圆台的两个底面和侧面均相切,则该圆台的侧面积与球的表面积之比为A. 136B. 43√3C. 1312D. 437. 已知函数f(x)及其导函数f′(x)的定义域均为R ,记g(x) = f(1+x)−x ,若f′(x)为奇函数,g(x)为偶函数,则f′(2023)=A. 2021B. 2022C. 2023D. 20248. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0),直线l 过坐标原点并交椭圆于P ,Q 两点(P 在第一象限),点A 是x 轴正半轴上一点,其横坐标是点P 横坐标的2倍,直线QA 交椭圆于点B ,若直线BP 恰好是以PQ 为直径的圆的切线,则椭圆的离心率为( )A. 12B. √22C. √33D. √63二、多选题(本大题共4小题,共20.0分。

河南省郑州市八所省示范高中2020-2021学年高一上学期期中联考数学试题含答案

河南省郑州市八所省示范高中2020-2021学年高一上学期期中联考数学试题含答案


所以
的解集为:
;.......................................4
若对任意 ,都有
成立,

在 恒成立,




时,
和 x 轴无交点,开口向上,符合题意,
时,解得: 或

只需
,解得: ,
综上: ;.......................................................8
若对任意
,任意
,使得不等式
成立,
即只需满足


,对称轴 , 在 递减,在 递增,
, ,对称轴 ,
即 时, 在 递增, ;
恒成立

时, 在 递减,在 递增,


,故:

即 时, 在 递减,
综上:


,解得:

..............................................12
10
18.解:(1)Θ P ⊆ Q ,
.........10



解得: ,
则实数 m 的取值范围是
(2)由
,得到
分两种情况考虑:

,即
;.........4 , 时, ,符合题意;

,即 时,需

解得:

综上得: ,
则实数 m 的取值范围为
..............12
19.解: 由于函数 是定义域为 R 的奇函数,则
×
-
5 2
×
2 3

2016-2017年河南省郑州市八校联考高一(下)期中数学试卷和答案

2016-2017年河南省郑州市八校联考高一(下)期中数学试卷和答案

的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早
一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,
向正方形及其内切圆随机投掷豆子,在正方形中的 80 颗豆子中,落在圆内的
有 64 颗,则估算圆周率的值为( )
A.3.1
B.3.14C.3Fra bibliotek15D.3.2
11.(5 分)函数 y=tanx+sinx+|tanx﹣sinx|在区间( , )内的图象大致是
其中,正确的命题序号是

三、解答题(共 6 小题,满分 70 分)
17.(10 分)已知
=3,
(1)求 tanx 的值; (2)若 x 是第三象限的角,化简三角式
,并求值.
18.(12 分)对某校高三年级学生参加社区服务次数进行统计,随机抽取了 M 名 学生作为样本,得到这 M 名学生参加社区服务的次数.根据此数据作出了频 数与频率的统计表和频率分布直方图如下:
件“3 件产品全不是次品”,B 表示事件“3 件产品全是次品”,C 表示事件“3 件
产品中至少有 1 件次品”,则下列结论正确的是( )
A.B 与 C 互斥
B.A 与 C 互斥
C.任意两个事件均互斥
D.任意两个事件均不互斥
第 2 页(共 20 页)
9.(5 分)有一个正方体的玩具,六个面标注了数字 1,2,3,4,5,6,甲、乙
两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为 a,再由乙
抛掷一次,朝上数字为 b,若|a﹣b|≤1 就称甲、乙两人“默契配合”,则甲、
乙两人“默契配合”的概率为( )
A.
B.
C.
D.
10.(5 分)南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率 π 的值在

八校高一数学下学期期中联考试题(扫描版)(2021年整理)

八校高一数学下学期期中联考试题(扫描版)(2021年整理)

编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省郑州市八校2016-2017学年高一数学下学期期中联考试题(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省郑州市八校2016-2017学年高一数学下学期期中联考试题(扫描版)的全部内容。

2023届高三第一次学业质量评价八校联考(T8联考)数学试题

2023届高三第一次学业质量评价八校联考(T8联考)数学试题
【20题答案】
【答案】(1)
(2) .
【21题答案】
【答案】(1)
(2)存在定点
【22题答案】
【答案】(1)①证明见解析;②证明见解析.
(2)证明见解析.
14.已知非零向量 满足 ,则 的夹角大小是_________.
15.若关于x的不等式 有且只有一个整数解,则实数a的取值范围为_______________.
16.已知双曲线 左、右焦点分别为 和 ,O为坐标原点,过 作渐近线 的垂线,垂足为P,若 ,则双曲线的离心率为__________;又过点P作双曲线的切线交另一条渐近线于点Q,且 的面积 ,则该双曲线的方程为_____________.
1.复数z满足 ,则 ()
A. B. C. D.
2.若集合 ,则 ()
A. B.
C. 或 D.
3.已知 是数列 的前n项和,则“ ”是“ 是递增数列”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.某同学掷骰子5次,分别记录每次骰子出现 点数,根据5次的统计结果,可以判断一定没有出现点数6的是()
A.
B.当 时, 取得最小值
C.当 时,n的最小值为7
D.当 时, 取得最小值
12.已知函数 及其导函数 的定义域均为 ,若 ,则下列结论正确的是()。
A
B.
C.方程 有两个解
D. 在区间 上单调递增
三、填空题:本题共4小题,每小题5分,共20分.
13.二项式 展开式中 的系数为____________.
【答案】D
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

河南省郑州市八校联考高一下期中数学试卷

河南省郑州市八校联考高一下期中数学试卷

2016-2017学年河南省郑州市八校联考高一(下)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.集合M={x|x=±45°,k∈Z},N={x|x=±90°,k∈Z},则M、N之间的关系为()A.M=N B.M⊊N C.M⊋N D.M∩N=∅2.已知α是第三象限角,则是()A.第一象限角B.第二象限角C.第一或第四象限角D.第二或第四象限角3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数4.某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),(104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.455.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.1016.某商店对每天进店人数x与某种商品成交量y(单位:件)进行了统计,得到如下对应数据:x10152025303540 y561214202325由表中数据,得线性回归方程为.如果某天进店人数是75人,预测这一天该商品销售的件数为()A.47 B.52 C.55 D.387.下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定8.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()A.B与C互斥B.A与C互斥C.任意两个事件均互斥D.任意两个事件均不互斥9.有一个正方体的玩具,六个面标注了数字1,2,3,4,5,6,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为a,再由乙抛掷一次,朝上数字为b,若|a﹣b|≤1就称甲、乙两人“默契配合”,则甲、乙两人“默契配合”的概率为()A.B.C.D.10.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率π的值在3.1415926与3.1415927之间,成为世界上第一把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子,在正方形中的80颗豆子中,落在圆内的有64颗,则估算圆周率的值为()A.3.1 B.3.14 C.3.15 D.3.211.函数y=tanx+sinx+|tanx﹣sinx|在区间(,)内的图象大致是()A.B.C.D.12.已知函数f(x)=cos(x)+(a﹣1)sin(x)+a,g(x)=2x﹣x2,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是()(参考公式:cos(2α)=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)A.(﹣∞,﹣1]B.(﹣∞,0]C.[0,﹣1] D.(﹣∞,1﹣]二、填空题(共4小题,每小题5分,满分20分)13.三进制数2022(3)化为六进制数为abc(6),则a+b+c=.14.用辗转相除法或更相减损术求459与357的最大公约数是.15.已知函数f(x)=,则f(f(﹣))=.16.关于函数f(x)=tan(2x﹣),有以下命题:①函数f(x)的定义域是{x|x≠kπ+,k∈Z};②函数f(x)是奇函数;③函数f(x)的图象关于点(,0)对称;④函数f(x)的一个单调递增区间为(﹣,).其中,正确的命题序号是.三、解答题(共6小题,满分70分)17.(10分)已知=3,(1)求tanx的值;(2)若x是第三象限的角,化简三角式,并求值.18.(12分)对某校高三年级学生参加社区服务次数进行统计,随机抽取了M 名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)24n[20,25)m p[25,30)20.05合计M1(Ⅰ)求出表中M,p及图中a的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)估计这次学生参加社区服务人数的众数、中位数以及平均数.19.(12分)已知a∈(0,6),b∈(0,6).(Ⅰ)求|a﹣b|≤1的概率;(Ⅱ)以a,b作为直角三角形两直角边的边长,则斜边长小于6的概率.20.(12分)“孝敬父母,感恩社会”是中华民族的传统美德,从出生开始,父母就对我们关心无微不至,其中对我们物质帮助是最重要的一个指标,下表是一个统计员在统计《父母为我花了多少》当中使用处理得到下列的数据:12612 16 17 参考数据公式:x i y i=1024.6,x i 2=730,=9,=线性回归方程:=x +,=,=﹣岁数x花费累积y(万元)1 2.8 9172224假设花费累积y与岁数x符合线性相关关系,求:(1)花费累积y与岁数x的线性回归直线方程(系数保留3位小数);(2)24岁大学毕业之后,我们不再花父母的钱,假设你在30岁成家立业之后,在你50岁之前偿还父母为你的花费(不计利总),那么你每月要偿还父母约多少元钱?21.(12分)已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,0≤t≤24)的函数,记作y=f(t),如表是某日各时的浪高数据:t(时)03 6 91215 182124y(米)1. 51.0.5 1.1.51.0.51.1.5(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从y=at+b,y=at 2+bt+c,y=Acos(ωx+p)中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时蔡对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.22.(12分)函数在它的某一个周期内的单调减区间是.(1)求f(x)的解析式;(2)将y=f(x)的图象先向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),所得到的图象对应的函数记为g(x),若对于任意的,不等式|g(x)﹣m|<1恒成立,求实数m的取值范围.2016-2017学年河南省郑州市八校联考高一(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.集合M={x|x=±45°,k∈Z},N={x|x=±90°,k∈Z},则M、N之间的关系为()A.M=N B.M⊊N C.M⊋N D.M∩N=∅【考点】15:集合的表示法.【分析】对集合M:x=(2k±1)•45°,k∈Z,即为45>的奇数倍.对于集合P:x=(k±2))•45°,k∈Z,即为45>的整数倍.即可判断出关系.【解答】解:对集合M:x=(2k±1)•45°,k∈Z,即为45>的奇数倍.对于集合P:x=(k±2))•45°,k∈Z,即为45>的整数倍.∴M⊊N.故选:B.【点评】本题考查了整数的性质、集合之间的关系,考查了推理能力与计算能力,属于基础题.2.已知α是第三象限角,则是()A.第一象限角B.第二象限角C.第一或第四象限角D.第二或第四象限角【考点】GW:半角的三角函数.【分析】先根据α所在的象限确定α的范围,进而确定的范围,进而看当k 为偶数和为奇数时所在的象限.【解答】解:∵解:∵α是第三象限角,即.当k为偶数时,为第二象限角;当k为奇数时,为第四象限角.故选:D.【点评】本题主要考查了半角的三角函数.解题的关键是根据角的范围确定其所在的象限.3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数【考点】BC:极差、方差与标准差.【分析】根据抽样方法可知,这种抽样方法是一种简单随机抽样.根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数;方差公式:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求解即可.【解答】解:根据抽样方法可知,这种抽样方法是一种简单随机抽样.五名男生这组数据的平均数=(86+94+88+92+90)÷5=90,方差=×[(86﹣90)2+(94﹣90)2+(88﹣90)2+(92﹣90)2+(90﹣90)2]=8.五名女生这组数据的平均数=(88+93+93+88+93)÷5=91,方差=×[(88﹣91)2+(93﹣91)2+(93﹣91)2+(88﹣91)2+(93﹣91)2]=6.故这五名男生成绩的方差大于这五名女生成绩的方差.故选:C.【点评】本题考查了抽样方法、平均数以及方差的求法,要想求方差,必须先求出这组数据的平均数,然后再根据方差公式求解.4.某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),(104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.45【考点】B8:频率分布直方图.【分析】先求出样本中产品净重小于100克的频率,由此利用样本中产品净重小于100克的个数是36,求出样本总数,由此能求出样本中净重大于或等于98克并且小于104克的产品个数.【解答】解:样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,∵样本中产品净重小于100克的个数是36,∴样本总数n==120.∴样本中净重大于或等于98克并且小于104克的产品个数为120×0.75=90.故选:A.【点评】本题考查频数的求法,考查频率分布直方图等基础知识,考查数据处理能力,考查数形结合思想,是基础题.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.101【考点】EF:程序框图.【分析】模拟程序的运行,依次写出每次循环得到的K,S的值,观察规律,可得当K=99,S=2,满足条件S≥2,退出循环,输出K的值为99,从而得解.【解答】解:模拟程序的运行,可得K=1,S=0S=lg2不满足条件S≥2,执行循环体,K=2,S=lg2+lg=lg3不满足条件S≥2,执行循环体,K=3,S=lg3+lg=lg4…观察规律,可得:不满足条件S≥2,执行循环体,K=99,S=lg99+lg=lg100=2满足条件S≥2,退出循环,输出K的值为99.故选:B.【点评】本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.6.某商店对每天进店人数x与某种商品成交量y(单位:件)进行了统计,得到如下对应数据:x10152025303540y561214202325由表中数据,得线性回归方程为.如果某天进店人数是75人,预测这一天该商品销售的件数为()A.47 B.52 C.55 D.38【考点】BK:线性回归方程.【分析】利用平均数公式求得样本的中心点的坐标,根据回归直线经过样本的中心点求得回归系数b的值,从而得回归直线方程,代入x=75求预报变量.【解答】解:=(10+15+20+25+30+35+40)=25,=(5+6+12+14+20+23+25)=15,∴样本的中心点的坐标为(25,15),∴15=25b﹣3.25,∴b=0.73.∴回归直线方程为y=0.73x﹣3.25,当x=75时,y=52.故选:B.【点评】本题考查了回归直线方程的性质及利用回归直线方程求预报变量,掌握回归直线经过样本的中心点是解题的关键.7.下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定【考点】C2:概率的意义.【分析】由概率和频率的有关概念能求出结果.【解答】解:在A中,任何事件的概率总是在[0,1]之间,故A错误;在B中,频率是客观存在的,与试验次数有关,试验次数越多,频率越稳定,故B错误;在C中,由频率的性质知:随着试验次数的增加,事件发生的频率一般会稳定于概率,故C正确;在D中,概率是客观的,在试验前能确定,故D错误.故选:C.【点评】本题考查命题真假的判断,考查频率、概率等基础知识,是基础题.8.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()A.B与C互斥B.A与C互斥C.任意两个事件均互斥D.任意两个事件均不互斥【考点】C4:互斥事件与对立事件.【分析】利用互斥事件的定义,即可得出结论.【解答】解:由题意,C表示事件“3件产品中至少有1件次品”,则可能3件产品全是次品,即B与C不互斥;A表示事件“3件产品全不是次品”,C表示事件“3件产品中至少有1件次品”,是互斥事件;故选B.【点评】本题考查互斥事件的定义,考查学生分析解决问题的能力,属于基础题.9.有一个正方体的玩具,六个面标注了数字1,2,3,4,5,6,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为a,再由乙抛掷一次,朝上数字为b,若|a﹣b|≤1就称甲、乙两人“默契配合”,则甲、乙两人“默契配合”的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】分别求出甲、乙两人抛掷玩具所有可能的事件及“甲、乙两人‘默契配合’”所包含的基本事件,代入古典概型概率计算公式,可得答案.【解答】解:甲、乙两人抛掷玩具所有可能的事件有36种,其中“甲、乙两人‘默契配合’”所包含的基本事件有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种.∴甲乙两人“默契配合”的概率为P==.故选:D.【点评】本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.10.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率π的值在3.1415926与3.1415927之间,成为世界上第一把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子,在正方形中的80颗豆子中,落在圆内的有64颗,则估算圆周率的值为()A.3.1 B.3.14 C.3.15 D.3.2【考点】CE:模拟方法估计概率.【分析】根据几何概型的概率公式,即可以进行估计,得到结论.【解答】解:设圆的半径为1.则正方形的边长为2,根据几何概型的概率公式可以得到,即π=3.2,故选:D.【点评】本题主要考查几何概型的应用,根据几何概型的概率公式,进行估计是解决本题的关键,比较基础.11.函数y=tanx+sinx+|tanx﹣sinx|在区间(,)内的图象大致是()A.B.C.D.【考点】3O:函数的图象.【分析】去掉绝对值符号,化简函数的表达式即可判断函数的图象.【解答】解:函数y=tanx+sinx+|tanx﹣sinx|,由正弦函数与正切函数的图象可知,选项A正确;故选A.【点评】本题看函数解析式的化简,基本函数的图象的应用,考查计算能力.12.已知函数f(x)=cos(x)+(a﹣1)sin(x)+a,g(x)=2x﹣x2,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是()(参考公式:cos(2α)=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)A.(﹣∞,﹣1]B.(﹣∞,0]C.[0,﹣1] D.(﹣∞,1﹣]【考点】6P:不等式恒成立的问题;GI:三角函数的化简求值.【分析】在同一坐标系内画出函数的图象,可得,换元后分离参数a,求出函数值域得答案.【解答】解:在同一坐标系内画出函数的图象如图:由图可知,在x ∈[0,1]上,恒成立,即,当且仅当x=0或x=1时等号成立.∴1≤g (x )<.设g (x )=t ,则1.f [g (x )]≤0等价于f (t )≤0, 即cos (t )+(a ﹣1)sin (t )+a ≤0, ∵1,∴∈[),再设sin=m ,则,则原不等式可化为,即1﹣2m 2+(a ﹣1)m +a ≤0, ∴a .而,∴a.故选:A .【点评】本题考查恒成立问题,考查三角函数的图象和性质,体现了数形结合的解题思想方法,属难题.二、填空题(共4小题,每小题5分,满分20分)13.三进制数2022(3)化为六进制数为abc (6),则a +b +c= 7 . 【考点】EM :进位制.【分析】先将2022(3)转化为“十进制”数,再转化为6进制数是142(6),从而可求a +b +c 的值.【解答】解:“五进制”数为2022(3)转化为“十进制”数为:2×33+0×32+2×31+2=62.将十进制数62转化为6进制数:62÷6=10…2,10÷6=1…4,1÷6=0…1,,∴将十进制62化为6进制数是142(6)则a+b+c=7,故答案为:7.【点评】本题考查进位制,本题解题的关键是理解进位制之间的转化原则,注意数字的运算不要出错,本题是一个基础题.14.用辗转相除法或更相减损术求459与357的最大公约数是51.【考点】WE:用辗转相除计算最大公约数.【分析】根据辗转相除法:用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.【解答】解:辗转相除法:∵459=357×1+102,357=102×3+51,102=51×2故459和357的最大公约数是51,故答案为:51.【点评】本题考查的知识点是辗转相除法,熟练掌握辗转相除法求最大公约数的方法和步骤是解答本题的关键.15.已知函数f(x)=,则f(f(﹣))=1.【考点】3T:函数的值.【分析】先求出f(﹣)=﹣,从而f(f(﹣))=f(1)=tan,由此能求出结果.【解答】解:∵函数f(x)=,∴f(﹣)=﹣,∴f(f(﹣))=f(1)=tan=1.故答案为:1.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.16.关于函数f(x)=tan(2x﹣),有以下命题:①函数f(x)的定义域是{x|x≠kπ+,k∈Z};②函数f(x)是奇函数;③函数f(x)的图象关于点(,0)对称;④函数f(x)的一个单调递增区间为(﹣,).其中,正确的命题序号是①③.【考点】HC:正切函数的图象.【分析】根据正切函数的图象及性质依次判断即可.【解答】解:函数f(x)=tan(2x﹣),对于①:由题意,2x﹣,可得:x≠.k∈Z.∴①对.对于②:f(﹣x)=tan(﹣2x﹣)=﹣tan(2x+),f(﹣x)≠﹣f(x).∴函数f(x)不是奇函数,②不对.对于③:令2x﹣=kπ,可得:x=,k为整数.当k=0时,可得图象关于点(,0)对称;∴③对.对于④:令kπ+kπ,可得:,∴④不对.故答案为:①③.【点评】本题考查了正切函数的定义域,奇偶性,对称性,单调性的运用.属于基础题.三、解答题(共6小题,满分70分)17.(10分)(2014•内江三模)已知=3,(1)求tanx的值;(2)若x是第三象限的角,化简三角式,并求值.【考点】GH:同角三角函数基本关系的运用.【分析】(1)把已知等式左边分子分母同时除以cosx,化为含有tanx的方程得答案;(2)由角x的范围,得到cosx<0,把要化简的式子分母化为单项式,开放后化为含有tanx的代数式得答案.【解答】解:(1)由=3,得cosx≠0,则,解得:tanx=2;(2)∵x是第三象限的角,∴cosx<0.又tanx=2.∴=====﹣2tanx=﹣4.【点评】本题考查了同角三角函数基本关系式的应用,解答的原则是化繁为简,关键是熟记同角三角函数的基本关系式,是中档题.18.(12分)(2013春•甘州区校级期末)对某校高三年级学生参加社区服务次数进行统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)24n[20,25)m p[25,30)20.05合计M1(Ⅰ)求出表中M,p及图中a的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)估计这次学生参加社区服务人数的众数、中位数以及平均数.【考点】B8:频率分布直方图;BB:众数、中位数、平均数.【分析】(I)根据已知中分组[10,15)内的频数和频率,结合样本容量=得到M值,再由所有各组累积频数为样本容量,可得m值,进而根据频率=得到np的值,最后由矩形的高=得到a值.(II)根据区间[10,15)内频率,可估计出该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)众数即频率最高组的组中,平均数是各组组中与频率积的累加积,而中位数能把频率分布直方图面积平均分配.【解答】解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,,所以M=40.因为频数之和为40,所以10+24+m+2=40,m=4,.因为a是对应分组[15,20)的频率与组距的商,所以﹣﹣﹣﹣﹣﹣(Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(III)估计这次学生参加社区服务人数的众数为=17.5∵第一组的频率为0.25,第二组的频率为0.60故估计这次学生参加社区服务人数的中位数为15+≈17.1故估计这次学生参加社区服务人数的平均数为12.5×0.25+17.5×0.6+22.5×0.1+27.5×0.05=17.25﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查的知识点是频率分布直方图,熟练掌握频率=,矩形的高=等常用公式及利用直方图计算平均数、众数、中位数的方法是解答的关键.19.(12分)(2011秋•石家庄期末)已知a∈(0,6),b∈(0,6).(Ⅰ)求|a﹣b|≤1的概率;(Ⅱ)以a,b作为直角三角形两直角边的边长,则斜边长小于6的概率.【考点】CF:几何概型.【分析】分别找出满足条件的事件对应的区域,求出面积,利用几何概型的概率求法解之.【解答】解:(Ⅰ)若点a∈(0,6),b∈(0,6),则点位于正方形OABC 内(不含边界);…(2分)若|a﹣b|≤1,点(a,b)其中a∈(0,6),b∈(0,6)于直线a﹣b=1和a+b=1之间(含边界).…(4分)所以满足|a﹣b|≤1的概率为1﹣=1﹣=…(6分)(Ⅱ)由已知得a2+b2<36,又a∈(0,6),b∈(0,6),则满足题意的点位于阴影部分(不含边界),…(9分)则,的概率为…(12分)以a,b作为直角三角形两直角边的边长,斜边长小于620.(12分)(2017春•郑州期中)“孝敬父母,感恩社会”是中华民族的传统美德,从出生开始,父母就对我们关心无微不至,其中对我们物质帮助是最重要的一个指标,下表是一个统计员在统计《父母为我花了多少》当中使用处理得到下列的数据:12612 16 17参考数据公式:x i y i=1024.6,x i 2=730,=9,=线性回归方程:=x+,=,=﹣岁数x花费累积y(万元)1 2.8 9172224假设花费累积y与岁数x符合线性相关关系,求:(1)花费累积y与岁数x的线性回归直线方程(系数保留3位小数);(2)24岁大学毕业之后,我们不再花父母的钱,假设你在30岁成家立业之后,在你50岁之前偿还父母为你的花费(不计利总),那么你每月要偿还父母约多少元钱?【考点】BK:线性回归方程.【分析】(1)利用公式计算,及系数a,b,可得回归方程;(2)把x=24代入回归方程可得y值,即为预测父母为我们总的花费,然后除以240可得答案.【解答】解:(1)由题中表格数据得:=9,≈12.633,x i y i=1024.6,x i2=730,∴=≈1.404,=﹣=12.633﹣1.404×9≈0.004,故花费累积y与岁数x的线性回归直线方程为:=1.404 x+0.004;(2)当x=24时,=1.404×24+0.004=33.7(万元)337000÷240≈1404(元)所以每月要偿还1404元.【点评】本题主要考查了线性回归分析的方法,包括散点图,用最小二乘法求参数,以及用回归方程进行预测等知识,考查了考生数据处理和运算能力.21.(12分)(2017春•郑州期中)已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,0≤t≤24)的函数,记作y=f(t),如表是某日各时的浪高数据:t(时)03 6 91215 182124y(米)1. 51.0.5 1.1.51.0.51.1.5(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从y=at+b,y=at2+bt+c,y=Acos(ωx+p)中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时蔡对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.【考点】5D:函数模型的选择与应用.【分析】(Ⅰ)直接根据表中数据描点;(Ⅱ)由图象,可知应选择的函数模型为:y=Acos(ωt+φ)+b,利用求得A,b的值,再利用周期求得ω,最后代入图象上一个最高点或一个最低点的坐标求得φ值,则函数解析式可求;(Ⅲ)由(Ⅱ),得0.5cos+1>1.25,解三角不等式得答案.【解答】解:(Ⅰ)由表中数据描点如图:;(Ⅱ)由图可知,应选择的函数模型为:y=Acos(ωt+φ)+b.不妨设A>0,ω>0,则A=,b=,,ω=.∴y=0.5cos(φ)+1,又当x=0时,y=1.5,∴0.5cosφ+1=1.5,得cosφ=1,则φ=2kπ,k∈Z.∴y=0.5cos(2kπ)+1=0.5cos+1,(0≤t≤24);(Ⅲ)由0.5cos+1>1.25,得cos,∴,即12k﹣2<t<12k+2,k∈Z.又8≤t≤20,∴10<t<14.故一天内的8:00到20:00之间有4个小时可供冲浪爱好者进行活动.【点评】本题考查函数模型的选择及应用,考查简单的数学建模思想方法,考查读取图表的能力,训练了三角不等式的解法,是中档题.22.(12分)(2015秋•赤峰校级期末)函数在它的某一个周期内的单调减区间是.(1)求f(x)的解析式;(2)将y=f(x)的图象先向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),所得到的图象对应的函数记为g(x),若对于任意的,不等式|g(x)﹣m|<1恒成立,求实数m的取值范围.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H2:正弦函数的图象.【分析】(1)由题意可求最小正周期,利用周期公式可求ω,又,解得,从而可求f(x)的解析式.(2)由函数y=Asin(ωx+φ)的图象变换规律可求,由可求函数g(x)在上的最大值为1,最小值为,由题意解得不等式组即可解得m的取值范围.【解答】解:(1)由条件,,∴,∴ω=2,又,∴,∴f(x)的解析式为.(2)将y=f(x)的图象先向右平移个单位,得,∴再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到,而∵,∴,∴函数g(x)在上的最大值为1,此时,∴;最小值为,此时,∴.∴时,不等式|g(x)﹣m|<1恒成立,即m﹣1<g(x)<m+1恒成立,即,∴,∴.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的应用,考查了正弦函数的图象和性质,周期公式,不等式的解法,考查了数形结合思想和转化思想的应用,属于中档题.。

八省八校T8联考2024届高三第二次学业质量评价数学试卷及答案

八省八校T8联考2024届高三第二次学业质量评价数学试卷及答案

2024届高三第二次学业质量评价(T8联考)数学试题(答案在最后)命题学校:命题人:考试时间:2024年3月20日下午15:00—17:00试卷满分:150分考试用时:120分钟注意事项:1.答卷前,考生务必将自已的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题3分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}20,243x x A x B x x +⎧⎫=≤=<⎨⎬-⎩⎭,则A B = ()A .()2,2-B .[)2,2-C .(]2,2-D .[]2,2-2.复数()i 0,,R z a b a a b =+≠∈满足()1i z -为纯虚数,则()A .0a b +=B .0a b -=C .20a b +=D .20a b -=3.样本数据5,7,4,6,12,10,11,9的第70百分位数次为()A .7B .9C .9.5D .104.若()1ln ,ln ,2ln 12x a b y a b z a b b =+=+=+≠成等比数列,则公比为()A .2-B .3-C .1115D .25.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .896.在ABC △中,()2221sin ,224B A a c b -=+=,则sinC =()A .23B .2C .12D .17.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A .29,24⎤⎥⎣⎦B .214⎣C .111⎣D .74⎣8.已知抛物线C 的方程为21,4y x F =为其焦点,点N 坐标为()0,4-,过点F 作直线交抛物线C 于,A B 两点,D 是x 轴上一点,且满足DA DB DN ==,则直线AB 的斜率为()A .152±B .112±C .D .二、多选题:本题共3小题,每小题6分,共18分,在毎小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

八校数学联考试题及答案

八校数学联考试题及答案

八校数学联考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 3x + 1,则f(0)的值为:A. 1B. -1C. 3D. 2答案:A2. 计算以下极限:lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. πD. 2答案:B3. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B4. 若复数z满足|z|=1,则z在复平面上对应的点位于:A. 原点B. 虚轴C. 单位圆上D. 实轴答案:C5. 等差数列{an}的前n项和Sn,若a1=1,d=2,则S5的值为:A. 15B. 10C. 7D. 5答案:A6. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-3xC. 3x^2-6x+2D. x^3-3x^2+2答案:A7. 计算定积分∫(0到1) x^2 dx的值:A. 1/3B. 1/2C. 1D. 2答案:B8. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,若a=2,b=1,则其渐近线方程为:A. y=±x/2B. y=±xC. y=±2xD. y=±1/2x答案:A9. 计算概率P(A∪B),若P(A)=0.6,P(B)=0.7,P(A∩B)=0.3,则:A. 0.9B. 0.6C. 0.5D. 0.3答案:A10. 计算二项式系数C(6,3)的值:A. 20B. 15C. 10D. 5答案:A二、填空题(每题4分,共20分)11. 函数f(x)=x^2-4x+3的最小值为________。

答案:012. 已知向量a=(1,2),b=(3,-1),则a·b的值为________。

答案:113. 计算tan(45°)的值为________。

答案:114. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档