限制条件力的分解的情况
力的分解

力的分解一、力的分解1、定义:求一个已知力的分力的过程叫做力的分解,力在分解时,一个力只能分解成几个性质相同的力,即力的分解不改变力的性质。
2、力的分解依据:遵循平行四边形定则。
二、力的分解原则1、力的分解如果没有什么限制条件,那么一个力可以有无数组分力代替。
2、将力分解时,需要遵循以下原则:①按实际效果分解②按实际需要进行分解③方便原则:正交分解3、正交分解:将力沿着两个相互垂直的方向分解,叫做力的正交分解。
①坐标系的建立原则:在静力学中,以少分解力和容易分解力为原则。
在动力学中,以加速度方向和垂直于加速度方向为坐标轴建系。
4、求解分力的其他方法:①直角三角形法②相似三角形法的方向③动态矢量三角形法:已知合力F的大小和方向及一个分力F1已知合力F的方向及一个分力F的大小和方向1的大小已知合力F的大小及一个分力F1三、典型例题1、将一个力F分解为两个力F1和F2,那么下列说法中错误的是( )A.F是物体实际受到的力 B.F1和F2不是物体实际受到的力C.物体同时受到F1、F2和F三个力的作用 D.F1和F2共同作用的效果与F相同2、重力为G的物体静止在倾角为θ的斜面上,将重力G分解为垂直斜面向下的力F2和平行斜面向下的力F1,那么( )A.F2就是物体对斜面的压力 B.物体对斜面的正压力方向与F2方向相同C.F1就是物体受到的静摩擦力 D.物体受到重力、斜面对物体的支持力、静摩擦力、F1和F2共五个力的作用3、如下图所示,一名骑独轮车的杂技演员在空中钢索上表演,如果演员和独轮车的总质量为80kg,两侧的钢索互成120°夹角,则每根钢索所受拉力大小为( )A.400N B.600N C.800N D.1 600N4、如下图所示,已知力F和一个分力F1的方向的夹角为θ,则另一个分力F2的最小值为____________.5、下列说法中正确的是()A.一个2 N的力可分解为7 N和4 N的两个分力B.一个2 N的力可分解为9 N和9 N的两个分力C.一个6 N的力可分解为4 N和3 N的两个分力D.一个8 N的力可分解为4 N和3 N的两个分力6、将一个大小为10 N的力分解为两个分力,如果已知其中的一个分力的大小为15 N,则另一个分力的大小可能是()A. 5 NB. 10 NC. 15 ND. 20 N7、物体静止于光滑水平面上,力F作用于物体上的O点,现要使合力沿着OO′方向,如图所示,则必须同时再加一个力F′,如F和F′均在同一水平面上,则这个力的最小值为( )A.F cosθB.F sinθC.FtanθD.Fcotθ4.如图所示,质量为10 kg的物体在水平面上向右运动,此时物体还受到一个向左、大小为20 N的水平推力,物体与水平面之间的动摩擦因数为0.2,则物体水平方向受的合力是()A.20 N,水平向左B.20 N,水平向左C.40 N,水平向左D.0.4 N,水平向左5. 一个重为20N的物体置于光滑的水平面上,当用一个F=5N的力竖直向上拉该物体时,如图所示,物体受到的合力为()A. 15NB. 25NC. 20ND. 0N6、如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M 受到的摩擦力的合力方向是()A. 竖直向下B. 竖直向上C. 斜向下偏左D. 斜向下偏右7、如图所示,一物块置于水平地面上。
力的分解 课件

力的分解及分解法则 1.一个力在不受条件限制下可分解为无数组分力 将某个力进行分解,如果没有条件约束,从理论上讲有无数组 解,因为同一条对角线可以构成的平行四边形有无穷多个(如图所 示),这样分解是没有实际意义的.实际分解时,一个力按力的作用 效果可分解为一组确定的分力.
2.一个合力分解为一组分力的情况分析 (1)已知合力和两个分力的方向时,有唯一解.
4.正交分解法求合力的步骤 (1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴 上,并求出各分力的大小,如图所示.
(3)分别求出x轴、y轴上各分力的矢量和,即: Fx=F1x+F2x+… Fy=F1y+F2y+… (4)求共点力的合力:合力大小F= F2x+F2y ,合力的方向与x轴 的夹角为α,则tan α=FFxy.
小球对墙面的压力F1=F1′=mgtan 60°=100 3 N,方向垂直 墙壁向右;
小球对A点的Βιβλιοθήκη 力F2=F2′=mg cos 60°
=200
N,方向沿OA方
向.
[答案] 见解析
上例中,若将竖直墙壁改为与左端相同的墙角B撑住小球且B端 与A端等高,则小球对墙角的压力分别为多大?方向如何?
[提示] 由几何关系知:FA=FB=mg=100 N,故小球对A、B 点的压力大小都为100 N,方向分别沿OA、OB方向.
【例3】 在同一平面内共点的四个力F1,F2,F3,F4的大小依 次为19 N,40 N,30 N和15 N,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)
思路点拨:①由F1与F2,F2与F3间夹角的大小确定x轴和y轴方 向,便于几个力在坐标轴上的分力计算.
力的分解

F
掰
F1
F2
导入新课
3.演示: 用一根细线穿过重锤的钩子,先将细线的 两端点合拢,然后慢慢将两细线分开,直到线断。
为什么细线的夹 角增大到某个值 时会断裂?
一、力的分解
分力 F1、F2
力的合成 力的分解
合力F
1.力的分解是力的合成的逆运算 F
F1
F2
注意:几个分力与原来那个力是等效的,它们可以互相 代替,并非同时并存! 2.力的分解同样遵守平行四边行定则 把一个已知力F作为平行四边形的对角线,那么与力F共 点的平行四边形的两个邻边,就表示力F的两个分力.
2、已知合力和一个分力 F 1 的大小和方向,求另一个 分力的大小和方向。
O
F
F2
例1、一个物体静止在斜面上,若斜面倾角增大,而物体仍 保持静止,则它所受斜面的支持力和摩擦力的变化情况是( C ) A.支持力变大,摩擦力变大; B.支持力变大,摩擦力变小; C.支持力减小,摩擦力变大; D.支持力减小,摩擦力减小.
F 2 sin
F1
F2 F
F1 F2
2
F一定时:夹角越小,F1、F2越大
(3)放在斜面上的物体,受到竖直向下的重力作用。
橡 皮
筋
G1 G 2
把重力G分解为使物体平行与斜面下滑的力G1,和 使物体垂直于斜面压紧斜面的力G2。 G1=Gsin G2=Gcos 分析:斜面倾角越大,G1增大,G2减小. 联系实际:高大的桥为什么要造很长的引桥?
O
M N
F
F F1 sin F F2 tg
F1
确定分力原则:按力所产生的实际作用效果进行分解.
b F
aGF源自GGF二、如果没有其它限制,对于同一条对角线,可 以作出无数个不同的平行四边形.
人教版必修1第三章第五节《力的分解》

专家点评(西安市铁一中贝鸿)
“力的分解”是“力的合成”的逆运算。
力的分解和力的合成均是矢量运算的工具,是高中物理的基石,它为位移、速度、加速度等矢量的分解及牛顿第二定律的应用奠定了基础,它对矢量运算普遍遵从的规律“平行四边形定则”作了更加深入的应用。
《力的分解》教学设计围绕自制教具引导学生进一步加深对平行四边形定则的理解,讲授知识的过程中注重探究,教学方法多样。
让学生始终处于积极的思考和探究活动中。
如:有层次的提出一些问题,让学生通过亲自动手研究,或同学之间的讨论,或利用多媒体进行演示分析等等。
教会了学生知识的同时,也教会了学生科学探究的方法,这是这堂课学生最大的收获,真正培养了学生的探究精神和创新意识。
力的合成分解学生的主要困难之一是无法作出物体受力的图示以及各个力之间的关系,建议加强画图训练,指导学生寻找和表示几何关系。
高中物理 3.5 力的分解 教案

3.5 力的分解教案一桶水可由一个人提起,也可由两个人抬起;拉纤,同样的船,同样的水流,可由一个大力士拉,也可由两个或更多的人拉……这就是生活中我们常见的一个力的作用效果与两个或者更多个力的作用效果相同的事例.那么这一个力的大小与那两个或者更多个具有相同作用效果的力的大小之间有何关系呢?已知一个合力求分力的过程叫做力的分解,力的分解方法正是是本节我们所要探索研究的.一、力的分解1。
分力如果几个力共同作用在物体上产生的效果跟原来一个力作用在物体上相同,那么这几个力就是原来那个力的分力.2.力的分解求一个已知力的分力叫做力的分解。
力的分解是力的合成的逆运算,同样遵循平行四边形定则,即把已知力作为平行四边形的对角线,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力。
注意:如果没有其它限制,对于同一条对角线,可以作出无数个不同的平行四边形(如图所示).这就是说一个已知的力可以分解成无数对不同的共点力,而不像力的合成那样,一对已知力的合成只有一个确定的结果。
例(2012·甘肃省天水市一中高三期末考试)F1、F2是力F的两个分力,若F=10N,则下列哪组力不可能是F的两个分力()A .F 1=10N ,F 2=10NB .F 1=20N,F 2=20NC .F 1=2N ,F 2=6N D .F 1=20N ,F 2=30N解析:本题考查合力和分力之间的关系。
合力F 和两分力F 1、F 2之间的大小关系为|F 1-F 2|≤F ≤|F 1+F 2|,经检验,只有选项C 不可能。
本题答案为C.针对练习 下列说法中正确的是( )A .一个2 N 的力可分解为7 N 和4 N 的两个分力B .一个2 N 的力可分解为9 N 和9 N 的两个分力C .一个6 N 的力可分解为4 N 和3 N 的两个分力D .一个8 N 的力可分解为4 N 和3 N 的两个分力【参考答案:BC 解析:力的分解是力的合成的逆运算,若分力为F 1、F 2,则合力的范围为|F 1-F 2|≤F ≤F 1+F 2,按此原则A 、D 错误,B 、C 正确。
三角形定则和限制性条件分解力

新人教版高中物理必修一 3.5力的分解 课件 (共16张PPT)

x
3)分别求x轴,y轴上的合力Fx和Fy;
FxF1xF2xF1co sF2cos FyF1yF2yF1sinF2si n
4)最后求Fx和Fy的合力F。 F Fx2 Fy2
例题:在同一平面内共点的四个力F1、F2、F3、F4 的大小依次为19N、40N、30N和15N,方向如右图 所示,求它们的合力。
If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
。2021年3月6日星期六2021/3/62021/3/62021/3/6
• 15、会当凌绝顶,一览众山小。2021年3月2021/3/62021/3/62021/3/63/6/2021
The end.
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/3/62021/3/6Saturday, March 06, 2021
• 10、人的志向通常和他们的能力成正比例。2021/3/62021/3/62021/3/63/6/2021 5:24:34 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/3/62021/3/62021/3/6Mar-216-Mar-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/3/62021/3/62021/3/6Saturday, March 06, 2021 • 13、志不立,天下无可成之事。2021/3/62021/3/62021/3/62021/3/63/6/2021
o
力的分解 课件

37°=0.6,cos 37°=0.8)。
解析 如图甲建立直角坐标系,把各个力分解到两个坐标轴上,并
求出x轴和y轴上的合力Fx和Fy,有
Fx=F1+F2cos 37°-F3cos 37°=27 N
Fy=F2sin 37°+F3sin 37°-F4=27 N
因此,如图乙所示,合力
F= 2 + 2 ≈38.2 N,tan φ= =1
即合力的大小约为38.2 N,方向与F1方向成45°斜向上。
答案 合力的大小约为38.2 N,方向与F1方向成45°斜向上
坐标轴的选取技巧
1.原则:尽量少分解力或将容易分解的力分解,并且尽量不要分解
未知力。
2.应用正交分解法时,常按以下方法建立坐标轴。
(1)研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标
轴。
(2)研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐
标轴。
(3)研究物体在杆(或绳)的作用下转动时,通常沿杆(或绳)方向和
垂直杆(或绳)的方向建立坐标轴。
mg
α,F2= α
(2)按研究问题的需要分解
实
例
产生效果分析
质量为 m 的光滑小球被悬线挂靠在竖直墙壁上,当研
究球对墙壁和绳的作用时,可如图分解重力,F1=mgtan
mg
α,F2=
α
A、B 两点位于同一平面上,质量为 m 的物体被长度相
等的 AO、BO 两线拉住,当研究物体对绳的作用时,可
方向向左压紧铅笔。
知识归纳
1.力分解的思路流程
确定分解的力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列说法中错误的是
A
A.一个力只能分解成惟一确定的一对分力
B.同一个力可以分解为无数对分力 C.已知一个力和它的一个分力,则另一个分力有确定值 D.已知一个力和它的两个分力方向,则两分力有确定值
2.物体静止于光滑水平面上,力F作用于物体上的O点,现要 使合力沿着OO′方向,如图1—16所示,则必须同时再加一个 力F′,如F和F′均在同一水平面上,则这个力的最小值为 B
限制条件力的分解的情况
将一个力分解为不共线两分力有唯一解的情况
①已知两分力的方向.
F2 F F
③已知两个分力的大小
F1 F2 F2
情况一:F1+F2>F F F1
F1
唯一
F1
F
两解 唯一
F2
②已知一个分力的大小和方向. F2 F
情况二 :F1+F2=F
唯一
F1
情况三 :F1+F2<F
无解
④已知一分力F1大小和另一分力F2方向
F F1
Fsinθ< F1 < F
F
两解
θ
唯一 F1 = Fsinθ F1 < Fsinθ
F2
θ
F2
无解
F1
≥ F
唯一
将一个力分解为不共线两分力有唯一解的情况
①已知两分力方向,有唯一解。 ②已知一分力的大小和方向,有唯一解。 ③已知两分力的大小: 当F1 + F2 > F 时,两解; 当F1 + F2 = F 时,唯一解; 当F1 + F2 < F 时,无解; ④已知一分力F1大小和另一分力F2方向: 当F1 = F sinθ ,唯一解。 当F1 < F sinθ ,无解。 当F sinθ< F1 <F ,两解。 当F1 ≥F ,唯一解。
A.Fcosθ Cቤተ መጻሕፍቲ ባይዱFtanθ
B.Fsinθ D.Fcotθ
3.把一个力F分解成相等的两个分力,则两个分力的 大小可在 ______ 到______ 的范围内变化,两分力间的 ______ F/2 ∞ 夹角 越大时,两个分力越大