高中数学必修五复习题基础题
(压轴题)高中数学必修五第三章《不等式》测试(含答案解析)(4)

一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .53.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .65.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .66.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .27.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .608.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) ABCD9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________. 14.已知正实数a 、b 满足21a b +=,则11a b a b+--的最小值为____________. 15.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.16.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.17.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.20.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.三、解答题21.(1)若0x >,0y >,1x y +=,求证:114x y+≥.(2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m x y+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围.22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=- ⎪⎝⎭; (2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小; (3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大, 联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A ,所以2z x y =+的最大值为:1224⨯+=, 故选::C.方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 4.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()13492743433355555x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.5.B【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.6.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭,此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.7.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.8.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b 156-=,a 54=,上式取得最小值, 故选:C .本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D .本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D 【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.D【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >,得411y x+=, 则()455941x y x y x y y x x y +⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当4x yy x=即3,6x y ==时取等号. 故答案为:9. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】将所求代数式变形为1121121a ba b b b+=+----,将所求代数式与()1b b+-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a ba b+--的最小值.【详解】已知正实数a、b满足21a b+=,则1211112112121a b b ba b b b b b--++=+=+-----()111111122112222b bb bb b b b-⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b-=时,即当1b=时,等号成立,因此,11a ba b+--12.12.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=. 故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。
(压轴题)高中数学必修五第一章《数列》测试题(有答案解析)(2)

一、选择题1.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .62.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3923.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞ B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,4.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n - 5.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 6.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏8.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .219.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1210.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭11.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .712.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______. 16.已知等差数列{}n a 中,48a =,84a =,则其通项公式n a =__________17.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.18.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.19.已知数列{}n a 与{}n b 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.三、解答题21.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 23.设数列{}n a 的前n 项和为n S ,已知23S =,()*11n n a S n +=+∈N .(1)求数列{}n a 的通项公式; (2)设()()111n n n n a b a a +=++,记数列{}n b 的前n 项和为n T ,求证:12n T <.24.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.2.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.3.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.4.D解析:D 【分析】 根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.5.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩ ∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n kk n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6.A【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.8.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.9.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.10.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936,……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥,所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭, 故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题11.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b +=,当且仅当16b aa b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2,∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.16.【解析】∵等差数列{an}中a4=8a8=4∴解得a1=11d=−1∴通项公式an=11+(n−1)×(−1)=12−n 解析:12n -【解析】∵等差数列{a n }中,a 4=8,a 8=4, ∴41813874a a d a a d =+=⎧⎨=+=⎩,解得a 1=11,d =−1,∴通项公式a n =11+(n −1)×(−1)=12−n .17.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.18.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++,2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.三、解答题21.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.22.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算. 23.(1)12n n a ;(2)证明见解析.【分析】(1)利用1n n n a S S -=-消去n S ,得到{}n a 为等比数列,公式法求通项公式; (2)把12n n a 代入()()111n n n n a b a a +=++,用裂项相消法求出n T ,再证明12n T <.【详解】解:(1)∵11n n a S +=+,∴11(2)n n a S n -=+≥ ∴1n n n a a a +-=,即∴12(2)n n a a n +=≥. 又21111a S a =+=+,2123S a a =+=∴11a =,22a =,∴212a a =也满足12(2)n n a a n +=≥. ∴{}n a 是以1为首项,2为公比的等比数列,∴12n na(2)由(1)知()()()()11112111121212121n n nn n n n n n a b a a ---+===-++++++.∴1201121111111212121212121n n n nT b b b -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭01111121212212n n =-=-<+++. 【点睛】 (1)证明等差(比)数列的方法:定义法和等差(比)中项法;(2)数列求和的方法:公式法、分组求和法、倒序相加法、裂项相消法、错位相减法.24.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S .【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数). (2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12. 【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈⎪⎝⎭,则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >, 由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a n a a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--, 因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n =++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案题型1:简单的高次不等式的解法 例1:解下列不等式1340x x ->; 222(1)(56)0x x x --+<; 3221021x x x +-≥+练习:解不等式1232532≥-+-x x x ; 20)4)(23()7()12(632>----x x x x题型2:简单的无理不等式的解法例1:解下列不等式121x ->22x +<题型3:指数、对数不等式例1:若2log 13a <,则a 的取值范围是 A .1a > B .320<<a C .132<<a D .320<<a 或1a >练习:1、不等式2x x 432>-的解集是_____________;2、不等式12log (2)0x +≥的解集是_____________;3、设()f x = 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式()2f x >的解集为A .(1,2)(3,)⋃+∞ B.)+∞C.(1,2))⋃+∞ D .(1,2)题型4:不等式恒成立问题例1:若关于x 的不等式2122x x mx -+>的解集是{|02}x x <<,则m 的值是_____________;练习:一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是例2:已知不等式2(1)0x a x a -++<,1若不等式的解集为(1,3),则实数a 的值是_____________;2若不等式在(1,3)上有解,则实数a 的取值范围是_____________;3若不等式在(1,3)上恒成立,则实数a 的取值范围是_____________;例3:若一元二次不等式042≤+-a x ax 的解集是R 则a 的取值范围是_____________;练习:已知关于x 的不等式()()012422≥-++-x a x a 的解集为空集,求a 的取值范围;已知关于x 的一元二次不等式ax 2+a-1x+a-1<0的解集为R,求a 的取值范围.若函数fx=)8(62++-k kx kx 的定义域为R,求实数k 的取值范围.解关于x 的不等式:x 2-2m+1x+m 2+m<0.例12 解关于x 的不等式:x 2+1-ax-a<0.线性规划例题选讲:题型1:区域判断问题例1:已知点00(,)P x y 和点A1,2在直线0823:=-+y x l 的异侧,则A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x练习:1、已知点(1,2)P -及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是__________;2、原点和点(1,1)在直线0x y a +-=的两侧,则a 的取值范围_________;题型3:画区域求最值问题若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,1求2x y +的最大值; 2求x y -的最小值; 3求11y x ++的取值范围;4求2y x -的取值范围; 5求22x y +的最大值; 6的最小值;题型4:无穷最优解问题例1:已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,使ay x z +=0a >取得最小值的最优解有无数个,则a 的值为A 、3-B 、3C 、1D 、1练习:给出平面区域包括边界如图所示,若使目标函数(0)z ax y a =+>取得最大值个,则a 的值为题型5:整点解问题例1:强食品安全管理,某市质监局拟招聘专业技术人员x 名,行政管理人员y 名,若x 、y 满足4y x y x ≤⎧⎨≤-+⎩,33z x y =+的最大值为A .4B .12C .18D .241、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是A .6B .8C .10D .122、满足2x y +≤的点(,)x y 中整点横纵坐标都是整数有A 、9个B 、10个C 、13个D 、14个题型6:线性规划中的参数问题例1:已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =A .14B .12C .1D .2练习:1、设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得m 的取值范围是A .4,3⎛⎫-∞ ⎪⎝⎭ B .1,3⎛⎫-∞ ⎪⎝⎭ C .2,3⎛⎫-∞- ⎪⎝⎭ D .5,3⎛⎫-∞- ⎪⎝⎭2、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D,若直线20kx y k -+=上存在区域D 上的点,则k 的取值范围是________;线性规划问题的推广-----利用几何意义解决最值问题解题思路:1、找出各方程、代数式的几何意义;2、找出参数的几何意义;3、画图求解;例1:若直线1y kx =-()k R ∈与圆22(1)1x y +-=有公共点,则k 的取值范围是___________;练习:1、点(,)P x y 在圆22:(2)3C x y -+=上,则y x的最大值为_______; 2、已知点)4,1(A ,)1,3(B ,点),(y x P 在线段AB 上,则1+x y 的取值范围为________;例2:若直线20x y b -+=与圆5)2()1(22=++-y x 有公共点,则b 的取值范围为_______;练习:1、已知x ,y 满足22240x y x y +-+=,则2x y -的取值范围是__________;2、若60125=+y x ,则22)1(y x ++的最小值为________;3、已知点),(y x P 为圆2)1()1(:22=++-y x C 上任意一点,则22)1()1(-++y x 的取值范围为____;线性规划作业1、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是_______;2、已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于_______,最大值等于_____;3、设x 、y 满足的约束条件⎪⎩⎪⎨⎧≤+≥≥12340y x x y x ,则132+-x y 的最大值为_______;4、设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为______;5、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z x ay =-0a >取得最小值的最优解有无数个,则a 的值为A 、3-B 、3C 、1-D 、16、若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为____________;7、已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=mA. 2-B. 1-C. 1D. 48、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D,若直线0kx y k -+=上存在区域D 上的点,则k 的取值范围是____________;基本不等式例题选讲:题型1:基本不等式应用条件的判断例1: 已知a,b R ∈,下列不等式中不正确的是A 2ab b a 22≥+B ab 2b a ≥+C 4a 4a 2≥+D 4b b422≥+在下列函数中最小值为2的函数是题型2:+≥a b例1:若0x >,则2x x +的最小值为 ; 练习:若0x >,求123y x x=+的最小值;例2:当x 时21>,求128-+x x 的最小值及对应的x 的值.练习:若3x >,求13y x x =+-的最小值; 例3:设x 、y 为正数, 则14()()x y x y ++的最小值为A. 6B.9C.12D.15例4:当x>1时,不等式11x a x +≥-恒成立,则实数a 的取值范围是A .-∞,2B .2,+∞C .3,+∞D .-∞,3例5:函数)0(4)(≠+=x xx x f 的值域是_____________;题型3:2a b ab 2⎛⎫+≤ ⎪⎝⎭的应用 例1:若01x <<,求(1)y x x =-的最大值;练习:1、若102x <<,求(12)y x x =-的最大值为________;题型4:构造基本不等式解决最值问题例1:求函数221()x x f x x-+=0x >的值域;练习:1、2()24=-+x f x x x 0x >的值域是________;2、)1(11072->+++=x x x x y 的最小值为_________;分离法、换元法根式判别法把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,判别式0 ∆,从而求得原函数的值域.对于形如,gfx ex c bx ax y ++++=22其定义域为R ,且分子分母没有公因式的函数常用此法;例3求函数2122-+-+=x x x x y 的值域解:∵定义域为}21{-≠≠x x 且∴()()012112=+--+-y x y x y 在定义域内有解当01=-y 时:即1=y 时,方程为01=-,这不成立,故0≠y .当01≠-y 时,即1≠y 时:解得95≤y 或1≥y∴函数的值域为换元法利用代数或三角换元,将所给函数转化为易求值域的函数,形如()x f y 1=的函数,令()t x f =;形如d cx b ax y +±+=,其中a ,b ,c ,d 为常数,令t =d +cx ;形如22x a y -=的结构函数,令θcos a x =[]π,0∈x 或令θa x sin = ⎥⎦⎤⎢⎣⎡-∈2,2ππθ例5求函数21x x y --=解:令cos =θa x ,⎪⎭⎫ ⎝⎛+=-=4cos 2sin cos πθθθy∵∴∴∴12≤≤-y 即所求值域为例2:已知0a >,0b >,若2ab =,则a b +的最小值为_______;例3:已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_______;例4:已知0a >,0b >,若2a b +=,则lg lg a b +的最大值为_______;例5:求函数2y =的值域;练习:1、已知0,0x y >>,且3412x y +=;求lg lg x y +的最大值及相应的,x y 值;2、已知0a >,0b >,若2ab =,则2a b +的最小值为_______;3、已知0a >,0b >,若22a b +=,则ab 的最大值为_______;4、若b a ,为实数,且2=+b a ,则b a 33+的最小值是A18 B6 C 32 D 432题型5: “常量代换”“1的活用”在基本不等式中的应用例1:已知正数x 、y 满足21x y +=,求11x y+的最小值;练习:1、已知0a >,0b >,若2a b +=,则11a b+的最小值为_______; 2、已知0a >,0b >,若22a b +=,则12a b+的最小值为_______; 例2:已知0a >,0b >,点(,)P a b 在直线220x y +-=上,则12a b +的最小值为_______;2:已知0,0x y >>,且191x y+=,求x y +的最小值;变式: 1若+∈R y x ,且12=+y x ,求yx 11+的最小值 2已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值练习:1、设0,0.a b >>若11333a b a b +是与的等比中项,则的最小值为A . 8B . 4 C. 1 D. 142、若直线)0,0(022>>=-+b a by ax ,始终平分圆082422=---+y x y x 的周长,则12a b+的最小值为A .1B .5C .24D .223+例3:已知0,0a b >>,且三点()()()1,1,,0,0,A B a C b 共线,则a b +的最小值为 ;题型6:)(2222b a b a ab +≤+≤的应用1、已知x ,y 为正实数,3x +2y =10,求函数W =错误!+错误!的最值.2、求函数152152()22y x x x =-+-<<的最大值;拓展提升1、已知x ,y 为正实数,且x 2+错误!=1,求x 错误!的最大值.2:已知a ,b 为正实数,2b +ab +a =30,求函数y =错误!的最小值.3、若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 . 4、基本不等式作业1、下列结论正确的是A.当0x >且1x ≠时,1lg lg x x +2≥B.0x >当时2x x≥C .当2x ≥时,1x x +的最小值为2 D.02x <≤时,1x x-无最大值 2、设正数x 、y 满足220x y +=,则lg lg x y +的最大值是3、已知a 、b 为正实数,且b a b a 11,12+=+则的最小值为 A .24 B .6 C .3-22 D .3+224、已知正整数b a ,满足304=+b a ,使得ba 11+取最小值时,则实数对),b a 是 A .5,10 B .6,6 C .10,5 D .7,25、函数11y x x =++(1)x >-的最小值是___________; 6、 已知两个正实数x y 、满足关系式440x y +=, 则lg lg x y +的最大值是___________;7、已知102x <<,则(12)x x -的最大值是___________; 8、若0x <,则9()4f x x x =+的最大值为___________;。
高中数学必修五同步练习题库:基本不等式(简答题:较难)

基本不等式(简答题:较难)1、(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.2、已知曲线上有一点列过点在x轴上的射影是,且1+2+3+…+n=2n+1-n-2.(n∈N*)(1)求数列{}的通项公式(2)设四边形的面积是,求(3)在(2)条件下,求证: .3、在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.(1)求的最小值;(2)若,求证:直线过定点.4、如图设计一幅矩形宣传画,要求画面面积为4840 cm2,画面上下边要留8cm空白,左右要留5cm空白,怎样确定画面的高与宽的尺寸,才能使宣传画面所用纸张面积最小?5、设函数的定义域均为,且是奇函数,是偶函数,,其中为自然对数的底数.(1)求的解析式,并证明:当时,;(2)若关于的不等式在上恒成立,求实数的取值范围.6、已知关于x不等式x2﹣2mx+m+2<0(m∈R)的解集为M.(1)当M为空集时,求m的取值范围;(2)在(1)的条件下,求的最大值;(3)当M不为空集,且M [1,4]时,求实数m的取值范围.7、已知直线l经过点P(2,2)且分别与x轴正半轴,y轴正半轴交于A、B两点,O为坐标原点.(1)求面积的最小值及此时直线l的方程;(2)求的最小值及此时直线l的方程.8、. 问:是否存在正数m,使得对于任意正数,可使为三角形的三边构成三角形?如果存在:①试写出一组x,y,m的值,②求出所有m的值;如果不存在,请说明理由.9、若,,且|k+b|=|-kb|(k>0).(Ⅰ)用k表示数量积;(Ⅱ)求的最小值.10、已知曲线上有一点列过点在x轴上的射影是,且1+2+3+…+n=2n+1-n-2.(n∈N*)(1)求数列{}的通项公式(2)设四边形的面积是,求(3)在(2)条件下,求证: .11、已知函数(其中,是自然对数的底数),为导函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)对任意,恒成立,求整数的最大值.12、已知函数,.(1)求证:();(2)设,若时,,求实数的取值范围.13、(2011年苏州B19)某企业有员工共100名,平均每人每年创造利润10万元.为了进一步提高经济效益,该企业决定优化产业结构,调整部分员工从事第三产业.经测算,若x(20≤x≤50,x∈)名员工从事第三产业,则剩下的员工平均每人每年创造的利润可提高20%,而从事第三产业的员工平均每人每年创造利润为万元.(1)如果要保证调整后该企业的全体员工创造的年总利润,至少比原来的年总利润多150万元,求可从事第三产业员工的最少人数与最多人数;(2)如果要使调整后该企业的全体员工创造的年总利润最大,求从事第三产业的员工人数.14、(2014年苏州B18)如图,在中,,,(1)求的长和的值;(2)延长到,延长到,连结,若四边形的面积为,求的最大值.15、在中,内角、、所对的边分别是、、,不等式对一切实数恒成立.(1)求的取值范围;(2)当取最大值,且的周长为9时,求面积的最大值,并指出面积取最大值时的形状.16、已知数列满足:.(1)求证:;(2)求证:.17、已知函数,(为常数).(1)函数的图象在点处的切线与函数的图象相切,求实数的值;(2)若函数在定义域上存在单调减区间,求实数的取值范围;(3)若,,且,都有成立,求实数的取值范围.18、宜昌一中江南新校区拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为米,圆心角(弧度).(1)求关于的函数关系式;(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.19、(本小题满分10分)已知正数满足:,若对任意满足条件的:恒成立,求实数的取值范围.20、(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.21、已知实数,且,若恒成立.(1)求实数m的最小值;(2)若对任意的恒成立,求实数x的取值范围.22、(本小题满分10分)选修4-5:不等式选讲已知正实数满足:.(1)求的最小值;(2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.23、选修4—5:不等式选讲设,求证:.24、(本小题满分10分)选修4-5:不等式选讲已知函数,(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.25、给定数列(1)判断是否为有理数,证明你的结论;(2)是否存在常数.使对都成立? 若存在,找出的一个值, 并加以证明; 若不存在,说明理由.26、已知a,b是正常数,,求证:,指出等号成立的条件;(2)利用(1)的结论求函数的最小值,指出取最小值时x的值.27、已知函数(1)解关于的不等式;(2)若存在,使得的不等式成立,求实数的取值范围.28、已知,证明:,并利用上述结论求的最小值(其中.29、如图,已知小矩形花坛ABCD中,AB=3 m,AD=2 m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.(1)要使矩形AMPN的面积大于32 m2,AN的长应在什么范围内?(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM,AN的长度;若不存在,说明理由.30、已知函数.(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.31、某工厂建一个长方形无盖蓄水池,其容积为4800m3,深度为3m。
人教版高中数学必修五数列知识点及习题详解

人教版数学高中必修5数列习题及知识点第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a 的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列. 18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3…). 求证:数列{nS n }是等比数列. 20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21.5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A(第6题)解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=xx 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =n S n 2. 故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 )()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.。
高中数学必修五基本不等式练习题

(1)求y关于x的表达式;(2)如何设计x,y的长度,才能使所用材料最少?
基本不等式练习题
一、单项选择
1.已知 ,函数 的最小值是()
A.4 B.5 C.6 D.8
3.在下列函数中,最小值为2的是()
A B
C D
4.已知 ,则 的最小值是()
A.15B.6C.60D.1
5.已知 且 ,则 ()
A.有最大值2B.等于4C.有最小值3D.有最大值4
6.若 ,且 ,则下列不等式中恒成立的是()
A.a+bB.2 C.a2+b2D.2ab
12.知 ,且 成等比数列,则 有( )
A、最小值 B、最小值 C、最大值 D、最大值
13. 的最大值为()
A.9 B. C. D.
14. ,则 取最小值时 的值为()
A. B. C. D.
15.知 ,且 ,则下列不等式中不正确的是()
A. B. C. D.
22. 是在直线 上移动,则 的最小值为
24.知 ,则 的最小值是__________.
25. 的最大值是_________.
26.> ,则 的最大值是___________.
27.实数 满足 ,则 的取值范围是________
28.知 都是正实数,函数 的图像过点(0,1),则 的最小值是.
29.实数 满足 且 ,恒成立,则 的取值范围是____________.
30.若 、 为正整数,且满足 ,则 的最小值为_________;
人教A版高中数学必修五必修五 综合测试题 (第三套).docx
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
4高中数学必修5第二章数列测试卷
高中数学必修五第二章数列复习测试卷一、选择题:1.已知数列{n a }既是等差数列又是等比数列,则这个数列的前n 项和为A.0 B .n C.n a 1 D.a 1n2.如果,,1)()1(*∈+=+N n n f n f 且,2)1(=f 则=)100(f102.101.100.99.D C B A3.已知数列{n a }的前n 项和n S =3n a -2,那么下面结论正确的是A.此数列为等差数列 B .此数列为等比数列C.此数列从第二项起是等比数列 D.此数列从第二项起是等差数列 4.已知等差数列{n a }满足,0101321=++++a a a a 则有57.0.0.0.5199310021011==+<+>+a D a a C a a B a a A 5.如果数列{n a }的前n 项和323-=n n a S ,那么这个数列的通项公式是 A.n a =2(n 2+n +1) B .n a =3·2n C.n a =3n +1D.n a =2·3n 6.在等比数列{n a }中,,60,482==n n S S 则n S 3等于63.62.27.26.D C B A7.已知等比数列{n a }中,n a =2×31-n ,则由此数列的偶数项所组成的新数列的前n 项和n S 的值为A.3n -1 B .3(3n -1) C.419-n D.4)19(3-n 8.实数等比数列{n a },n S =n a a a +++ 21,则数列{n S }中A.任意一项都不为零 B .必有一项为零C.至多有有限项为零 D.可以有无数项为零9.△ABC 的内角C B A ,,的对边分别为c b a ,,,且c b a ,,成等比数列,a c 2=,则B cos =32.42.43.41.D C B A 10.一个项数为偶数的等差数列,奇数项的和与偶数项的和分别为24和30.若最后一项超过第一项10.5,则该数列的项数为A .18B .12C .10D .8二、填空题:1.等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________.2.在等比数列{}n a 中,34151211-=-==n n S a a ,,,则=q ______________,=n ______________.3.三个数成等比数列,它们的积为512,如果中间一个数加上2,则成等差数列,这三个数是 .4.若数列{}n a 是等差数列,103,a a 是方程0532=--x x 的两根,则=+85a a .5在等比数列{}n a 中,3254=a a ,=+++82212log log log a a a .6.已知等比数列{n a }的前m 项和,30,102==m m S S 则=m S 3 .三、解答题: 1.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .(7分)2.已知数列{n a }满足)2(3,1111≥+==--n a a a n n n ,(8分)(1)求.,42a a(2)求证213-=n n a .3)2(111411*********≥-++-+-+-n n (7分)4.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (8分)(I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式.答案: 一、C C B C D D D D B D 二、1.4或10 2.-2 、10 3.4,8,16 或 16,8,4 4.3 5.20 6.70 三、1.解:设{}n a 的公差为d ,则()()11112616350a d a d a d a d ⎧++=-⎪⎨+++=⎪⎩即22111812164a da d a d ⎧++=-⎨=-⎩解得118,82,2a a d d =-=⎧⎧⎨⎨==-⎩⎩或 因此()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或2.(1)解:.40133,1343,413,1342321=+==+==+==a a a a(2)证明:由已知113--=-n n n a a ,得 11232211)()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----13333321+++++=--- n n n213-=n ; 213-=∴n n a . 3.解:)1111(21)1)(1(1112+--=-+=-n n n n n111411311212222-++-+-+-∴n )]1111()5131()4121()311[(21+--++-+-+-=n n )2.()1(21243)111211(21≥++-=+--+=n n n n n n 4.(I )证明:由11,a =及142n n S a +=+,12142,a a a +=+21121325,23a a b a a =+=∴=-= 由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....②②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )解:由(I )可得11232n n n n b a a -+=-=⋅,113224nn n n a a ++∴-= ∴数列{}2n na 是首项为12,公差为34的等比数列. ∴1331(1)22444n n a n n =+-=-,2(31)2n n a n -=-⋅。
(必考题)高中数学必修五第二章《解三角形》测试题(含答案解析)(2)
一、选择题1.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .62.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .()2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+ 的值为( ) A .22B .2C .2D .48.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .49.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,30,10B AC =︒=,D 是AB 边上的一点,25CD =,若ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A .25B .35C .45D .65 11.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒12.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,2BD =,则ABC 的面积为_________.14.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 23.在ABC 中,内角A 、B 、C 对应的边长分别为a b c 、、,且,,a b c 满足5cos 44cos 5sin sin cos a B b cB A BC -=+.(1)求cos A ;(2)若3a =,求b c +的最大值.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 226bc A a a =⨯,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sin ACD∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.11.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC中,由正弦定理可得sin sin a bA B=, 即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】直接利用正弦定理计算得到答案.根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案【分析】设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解. 【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=, 因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =,所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 28ABC S AC AB BAC =⋅∠=,【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.14.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值.【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BD CBD BCD=∠∠, 所以()3sin sin 60x x θθ=-,所以()13sin sin 60sin 2θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B=,根据正弦定理:sin sinb cB C=,∴=c,根据余弦定理:2222cosa b c bc A=+-,又222a b=,故可联立方程:222222cos2ca b c bc Aa b⎧=⎪=+-⎨⎪=⎩,解得:cos A=..【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB∠与BAC∠,求出ABC∠的度数,根据sin ACB∠,sin ABC∠,以及AC的长,利用正弦定理即可求出AB的长.【详解】解:在ABC∆中,50AC m=,45ACB∠=︒,105CAB∠=︒,即30ABC∠=︒,则由正弦定理sin sinAB ACACB ABC=∠∠,得:50sin21sin2AC ACBABABC∠===∠.故答案为:.【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.【分析】由题意利用正弦定理边化角求得∠B的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力解析:3-【分析】由题意利用正弦定理边化角,求得∠B的值,然后结合数量积的定义求解AB BC⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭ 故答案为3-【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A C A B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解.【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=,由正弦定理可得,22sin sin sin sin C A A B -=,即1cos21cos2cos2cos2sin sin 222C A A C A B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠;sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =,则3B A C A ππ=--=-, 因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩, ∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】 本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值.【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==, ∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去; 当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意. ∴5BD =. 在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==, ∴12BC =或3BC =-(舍).∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin B =,∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠=【点睛】关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可.22.(1)π4A =;(2)a =3AD =. 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD .【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos A A A+=∴cos 2A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.23.(1)45-;(2 【分析】 (1)利用正弦定理边化角,结合两角和的正弦公式、余弦公式,化简整理,即可求得答案.(2)由(1)可得4cos 5A =-,根据余弦定理,可得25()92bc b c ⎡⎤=+-⎣⎦,根据基本不等式,即可求得b c +的最大值.【详解】(1)由题意得5cos cos 4cos 4cos 5sin sin a C B b C c B c A B -=+, 正弦定理边化角得:5sin cos cos 4sin cos 4sin cos 5sin sin sin A C B B C C B C A B -=+,所以5sin (cos cos sin sin )4(sin cos sin cos )A C B C B C B B C -=+,所以5sin cos()4sin()A B C B C +=+,又A B C π++=,所以sin()sin()sin ,cos()cos()cos B C A A B C A A ππ+=-=+=-=-,所以5sin cos 4sin A A A -=,又因为(0,)A π∈,所以sin 0A ≠, 所以4cos 5A =-. (2)由(1)可得4cos 5A =-, 由余弦定理得2222()294cos 225b c a b c bc A bc bc +-+--===-, 所以25()92bc b c ⎡⎤=+-⎣⎦, 由基本不等式可得22b c bc +⎛⎫≤ ⎪⎝⎭,所以225()922b c b c +⎛⎫⎡⎤+-≤ ⎪⎣⎦⎝⎭,解得b c +≤ 当且仅当b c =时等号成立,所以b c +【点睛】解题的关键是熟练掌握正余弦定理、基本不等式等知识,并灵活应用,考查计算化简的能力,属中档题.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B += 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C B A C A C A c A c所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=. 解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c +=因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 2===ABC S ac B B 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五复习卷1、在△ABC 中,45601,B C c ===,,则b =___________;2、在△ABC 中 ,如果3c a =,B=300,那么角C=3、在△ABC 中,如果a=3,b=5,c=6,那么cos C 等于___________;4、在ABC ∆中。
若1b =,3c =,23c π∠=,则a=___________; 已知ABC ∆中5,3,120a b C === ,则sin A =5、在△ABC 中,A =60°,b =1,c = 1, 则C=6、在⊿ABC 中,已知ba c b a 2222+=+,则∠C=_________;7、在△ABC 中, a 8,b 5==,0C=30∠,则三角形面积为 ___________;8、在△ABC 中,A =60°,b =1,其面积为3,则c = ___________;9、在等差数列{}n a 中,已知a 1=1, d=2则a 4=____________;s 3=___________; 10、等差数列{}n a 中,已知,31,10125==a a ,则1a =_____;d =______;q =________; 11、在等差数列{}n a 中,若6473=+a a ,则=+a a 82 12、等差数列}a {n 中,已知前15项的和90S 15=,则8a = ___________;13、已知等比数列{}n a 的首项1a =2,公比1q=2,则n s =___________;14、等比数列{}n a 中,35a =12a =48,,那么q = _;7a = _;15、若数列221m m m ++,,成等比数列,则m =___________; 16、在正项等比数列{}n a 中,, 且a a 73= 64 , 则 a 5 = ___________; 17、设}{n a 为等比数列,其中==652143,5a a a a a a 则___________; 18、设数列{a n }的前n 项和2n S n =,则8a = 19、数列 121, 241, 381, 4161, 5321, …, n n 21, 的前n 项之和等于___________; 20、不等式12x x ->+的解集是 ;21、若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b= ;22、不等式24x ≥的解集为___________________;若222x ax -+≥0恒成立,则实数a 的取值范围是______________;23、若不等式x-2y+a <0所表平面区域包含点(0,1),则a 的取值范围是___________;24、原点O 和点A (1,1)在直线x+y=a 两侧,则a 的取值范围是___________;25、设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x +2y 的最大值为_____;26、若x <0 , 则 xx y 1+=的最大值是 27、函数(32)(01)y x x x =-≤≤的最大值是 28、已知x >3,则函数y =2x -3+x 的最小值为________. 29、设0,0x y >>且21x y +=,求11x y+的最小值 . 30、若x 、y ∈R +, x +4y =20,则xy 的最大值为___________;31、函数2x -4x+1y=x(x > 0)的最小值___________;31、下列结论正确的是 ( )A 当2lg 1lg ,10≥+≠>xx x x 时且 B 21,≥+>x x x 时当C 21,2的最小值为时当x x x +≥D 无最大值时当xx x 1,20-≤<二、解答题 32、解不等式 ①0322>-+-x x②223x x -+> 033、设函数2(x)mx mx 1f =--⑴若对于一切实数,(x)x f <0恒成立,求实数m 的取值范围; ⑵对于[]1,3,(x)x f ∈<m 5-+恒成立,求实数m 的取值范围。
33、已知等差数列{a n }的前n 项和为n S , 252, 0a S ==.(1)求数列{a n }的通项公式;(2)当n 为何值时, n S 取得最大值.解析:(1)因为252,0a S ==, 所以112, 5450.2a d da +=⎧⎪⎨⨯+=⎪⎩ 解得14, 2a d ==-.所以()()41262n a n n =+-⨯-=-.(2)因为n S =()112n n d na -+=()41n n n --n n 52+-=252524n ⎛⎫=--+ ⎪⎝⎭ 又*n ∈N ,所以当2=n 或3=n 时, n S 取得最大值6.34、已知{}n a 为等差数列,且36a =-,60a =。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式解:(Ⅰ)设等差数列{}n a 的公差d 。
因为366,0a a =-= 所以112650a d a d +=-⎧⎨+=⎩ 解得110,2a d =-=所以10(1)2212n a n n =-+-⋅=- (Ⅱ)设等比数列{}n b 的公比为q因为2123124,8=++=-=-b a a a b 所以824q -=- 即q =3所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--35、已知各项均不为零的数列}{n a 的前n 项和为,且n n n-1a +3s s =0(n ≥2),11a =3①求证:n 1s ⎧⎫⎨⎬⎩⎭是等差数列; ②求数列}{n a 的通项公式36、设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ .221+=+n n b b(Ⅰ)求证数列}2{+n b 是等比数列(要指出首项与公比), (Ⅱ)求数列}{n a 的通项公式.解:(1)),2(222211+=+⇒+=++n n n n b b b b ,2221=+++n n b b又42121=-=+a a b , ∴数列}2{+n b 是首项为4,公比为2的等比数列.(2)2224211-=⇒⋅=+∴+-n n n n b b . .221-=-∴-n n n a a 令),1(,,2,1-=n n 叠加得)1(2)222(232--+++=-n a nn ,22)2222(32+-++++=∴n a nn .222212)12(21n n n n -=+---=+37、数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T . 解:(Ⅰ)12n n a S +=, 12n n n S S S +∴-=, 13n nS S +∴=. 又111S a ==, ∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==⨯≥,21132n n n a n -=⎧∴=⎨2⨯⎩, ,,≥.(Ⅱ)12323n n T a a a na =++++,当1n =时,11T =;当2n ≥时,0121436323n n T n -=+⨯+⨯+⋅⋅⋅+⨯,…………①12133436323n n T n -=+⨯+⨯+⋅⋅⋅+⨯,………………………②-①②得:12212242(333)23n n n T n ---=-++++⋅⋅⋅+-⨯ 213(13)222313n n n ---=+⨯-⨯-11(12)3n n -=-+-⨯.1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥. 又111T a ==也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . 38、设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知77=S ,7515=S .(1) 求数列{}n a 的通项公式;(2) 若,求数列}{n b 的前n 项和n T 。
解:(1)设等差数列{}n a 的公差为d ,则()d n n na S n 1211-+= ∵ 77=S ,7515=S ,∴ ⎩⎨⎧=+=+, 7510515, 721711d a d a 即 ⎩⎨⎧=+=+, 57,1311d a d a解得 21-=a ,1=d∴ 数列{}n a 的通项公式为3-=n a n (2) n n n b n n a n n+⨯=+=+=-281223∴ 123n n T b b b b =+++⋅⋅⋅+)281()3281()2281()1281(321n n+⨯+++⨯++⨯++⨯=39、当0,1a a >≠时,函数()log (1)1a f x x =-+的图象恒过定点A ,若点A 在直线0mx y n -+=上,求42m n +的最小值.解:∵A(2,1) ∴ 2m+n=1 ∴ 2422422222m n m n m n++≥== n b na n +=2)321()2222(81321n n+++++++⨯=2)1()22(811++-⨯=+n n n 2)1()12(41++-⨯=n n n当且仅当4m=2n 即或2m=n 即11,42m n ==时取等号. 所以42m n+的最小值是2240、制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪,若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?解:设投资人分别用x 、y 万元投资甲、乙两个项目,由题意知:100.30.1 1.800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 目标函数0.5z x y =+当直线0.5z x y =+过点M(4,6)时Z 取得最大值7万元.故…41、已知△ABC 中,S 是△ABC 的面积,若a=4b=5s=53,,,求c 的长度。
42、在△ABC 中, , , A B C ∠∠∠所对的边分别为, , a b c ,已知4,5,61a b c ===.(1)求C ∠的大小; (2)求△ABC 的面积.解析:(1)依题意,由余弦定理得22245(61)1cos 2452C +-==-⨯⨯. 解得120C ∠=︒ .(2)如图,过点A 作AH 垂直BC 的延长线于H ,则AH =sin AC ACH ⋅∠=535sin 602︒=.所以ABC S ∆=12BC AH ⋅=153422⨯⨯=53.43、在⊿ABC 中,已知030,1,3===B b c .(Ⅰ)求出角C 和A ; (Ⅱ)求⊿ABC 的面积S ;解:(1)bcB C =sin sin,23sin =C000030,120,90,60,,====∴>>A C A C B C b c 此时或者此时(2)S=12bcsinA=43,23 B CAH┌44. (本小题13分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =12,AD =10,△ACD 的面积S =30,(1)求∠CAD 的大小;(2)求AB 的长.解:. (1)在△ADC 中,已知AC =12,AD =10,S △ADC =30,则由S △ADC =12·AC ·AD ·sin ∠DAC ,求得sin ∠DAC =12,即∠DAC =30°, (2)∴ ∠BAC =30° 而∠ABC =60°,故△ABC 为直角三角形. ∵ AC =12,∴ AB =1283cos3032AC ==.45、某舰艇测得灯塔在它的东15°北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30°北。