稀土玻璃陶瓷材料共33页

合集下载

稀土荧光玻璃和玻璃陶瓷

稀土荧光玻璃和玻璃陶瓷

稀土荧光玻璃和玻璃陶瓷材化082:莫绿斌指导教师:贺海燕(陕西科技大学材料科学与工程学院陕西西安710021)摘要:稀土荧光玻璃是由稀土元素掺杂在玻璃中,并利用稀土离子的光谱性质使基础玻璃产生可见荧光而形成的。

通过对稀土元素电子构型、光谱特征的分析研究,阐述了稀土元素在玻璃陶瓷中的应用。

稀土元素自由原子的基态电子组态有两种类型:[Xe]4f n6s2和[Xe]4f n-15d16s2。

其中[Xe]=1s12s22p63s23p63d104s24p64d105s25p6。

它们未饱和的4f电子,在紫外、可见等高能射线的激发下,从基态跃迁到激发态,然后再从激发态返回到能量较低的能态时,放出辐射能而发出荧光。

关键词:稀土;荧光玻璃;光谱性质ABSTRACT:Fluorescent rare earth glass is a rare earth doped glassby rare earth ions doped glass, and using the spectral properties of rare earth ions to produce visible fluorescence-based glass formed. Through the electronic structure of rare earth elements, spectral analysis,this paper it describes the rare earth elements in the glass-ceramic applications. Free rare earth ground state electronic configuration of rare earth atoms, there are two types of:[Xe]4f n6s2和[Xe]4f n-15d16s2 .of them,[Xe]=1s12s22p63s23p63d104s24p64d105s25p6 . They are not un saturated 4f electrons excited from the ground state transition to the excited state in the ultraviolet, visible and other high-energy rays of excitation from the ground state transition to the excited state, then the energy from the excited state returns to a lower energy state and emit radiation and fluoresce.KEYWORDS:Rare earths;Fluorescent glass; Spectral properties前言稀土元素是指化学元素周期表中第三族的一个分组元素,它们包括由原子序数57 到71 的15 个镧系元素。

无机化学材料

无机化学材料

无机化学材料无机化学材料是指由无机元素构成的化学物质,其在实际应用中具有广泛的用途。

无机化学材料可以分为无机非金属材料和无机金属材料两大类。

无机非金属材料包括陶瓷、玻璃、胶体等,而无机金属材料则包括金属合金、硅材料、稀土材料等。

本文将主要介绍无机化学材料的种类与应用。

一、无机非金属材料1. 陶瓷材料陶瓷材料是一种由金属氧化物和非金属氧化物混合烧制而成的材料。

陶瓷材料具有高硬度、高耐热、耐腐蚀等特点,被广泛应用于制陶、建筑材料、电子器件等领域。

2. 玻璃材料玻璃材料是由高纯度的硅酸盐等物质通过高温熔融而成的无机非金属材料。

玻璃具有透明、均匀、硬度高等特点,广泛应用于建筑、家居、光电子等领域。

3. 胶体材料胶体材料是指由胶体溶液构成的材料,其介于溶液和固体之间。

胶体材料具有稳定性好、表面活性高等特点,被广泛应用于医药、化妆品、涂料等领域。

二、无机金属材料1. 金属合金金属合金是由两种或多种金属元素以及非金属元素按一定比例混合而成的材料。

金属合金具有高强度、硬度、导电性等特点,被广泛应用于航空航天、汽车制造、电子设备等领域。

2. 硅材料硅材料是指由纯度高的硅元素制成的材料,其中最常见的是多晶硅和单晶硅。

硅材料具有优异的热电性能和半导体特性,被广泛应用于电子器件、太阳能电池等领域。

3. 稀土材料稀土材料是一种由稀土元素制成的材料,稀土元素包括镧系和釹系元素等。

稀土材料具有磁性、光学性能好等特点,被广泛应用于磁性材料、催化剂、荧光材料等领域。

总结无机化学材料种类繁多,具有不同的物理、化学性质和应用特点。

无机非金属材料主要包括陶瓷、玻璃和胶体等,而无机金属材料则包括金属合金、硅材料和稀土材料等。

这些材料在各个领域具有广泛的应用,为人们的生产生活提供了不可或缺的重要物质基础。

在未来,随着科技的进步和工艺的创新,无机化学材料的应用将进一步拓展。

同时,对于无机化学材料的研究与开发也将持续进行,以满足人们对于新材料性能和功能的需求,促进社会的发展和进步。

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?

稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?稀土及稀土氧化物在陶瓷材料中的应用,主要是作为添加物来改进陶瓷材料的烧结性、致密性、显微结构和晶相组成等,从而在极大程度上改善了它们的力学、电学、光学或热学性能,以满足不同场合下使用的陶瓷材料的性能要求。

本文简要综述了稀土氧化物在结构陶瓷材料和功能陶瓷中的应用。

1 稀土氧化物在陶瓷材料中的作用机理2 稀土氧化物在结构陶瓷材料中的应用结构陶瓷是指晶粒间主要是离子键和共价键的一类陶瓷材料,具有良好的力学性、高温性和生物相容性等。

结构陶瓷在日常生活中应用很普遍,目前已向航空航天、能源环保和大中型集成电路等高技术领域拓展。

2.1 氧化物陶瓷氧化物陶瓷是指陶瓷中含有氧原子的陶瓷,或高于二氧化硅(SiO2:熔点1730℃)晶体熔点的各种简单氧化物形成的陶瓷。

氧化物陶瓷具有良好的物理化学性质,电导率大小与温度成反比。

氧化物陶瓷常作为耐热、耐磨损和耐腐蚀陶瓷,应用在化工、电子和航天等领域。

2.1.1 氧化铝陶瓷氧化铝陶瓷被广泛用于制造电路板、真空器件和半导体集成电路陶瓷封装管壳等。

为了获得性能良好的陶瓷,需要细化晶粒并使其以等轴晶分布,降低陶瓷的气孔率,提高致密度,最好能达到或接近理论密度。

氧化铝陶瓷的烧结温度高,烧制原料高纯氧化铝价格也高,限制了其在部分领域的推广及应用。

研究表明,稀土氧化物的加入可与基体氧化物形成液相或固溶体,降低烧结温度,改善其力学性能。

常用的稀土氧化物添加剂有Dy2O3、Y2O3、La2O3、CeO3、Sm2O3、Nd2O3、Tb4O7和Eu2O3等。

2.1.2 氧化锆陶瓷氧化锆(ZrO2)有单斜相、四方相和立方相三种晶型。

在一定温度下,氧化锆发生晶型转化时伴随体积膨胀和切应变,体积膨胀可能导致制品开裂。

氧化锆的熔点高,耐酸碱侵蚀能力强,化学稳定好,抗弯强度和断裂韧性很高。

三种晶型相互转化会伴随着体积的膨胀或收缩,导致性能不稳定,须采取稳定化措施。

稀土光学玻璃

稀土光学玻璃

图4是掺铒、掺镱浓度相 同,为0.1 at.%和0.5 at.%, 掺钕浓度分别为0.1 at.%、 0.3 at.%和0.5 at.%的3种 铒镱钕共掺硅酸盐玻璃折 射率随波长变化的曲线. 可以看出,掺钕浓度为 0.1at.% 0.3 at.% 0.1at.%和0.3 at.%的样品 在496 nm同样出现折射率 的极小值;当掺钕浓度增加 到0.5 at.%时,此现象消失, 但极大值出现在514 nm附 近,同样表明该样品吸收带 向长波方向移动.

光学纤维
三、磁光玻璃
磁光玻璃是具有磁光效应的一类玻璃.即它在磁场 作用下通过光时能产生偏转面旋转的现象. 磁光玻璃要求有高的费尔德常数。 磁光玻璃分为正旋(逆磁性)玻璃和反旋(顺磁性)玻 璃两类.前者含大量Pb2+、Te2+、Sb2+、Sn2+等抗 磁性离子,用重火石玻璃和硫化砷玻璃作基础系 统。反旋玻璃含顺磁离子Ce3+、Pr3+、Dy3+、 Tb3+、Eu3+等.色散大的Ce3+、Pr3+、Eu3+或P值大 的Dy3+、Tb3+的玻璃,其费尔德常数都大,而且 玻璃中稀土离子含量较大。
发光玻璃
稀土光学玻璃的发展与现状
20世纪20年代稀土光学玻璃就问世了, 距今已经快有近百 年的历史了,1925年美国开始研究硼酸盐的稀土光学玻璃, 1938年又创造了高折射、低色散特性的含镧光学玻璃,从 而扩大了光学玻璃的光学常数范围。二次世界大战后,稀土 在光学玻璃中的应用日益广泛。随后,世界各国都纷纷进行 镧硼酸盐 系光学玻璃的研究,生产和应用。至今,这种玻 璃材料向着更高级的系列化趋势迅速发展。 我国对稀土玻璃的研究起步较晚,技术上与其他国家的差别 还比较大,我国是最大的光玻冷加工国,稀土光玻精密型料 产品需求巨大。但是由于稀土光学玻璃精密型料技术难度高, 此前国内生产企业与科研机构一直未能掌握,致使稀土光学 玻璃精密型料全部依赖进口。日本等少数发达国家应用技术 几乎垄断了稀土光学玻璃精密型料的市场。

稀土应用领域研究之—玻璃、陶瓷、助剂、颜料

稀土应用领域研究之—玻璃、陶瓷、助剂、颜料

稀土玻璃的发展
单反相机与智能手机的高速发展对光学玻璃行业发展的促进 镧系光学玻璃具有高折射的特质,主要用于高性能的手机显示屏,以及具有照相功 能的手机的光学镜头及玻璃零件。有助于照相机、手机的轻型化、便携化,适应现在市 场的需求。在市场扩大、稀土原材料价格下降的大环境下,镧系光学玻璃的发展将处于 一个比较好的宏观经济环境。2014年手机制造行业对光学玻璃的需求为60.11亿元,到 2020年需求为165.59亿元。 今后玻璃产业的技术课题整理归纳后大致划分为以下3个领域: 1)使玻璃产业持续发展的下一代工艺、生产性能提高技术; 2)将玻璃特性提高到极限的高功能、新材料技术; 3)面向构筑循环型社会的环境相关技术。 其中,特别值得重视的是玻璃熔炼的能耗性和废玻璃的回收性。在能耗性方面,玻 璃需要生产无细小气泡的高品质玻璃,且由于组分难于熔融,需要消耗大量的能源,因 此要求采取节能措施期待,采用氧气燃烧技术;为了进一步实现节能、低排放,希望能 开发减压除泡技术﹑低温熔炼技术﹑电脑模拟技术。
稀土玻璃应用领域
表1:新型稀土功能玻璃及应用领域
领域 新型玻璃 应用预测 领域 新型玻璃
新型激光玻璃 能源
应用预测
激光加工机、医疗激光机、 激光核聚变、光 CVD 紫外 线光源X射线光源 固体电池 CO2和CO激光器用波导 人工骨、人工齿根、人工 齿、齿冠 生物技术领域的分离精制 膜、精制血浆、酵母菌载 体、吸附体 轻质高强度结构材料 耐热高性能结构材料 可机械加工 高强度增强材料 耐热 光掩板基板 封装、焊接 混凝土增强
光功能
光由 纤高 ︐纯 可度 获光 得学 精玻 确璃 照制 明成 ︒的 柔 性
特种玻璃在生物技术和生命科学的应用中表现出 多功能的特性:玻璃晶圆厚度可以达到30微米

稀土玻璃用途

稀土玻璃用途

稀土玻璃用途
稀土玻璃是添加了稀土元素的玻璃,主要由硼酸、硅酸和稀土元素酸化物混合而成。

由于稀土元素具有特殊的化学物理性质,稀土玻璃具有一些独特的性质和应用。

首先,稀土玻璃具有色彩鲜艳、透明度高的特点。

由于稀土元素的固溶作用,玻璃中出现颜色的方式与普通的着色玻璃有所不同。

通常,着色元素通过分离在晶界处形成的晶粒来实现着色,这种着色方式会引起光的散射,因此其透明度就会降低。

而稀土玻璃中的稀土元素粒子分布均匀,并且是在玻璃熔体中稳定存在的,因此它可以保持高透明度。

稀土玻璃的第二个独特性质是其荧光效应。

不同的稀土元素可以发生不同颜色的荧光,其发射光谱在紫外线激发下呈现出强烈的荧光,这种特性被应用于荧光灯和其他照明设备的制造。

稀土玻璃的荧光性能取决于其稀土元素的类型和浓度,因此可以通过调整化学成分来实现不同的荧光色谱。

除了良好的透明性和荧光效应,稀土玻璃还具有极高的抗辐射性。

在核工业和航空航天等领域需要使用的玻璃一般都需要具有良好的抗辐射能力,而稀土玻璃中的稀土元素可以吸收辐射能量,从而减缓由于辐射引起的玻璃破坏速度,因此广泛用于核辐射测量仪器或者核燃料盒。

此外,稀土玻璃还可以制成红外玻璃,因为很多稀土元素具有特殊的光学吸收带,
用于制备红外玻璃。

另外,稀土玻璃还可以用于制造光纤放大器和光纤通信器件,因为其稀土元素具有很强的光学放大效应。

总的来说,稀土玻璃具有一系列独特的性质,其透明性、荧光效应、辐射性和光学放大效应等性能,使其广泛应用于荧光灯、核燃料测量、核燃料储存、航天航空、红外光学等领域。

稀土功能陶瓷材料-课件

稀土功能陶瓷材料-课件

气敏传感器
稀土功能陶瓷材料的表面活性和 气敏性能使其在气体传感器中具 有广泛应用。
储氢材料
稀土功能陶瓷材料的孔结构和特 殊吸附性能使其成为理想的储氢 材料。
生物医学材料
稀土功能陶瓷材料的生物相容性 和药物传输性能使其在生物医学 领域具有潜在应用。
市场前景
1 全球市场概览
稀土功能陶瓷材料市场正在迅速增长,预计 未来几年将保持良好发展态势。
2 发展趋势与前景
随着新技术的不断涌现和应用领域的扩大, 稀土功能陶瓷材料有望在未来发展中发挥更 大的作用。
总结
稀土功能陶瓷材料具有独特的特点和广泛的应用领域,但也存在一些挑战。 未来发展的重点将是提高材料性能和拓宽应用领域。
制备方法
1 热处理制备法
通过高温烧结和热处理将稀土氧化物与其他 化合物反应得到陶瓷材料。
2 溶胶-凝胶法
通过溶胶和凝胶的形成过程控制陶瓷材料的 结构和性能。
3 液相制备法
通过液相反应得到稀土功能陶瓷材料。
4 物理-化学合成法
结合物理和化学方法制备稀土功能陶瓷材料。
性能表征
1
结构表征
使用X射线衍射和扫描电子显微镜等技术分析稀土功能陶瓷材料的结构。
稀土功能陶瓷材料-课件
欢迎来到稀土功能陶瓷材料的课件!在本课件中,我们将了解稀土功能陶瓷 材料的特点、制备方法、性能表征、应用领域和市场前景。
概述
稀土功能陶瓷材料是一类具有特殊功能和优异性能的材料。它们具有高温稳 定性、电学性能、机械性能等特点,广泛应用于储能器件、光伏电池、气敏 传感器、储氢材料和生物医学材料等领域。
2
物理性质表征
通过测量热膨胀系数、热导率和电阻率等参数来评估稀土功能陶瓷材料的物理性 能。

稀土元素对玻璃的着色

稀土元素对玻璃的着色

稀土元素对玻璃的着色在用于玻璃着色的14种稀土元素中。

人们仅使用了三种,即铈、镨和钕。

限制使用的有铒、钬和钐。

在可见与非可见区具有窄带吸收的光镨,是含钕和镨玻璃的典型特性,这是任何其它着色离子都能做到的。

正如巳指出的那样,?窄带吸收是由于电子在离子内层轨道上跃迁所引起的,这些电子因为相邻离子和原子的作用而受到外层轨道的保护。

因此在该情况中基质玻璃成分对色度的影响很小。

虽然由于成分(主要是碱)的变化,而使吸收带的极大真出现较少的变化(加强或减弱),但实际上这并不影响着色过程。

上述情况的原因在于稳定的三价离子,因此,用稀土氧化物对玻璃着色的特点是具有良好的再现性,而且熔炼条件对着色没什么影响。

钕在可见光镨区对黄光具有特征吸收,即在光波长为590nm的区域出现了一条暗带(图2-3)。

在可见光镨的其它部分也有一系列的吸收带。

总的着色与照明情况有关,其色调为紫蓝色或红紫色。

钕的着色效能极低,因此为了得到弱粉色的色调,钕的用量不能低于3—4%。

图2—3组成为6Si02·CaO·NaaO(重量)SiO。

CaO,1396Na20)加入10氢氧化钕所熔炼玻璃的光谱透过串。

试样厚度为2mm。

谱可把玻璃着成浅绿色(图2-4)。

它在可见光谱区波长为430—490nm的区域内具有特征吸收带。

谱的化合物也具有较小的着色效能,因此,错的使用量要达到10%左右,而且,在该情况下所使用的着色剂原料中杂质(特别是钕)的影响是很明显的.由于成本高,着色效能低和颜色没什么独特之处,因而只是在特殊场合下才使用这些化学元素。

铬对玻璃的着色在普通成分的玻璃中,铬总是以两种氧化价态存在,即Cra+和Cro+,其中三事,价离子通常占优势。

在还原的熔炼条件下,当有能把六价铬还原成三价铬的As。

或bb:O。

存在时,尤其是在碱含量低的玻璃中,Cro+的含量能降到最小值;这些玻璃可以认为是只被Crs+离子着色的玻璃。

它们的颜色为浅蓝绿色,透过极大值在550—560nm处,在可见区具有特征的吸收带,其位置在光谱紫色区的450nm处和波长为650nm的红色区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档