2013年中考数学试题考点分类5 二次根式(含答案)2
初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
中考数学总复习之:二次根式(含答案)

中考数学总复习之:二次根式一、知识点:1.平方根:如果x2=a,那么x就叫做a的,也称为.2.一个正数a平方根的表示为:.3.性质:(1)一个正数的平方根有2个,它们互为数;(2)0只有1个平方根,它是0本身;(3)负数平方根.4.正数a有两个平方根,其中正数a的正的平方根,叫做a的.特别地, 0的算术平方根是.5.立方根:如果一个数的立方等于a,这个数就叫做a的,也称为.如果x3=a,那么x叫做a的,数a的立方根记作,读作“ a”.6.求一个数的立方根的运算叫做.7.正数的立方根是;负数的立方根是;0的立方根是.8.当a≥0时=,当a<0=.9 = .a≥时,10.当011.二次根式的性质:(1a≥0);(2(3a≥0,b≥0);(4a≥0,b≥0);(5a≥0,b>0);(6a≥0,b>0);一、选择题1. 二次根式√x−5在实数范围内有意义,则x应满足的条件是( )A. x≥5B. x≤5C. x>5D. x<52. 化简√3−√3(1−√3)的结果是( )A. 3B. −3C. √3D. −√33. 下列根式中能与√3合并的二次根式为( )A. √32B. √24C. √12D. √0.54. 下列计算正确的是( )A. √8+√2=√10B. √8−√2=√2C. √8×√2=√16D. √8÷√2=√45. 下列各式中,不是最简二次根式的是( )A. √8B. √5C. √3D. √26. 化简√16的值为( )A. 4B. −4C. ±4D. 27. √(−2)2化简的结果是( )A. 2B. −2C. 2或−2D. 48. 计算√18÷√8×√27的结果是( )A. 92√6 B. √36C. 94√3 D. 92√39. 把√118化为最简二次根式得( )A. 18√18B. 118√18 C. 16√2 D. 13√12二、填空题1. 若√2x−1有意义,则x的取值范围是.2. 计算:√273−4√12+√8=.3. 化简:√25x=.4. 计算:√8+√2=.5. 计算(√2)2+1的结果是.6. √ab=(a≥0,b≥0).7. 若√3−4x是二次根式,则x的取值范围是.8. 最简二次根式√3与最简二次根式5√1+2m可以合并,则m=.9. 计算:(√5+√3)×(√5−√3)=.10. 计算:√27×√83÷√12=.11. √3+2的倒数是.12. 计算:√272−√3√12=.13. 化简:√12−3√13的结果是.14. 45√114=;(−√21)2−√(−21)2=.15. 计算:(√12−√27)÷√3=.16. 计算(√6−2√3)2=.17. 化简√14+13的结果是.18. 计算√18a⋅√2a(a≥0)的结果是.三、解答题1. 当x为何值时,下列各式有意义?(1)√−x;(2)√3−2x;(3)√x−3x−4;(4)√−(x−1)2.2. 如果代数式√3−x+√x−3有意义,求x的值.3. 计算:(1)√18÷√72×√194;(2)32√4x−(15√x25−2√x2)(x>0).4. 假期中,王强和同学们到某海岛上去玩探宝旅游,按照探宝图(如图),他们在A点登陆后先往东走8√3千米到H点,又往北走2√3千米,遇到障碍后又往西走3√3千米,再折向北走到6√3千米处往东一拐,再走√3千米就找到宝藏埋藏点B.问:他们共走了多少千米?5. 化简下列二次根式:(1)√449;(2)√121b516a2(a<0,b>0).6. 把下列二次根式化成最简二次根式:(1)√28;(2)√3.5;(3)√4116;(4)√8a3b2c(a>0,b>0,c>0).7. 计算:(1)√2+√3(√3−√6)−√8;(2)√135÷√223×√113.8. 计算(7+4√3)(2−√3)2−(2+√3)(2−√3)+√3的值.9. 如图是实数a,b在数轴上的位置,化简:√a2−√b2−√(a−b)2.10. 计算:4√12−13√18.11. 计算:(1)4√5+√45−√8+4√2;(2)(2√48−3√27)÷√6.12. 化简:(1)√3;4;(2)√549;(3)√81×125144.(4)√121b516a2答案第一部分1. A2. A3. C4. B 【解析】A、原式=2√2+√2=3√2,∴ A选项错误;B、原式=2√2−√2=√2,∴ B 选项正确;C、原式=√8×2=√16=4,∴ C 选项错误;D、原式=√8÷2=√4=2,∴ D选项错误.5. A 【解析】A、被开方数含能开得尽方的因数或因式,故 A 符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 B 不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 C 不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 D 不符合题意.6. A7. A 17. D 9. C第二部分1. x≥0.52. 33. 5√x4. 3√25. 36. √a⋅√b7. x≤348. 19. 210. 1211. 2−√312. −213. √3,014. 2√5515. −116. 18−12√217. √21618. 6a第三部分1. (1)∵−x≥0,∴x≤0.(2)∵3−2x≥0,.∴x≤32(3)∵x−3≥0,x≠4,∴x≥3且x≠4.(4)∵−(x−1)2≥0,∴x=1.2. ∵√3−x+√x−3有意义,∴{3−x≥0,x−3≥0,解得{x≤3,x≥3.∴x=3.3. (1)原式=3√2×√147×√192=3√1337.(2)原式=3√x−(3√x−2x)=2x.4. 8√3+2√3+3√3+6√3+√3=20√3(千米),答:他们共走了20√3千米.5. (1)√449=√409=√40√9=2√103;(2)√121b516a2=√4√16a2=11b2√b−4a.6. (1)√28=√4×7=2√7.(2)√3.5=√72=√144=√142.(3)√4116=√6516=√654.(4)由a>0,b>0,c>0,故√8a3b2c=2ab√2ac.7. (1)原式=√22+3−3√2−2√2=3−92√2.(2) 原式=√85×38×43=2√55. 8. 原式=(7+4√3)(7−4√3)−(2+√3)(2−√3)+√3=49−48−(4−3)+√3=1−1+√3=√3.9. −2b .10. 4√12−13√18=4×√22−13×3√2=2√2−√2=√2.11. (1) 原式=4√5+3√5−2√2+4√2=7√5+2√2.(2) 原式=(8√3−9√3)÷√6=−√22.12. (1) √34=√32.(2) √549=√499=73.(3) √81×125144=√81⋅√12512=9⋅5√512=15√54.(4) √121b 516a 2=114√b 5a 2.由根式存在意义,故 b 5≥0,b ≥0.∴原式=114⋅b 2√b ∣a∣=11b 2√b 4∣a∣.。
二次根式中考真题及详解

二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子13x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0 答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3答案:1. D 2. C知识点 2.最简二次根式 重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.例1.在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式. 例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C .22.11a b ab D a a +-和和解题思路:∵18=32,∴3与18不是同类二次根式,A 错.13=33, ∴3与13是同类二次根,∴B 正确.∵22||,ab b a a b ==│a │b , ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和是同类二次根式,则a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质①(a )2=a (a ≥0);0(0)a a ≥≥ ②2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+-+-=,则=+-c b a .解题思路:2|2|0,30,(4)0a b c -≥-≥-≥,非负数之和为0,则它们分别都为0,则2,3,4a b c ===,=+-c b a 3oba例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.3.若y x -+-324=0,则2xy= 。
江苏省盐城市2013年中考数学试卷(解析版)(含解析)

江苏省盐城市2013年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填涂在答题卡相应位置上)1.(3分)(2013•盐城)﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2B.0C.1D.﹣3考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.解答:解:﹣2、0、1、﹣3四个数中,最小的数是﹣3;故选D.点评:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2013•盐城)如果收入50元,记作+50元,那么支出30元记作()A.+30B.﹣30C.+80D.﹣80考点:正数和负数分析:收入为“+”,则支出为“﹣”,由此可得出答案.解答:解:∵收入50元,记作+50元,∴支出30元记作﹣30元.故选B.点评:本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)(2013•盐城)下面的几何体中,主视图不是矩形的是()A.B.C.D.考点:简单几何体的三视图分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,考查了学生细心观察能力,属于基础题.4.(3分)(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:二次根式有意义的条件分析: 根据被开方数大于等于0列式进行计算即可得解. 解答: 解:根据题意得,x ﹣3≥0,解得x ≥3. 故选A .点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)(2013•盐城)下列运算中,正确的是( ) A . 2a 2+3a 2=a 4 B . 5a 2﹣2a 2=3 C . a 3×2a 2=2a 6 D . 3a 6÷a 2=3a 4考点: 整式的除法;合并同类项;单项式乘单项式 分析:根据合并同类项、单项式乘单项式、单项式除以单项式的法则,对各选项分析判断后利用排除法求解.解答: 解:A 、2a 2+3a 2=5a 2,故本选项错误;B 、5a 2﹣2a 2=3a 2,故本选项错误;C 、a 3×2a 2=2a 5,故本选项错误;D 、3a 6÷a 2=3a 4,故本选项正确. 故选D .点评:本题考查合并同类项、单项式乘单项式、单项式除以单项式,记准法则是解题的关键.6.(3分)(2013•盐城)某公司10名职工月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600 人数(人) 1 3 4 2A . 2400元、2400元B . 2400元、2300元C . 2200元、2200元D . 2200元、2300元考点:众数;中位数 分析:根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.解答: 解:∵2400出现了4次,出现的次数最多,∴众数是2400; ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400; 故选A .点评:此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.7.(3分)(2013•盐城)如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°考点:平行线的性质专题:计算题.分析:由a∥b,根据平行线的性质得∠1=∠4=120°,再根据三角形外角性质得∠4=∠2+∠3,所以∠3=∠4﹣∠2=80°.解答:解:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.点评:本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质.8.(3分)(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种考点:利用旋转设计图案;利用轴对称设计图案分析:根据轴对称的定义,及题意要求画出所有图案后即可得出答案.解答:解:得到的不同图案有:,共6种.故选C.点评:本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.二、填空题(本大题共10小题,每小题3分,共30分。
2013年安徽省中考数学试卷及答案(Word解析版)

安徽省2013年中考数学试卷一、选择题(共10小题,每小题4分,满分40分)))5.(4分)(2013?安徽)已知不等式组,其解集在数轴上表示正确的是()放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率123∴能让两盏灯泡同时发光的概率为:=();当CE=3,CF=3EC=,而EM=3EC?CF=﹣;CE=BC=3CF=CD=3,而EM=3,所以EC?CF=x6xCBP=安徽)若x≤.x≤.x≤、PC的=8.2BCEF=EF=EF=时,四边形EF=EF=EF=,所以由已知条件可以推知EF=EF=AB=.EF=BD===EF=EF=.分)﹣|.=2×+12+=0,0),17.(8分)(2013?安徽)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1)放在直角坐标系中,设其中第一个基本图的对称中心x1,2),规律型:图形的变化类;规律型:点的坐标.M==M=2×=,=;+2=3)的对称中心的横坐标为=5,=7,=4025,,汛AE.(结ABF=∠α=60°=10m∠β=45°AE==10m2000元要)根据购买的两种球拍数一样,列出方程=,求出方程的=,21.(12分)(2013?安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统400×=64q=30+q=20+35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(30+20+=3530+x20+﹣=﹣y=,x﹣(∴随时,最大,y=﹣=23.(14分)(2013?安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不,∴△ABE∽△DEC∴,∴。
中考数学二次根式(讲义及答案)及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
2013年全国中考数学试题分类解析汇编专题6二次根式
2013年全国中考数学试题分类解析汇编专题6:二次根式一、选择题1. (2012天津市3分)6+1的值在【 】 (A )2到3之间 (B )3到4之间 (C )4到5之间 (D )5到6之间【答案】B 。
【考点】估算无理数的大小。
【分析】利用”夹逼法“得出66的范围:∵4 < 6 < 9 469263。
∴36+14<。
故选B 。
2. (2012上海市4分)a b - 】 A a+b B a +b C a b -D a b【答案】C 。
【考点】有理化因式。
-【分析】a b a b=a b ---,a b -a b -C 。
3. (2012广东肇庆3分)2x -x 的取值范围是【 】A .x 0>B .x 2≥-C .x 2≥D .x 2≤ 【答案】A 。
【考点】二次根式有意义的条件。
【分析】根据二次根式被开方数必须是非负数的条件,要使2x -在有意义,必须2x 0x 2-≥⇒≤。
故选A 。
4. (2012浙江杭州3分)已知(3m 221⎛=⨯- ⎝⎭,则有【 】A .5<m <6B .4<m <5C .﹣5<m <﹣4D .﹣6<m <﹣5 【答案】A 。
【考点】二次根式的乘除法,估算无理数的大小。
【分析】求出m 的值,估算出经的范围5<m <6,即可得出答案:(324m 2213213212839⎛=⨯-=⨯⨯⨯ ⎝⎭252836,∴5286,即5<m <6。
故选A 。
5. (2012江苏南京2分)12的负的平方根介于【 】 A. -5和-4之间 B. -4与-3之间 C. -3与-2之间 D. -2与-1之间【答案】B 。
【考点】估算无理数的大小,不等式的性质。
【分析】∵9 < 12 < 1691216。
∴-16-12-9-412-3<。
故选B 。
6. (2012江苏盐城3分)4的平方根是【 】A .2B .16C .2±D .16± 【答案】C 。
【考点】平方根。
2013年内蒙古自治区赤峰市中考数学试题(含答案)
内蒙古赤峰市2013年中考数学试卷一.选择题:(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内.每小题3分,共24分)1.(3分)(2013•赤峰)()0是()A.B.1C.D.﹣1考点:零指数幂.分析:根据零指数幂:a0=1(a≠0)可直接得到答案.解答:解:()0=1,故选:B.点评:此题主要考查了零指数幂,关键是掌握零指数幂:a0=1(a≠0).2.(3分)(2013•赤峰)下列等式成立的是()A.|a|•=1 B.=aC.÷=D.a﹣2a=﹣a考点:分式的乘除法;合并同类项;二次根式的性质与化简.专题:计算题.分析:A、原式分情况讨论,约分得到结果,即可做出判断;B、原式利用二次根式的化简公式计算得到结果,即可做出判断;C、原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到结果,即可做出判断;D、原式合并同类项得到结果,即可做出判断.解答:解:A、当a>0时,|a|=a,原式=1;当a<1时,|a|=﹣1,原式=﹣1,本选项错误;B、原式=|a|,本选项错误;C、原式=1,本选项错误;D、a﹣2a=﹣a,本选项正确,故选D点评:此题考查了分式的乘除法,合并同类项,以及二次根式的性质与化简,熟练掌握运算法则是解本题的关键.3.(3分)(2013•赤峰)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()A.S四边形ABCD=S四边形ECDF B.S四边形ABCD<S四边形ECDFC.S四边形ABCD=S四边形ECDF+1 D.S四边形ABCD=S四边形ECDF+2考点:多边形;平行线之间的距离;三角形的面积.分析:根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面积,进而得到答案.解答:解:S四边形ABCD=CD•AC=1×4=4,S四边形ECDF=CD•AC=1×4=4,故选:A.点评:此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式.4.(3分)(2013•赤峰)如图所示,几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看可得3个小正方形,分成3列,每一列一个正方形.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2013•赤峰)学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100 B.80 C.50 D.120考点:有理数的乘法.分析:从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,解答:解:从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.点评:本题考查了有理数的乘法,要注意经过的楼层数为所在楼层减1.千帕kpa 10 12 16 …毫米汞柱mmHg 75 90 120 …A.13kpa=100mmHg B.21kpa=150mmHg C.8kpa=60mmHg D.22kpa=160mmHg考点:一次函数的应用.分析:观察不难发现,千帕每增加2,毫米汞柱升高15,然后设千帕与毫米汞柱的关系式为y=kx+b(k≠0),利用待定系数法求出一次函数解析式,再对各选项进行验证即可得解.解答:解:设千帕与毫米汞柱的关系式为y=kx+b(k≠0),则,解得,即8kpa=60mmHg,故本选项正确;即22kpa=165mmHg,故本选项错误.故选C.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,是基础题,比较简单.7.(3分)(2013•赤峰)从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1B.2C.3D.4考点:条形统计图;扇形统计图;中位数.分析:首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.解答:解:总人数为6÷10%=60(人),则2分的有60×20%=12(人),4分的有60﹣6﹣12﹣15﹣9=18(人),第30与31个数据都是3分,这些学生分数的中位数是(3+3)÷2=3.故选C.点评:本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图中获取正确的信息并求出各个小组的人数.8.(3分)(2013•赤峰)如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为(A.B.C.D.考点:扇形面积的计算;等边三角形的判定与性质;平行四边形的性质.分析:根据平行四边形的性质以及等边三角形的判定得出3个等边三角形全等,进而得出阴影部分面积等于△BCE面积,求出即可.解答:解:连接DO,EO,BE,过点D作DF⊥AB于点F,∵AD=OA=1,∴AD=AO=DO,∴△AOD是等边三角形,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDO=∠DOA=60°,∴△ODE是等边三角形,同理可得出△OBE是等边三角形且3个等边三角形全等,∴阴影部分面积等于△BCE面积,∵DF=ADsin60°=,DE=EC=1,∴图中阴影部分的面积为:××1=.故选:A.点评:此题考查了组合图形的面积,关键是得出阴影部分面积等于△BCE面积.二、填空题(请把答案填在题中横线上,每小题3分,共计24分)8千米,以亿千米为单位表示这个数是亿千米.考点:科学记数法—表示较大的数.分析:根据1亿=1088解答:8点评:此题考查用科学记数法表示的数的改写方法.熟记1亿=108是解题的关键.10.(3分)(2013•赤峰)请你写出一个大于0而小于1的无理数﹣1.考点:估算无理数的大小.专题:开放型.分析:根据已知和无理数的定义写出一个无理数即可.解答:解:一个大于0而小于1的无理数有﹣1,﹣1等,故答案为:﹣1.点评:本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.11.(3分)(2013•赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是2海里/小时.考点:二元一次方程组的应用.分析:根据在水流问题中,水流速度=(顺水速度﹣逆水速度)÷2,即可得出答案.解答:解:∵顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,∴水流的速度是=2(海里/小时);故答案为:2.点评:此题考查了水流问题在实际生活中的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,水流速度=(顺水速度﹣逆水速度)÷2.12.(3分)(2013•赤峰)样本数据3,2,5,a,4的平均数是3,则a=1.考点:算术平均数.分析:根据平均数的计算公式和数据3,2,5,a,4的平均数是3,列出算式,求出a的值即可.解答:解:∵数据3,2,5,a,4的平均数是3,∴(3+2+5+a+4)÷5=3,解得:a=1;故答案为:1.点评:此题考查了算术平均数,掌握算术平均数的计算公式是本题的关键,是一道基础题.13.(3分)(2013•赤峰)已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是65πcm2.考点:圆锥的计算.分析:利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:∵圆锥的高为12cm,底面半径为5cm,∴圆锥的母线长为:=13cm,∴圆锥的侧面展开图的面积为:π×5×13=65πcm2.故答案为:65π点评:本题考查圆锥侧面积公式的运用,掌握公式是关键;注意圆锥的高,母线长,底面半径组成直角三角形这个知识点.14.(3分)(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为4cm.考点:勾股定理;矩形的性质.分析:设AB=x,则可得BC=10﹣x,BE=BC=,在Rt△ABE中,利用勾股定理可得出x的值,即求出了AB的长.解答:解:设AB=x,则可得BC=10﹣x,∵E是BC的中点,∴BE=BC=,在Rt△ABE中,AB2+BE2=AE2,即x2+()2=52,解得:x=4.即AB的长为4cm.故答案为:4.点评:本题考查了矩形的性质及勾股定理的知识,解答本题的关键是表示出AB、BE的长度,利用勾股定理建立方程.15.(3分)(2013•赤峰)如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是y=.考点:待定系数法求反比例函数解析式.分析:根据题意可设A(m,m),再根据⊙O的半径为1利用勾股定理可得m2+m2=12,解出m的值,再设出反比例函数解析式为y=(k≠0),再代入A点坐标可得k的值,进而得到解析式.解答:解:∵∠BOA=45°,∴设A(m,m),∵⊙O的半径为1,∴AO=1,∴m2+m2=12,解得:m=,∴A(,),设反比例函数解析式为y=(k≠0),∵图象经过A点,∴k=×=,∴反比例函数解析式为y=.故答案为:y=.点评:此题主要考查了待定系数法求反比例函数解析式,以及勾股定理,求出A点坐标是解决此题的关键.16.(3分)(2013•赤峰)在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是错误的.(填“正确”或“错误”)考点:等腰三角形的性质.分析:分别把已知角看做等腰三角形的顶角和底角,分两种情况考虑,利用三角形内角和是180度计算即可.解答:解:如已知一个角=70°.当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故答案为:错误.点评:主要考查了等腰三角形的性质.要注意分两种情况考虑,不要漏掉一种情况.三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)17.(12分)(2013•赤峰)(1)计算:sin60°﹣|1﹣|+﹣1(2)化简:(a+3)2﹣(a﹣3)2.考点:完全平方公式;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)根据特殊角的三角函数值,绝对值,负整数指数幂分别求出每一部分的值,再代入求出即可;(2)先根据完全平方公式展开,再合并同类项即可.解答:解:(1)原式=﹣(﹣1)+2=﹣+1+2=﹣+3;(2)原式=a2+6a+9﹣(a2﹣6a+9)=a2+6a+9﹣a2+6a﹣9=12a.点评:本题考查了特殊角的三角函数值,绝对值,负整数指数幂,完全平方公式的应用,主要考查学生的计算能力.18.(10分)(2013•赤峰)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C (4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?考点:作图-轴对称变换.专题:作图题.分析:关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数,得出F,G,H 的坐标,顺次连接各点即可.解答:解:由题意得,F(﹣2,﹣3),G(﹣4,0),H(﹣2,4),这个图形关于y轴对称,是我们熟知的轴对称图形.点评:本题考查了轴对称作图的知识,解答本题的关键是掌握关于y轴对称的点的坐标的特点,及轴对称图形的特点.19.(10分)(2013•赤峰)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.(1)求∠ABP的度数;(2)求A,B两点间的距离.考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.解答:解:(1)∵tan∠ABC=,∴∠ABC=30°;∵从P点望山脚B处的俯角60°,∴∠PBH=60°,∴∠ABP=180°﹣30°﹣60°=90°(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=30°,∴△PAB为等腰直角三角形,在直角△PHB中,PB=PH•tan∠PBH=300m.在直角△PBA中,AB=PB•tan∠BPC=300.∴A、B两点之间的距离为300米.点评:本题主要考查了俯角的问题以及坡度的定义,正确利用三角函数是解题的关键.20.(10分)(2013•赤峰)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.考点:游戏公平性;列表法与树状图法.专题:计算题.分析:游戏不公平,理由为:列出表格,得出所有等可能的情况数,找出数字之差大于0,等于0以及小于0时的情况数,求出甲乙两获胜的概率,即可判断不公平,若要使游戏公平,修改规则即可.解答:解:游戏不公平,理由为:列表得:1 2 3 4 51 (1,1)(2,1)(3,1)(4,1)(5,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)所有等可能的情况有20种,其中摸出的两球所标数字之差(甲数字﹣乙数字)大于0的情况有10中,等于0的情况有4种,小于0的情况有6种,则P甲获胜==,P乙获胜==,∵>,∴游戏不公平;若使游戏公平,修改规则为:中摸出的两球所标数字之和为偶数,甲获胜;之和为奇数,乙获胜.点评:此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(10分)(2013•赤峰)如图,直线L经过点A(0,﹣1),且与双曲线c:y=交于点B(2,1).(1)求双曲线c及直线L的解析式;(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将B坐标代入反比例解析式求出m的值,确定出双曲线c解析式;设一处函数解析式为y=kx+b,将A与B坐标代入求出k与b的值,即可确定出直线L的解析式;(2)将P坐标代入反比例解析式求出a的值,即可确定出P坐标.解答:解:(1)将B(2,1)代入反比例解析式得:m=2,则双曲线解析式为y=,设直线L解析式为y=kx+b,将A与B坐标代入得:,解得:,则直线L解析式为y=x﹣1;(2)将P(a﹣1,a)代入反比例解析式得:a(a﹣1)=2,整理得:a2﹣a﹣2=0,即(a﹣2)(a+1)=0,解得:a=2或a=﹣1,则P坐标为(1,2)或(﹣2,﹣1).点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.22.(12分)(2013•赤峰)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.考点:一次函数的应用.分析:根据九折列出远航旅行社消费钱数与人数的函数关系式,再分不超过20人和超过20人两种情况列出吉祥旅行社消费的钱数与人数之间的关系两种情况列出函数关系式,然后求出两个旅行社消费相同的情况的人数,然后讨论求解即可.解答:解:设消费的钱数为y元,学生人数为x人,①若x≤20,则吉祥旅行社:y=2000x,此时2000x>1800x,选择远航旅行社更优惠;=40000+1600x﹣32000,=1600x+8000,当1600x+8000=18000x时,即x=40时,选择两个旅行社消费相同,当x<40时,选择远航旅行社更优惠,x>40时,选择吉祥旅行社更优惠,综上所述,当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.点评:本题考查了一次函数的应用,读懂题目信息,列出两家旅行社的消费钱数与人数的关系式并求出消费相同的学生人数是解题的关键,难点在于要分情况讨论.23.(12分)(2013•赤峰)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP 平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.考点:切线的性质.分析:(1)连接OP,则OP⊥PQ,然后证明OP∥NQ即可;(2)连接MP,在直角△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ 的值,然后在直角△PNQ中利用三角函数即可求解.解答:(1)证明:连接OP.∵直线PQ与⊙O相切于P点,∴OP⊥PQ,∵OP=ON,∴∠OPN=∠ONP,又∵NP平分∠MNQ,∴∠OPN=∠PNQ,∴OP∥NQ∴NQ⊥PQ;(2)解:连接MP.∵MN是直径,∴∠MPN=90°,∴cos∠MNP===,∴∠MNP=30°,∴∠PNQ=30°,∴直角△PNQ中,NQ=NP•cos30°=3×=.点评:本题考查了切线的性质以及三角函数,正确利用三角函数求得∠MNP的度数是关键.24.(12分)(2013•赤峰)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE.考点:二次函数综合题;旋转的性质.分析:(1)根据旋转的性质,可得OC=OB,OD=OA,进而可得C、D两点的坐标;(2)由于抛物线过点A(﹣6,0),C(2,0),所以设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0),再将D(0,6)代入,求出a的值,得出抛物线的解析式,然后利用配方法求出顶点E的坐标;(3)已知A、B、E三点的坐标,运用两点间的距离公式计算得出AB2=40,BE2=40,AE2=80,则AB2+BE2=AE2,根据勾股定理的逆定理即可证明AB⊥BE.解答:解:(1)∵将△OAB绕点O按顺时针旋转90°,得到△ODC,∴△ODC≌△OAB,∴OC=OB=2,OD=OA=6,∴C(2,0),D(0,6);(2)∵抛物线过点A(﹣6,0),C(2,0),∴可设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0),∵D(0,6)在抛物线上,∴6=﹣12a,解得a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2),即y=﹣x2﹣2x+6,∵y=﹣x2﹣2x+6=﹣(x+2)2+8,∴顶点E的坐标为(﹣2,8);(3)连接AE.∵A(﹣6,0),B(0,2),E(﹣2,8),∴AB2=62+22=40,BE2=(﹣2﹣0)2+(8﹣2)2=40,AE2=(﹣2+6)2+(8﹣0)2=80,∴AB2+BE2=AE2,∴AB⊥BE.点评:本题考查了旋转的性质,二次函数的解析式及顶点坐标的求法,勾股定理的逆定理,综合性较强,难度不大.运用待定系数法求二次函数的解析式是中考的常考点,需熟练掌握,解题时根据条件设出适当的解析式,能使计算简便.25.(14分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:相似形综合题.分析:(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,则一定有∠DEF=90°,DE∥BC,AD=2AE,据此即可列方程求解.解答:解:(1)∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,AEFD是菱形;(3)△DEF为直角三角形,则一定有∠DEF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=.点评:本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。
(完整版)山东省潍坊市2013年中考数学真题试题(解析版)
2013年潍坊市初中学业水平考试数学试题一、选择题(本题共 12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确 的选项选出来•每小题选对得3分,选错、不选或选出的答案超过一个均记 0分.)1.实数0.5的算术平方根等于()•A.2B. 2C. —D. 12 2答案:C.考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键 2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()答案:A.考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.2012年,我国财政性教育经费支出实现了占国内生产总值比例达 务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达 “865.4亿元”用科学记数法可表示为()元.答案:B.考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同 . 其中的一名学生想要知道自己能否进入前 5名,不仅要了解自己的成绩, 还要了解这9名学 生成绩的(). A.众数 B.方差 C. 平均数 D. 中位数 答案:D.D.4%的目标.其中在促进义865.4亿元.数据89A. 865 10B. 8.65 10C. 8.65 101011D. 0.865 10答案:C.考点:科学记数法的表示。
点评:此题考查了科学记数法的表示方法•科学记数法的表示形式为 1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图是常用的一种圆顶螺杆,它的俯视图正确的是().a x 10n 的形式,其中B.考点:统计量数的含义•点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用 ,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑 •与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度 k6.设点A x 1, y 1和B x 2, y 2是反比例函数y图象上的两个点,当x 1 v x 2 v 0时,y 1 vxy ,则一次函数y 2x k 的图象不经过的象限是()考点:变量间的关系,函数及其图象 •点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.若在实数范围内有意义,则x的取值范围是【答案】x≤。
【解析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围。
根据题意得:1﹣3x≥0,解得:x≤。
【考点】二次根式有意义的条件。
2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.若a<<b,且a,b为连续正整数,则b2﹣a2=.【答案】7【解析】∵32<13<42,∴3<<4,即a=3,b=4,所以a+b=7.【考点】估算4.二次根式有意义,则实数x的取值范围是()A.x≥﹣2B.x>﹣2C.x<2D.x≤2【答案】B.【解析】根据被开方数大于等于0,得﹣2x+4≥0,解得x≤2.故选B.【考点】二次根式有意义的条件.5.使有意义的的取值范围是()A.B.C.D.【答案】C.【解析】∵有意义∴3x-1≥0解得:.故选C.【考点】二次根式有意义的条件.6.在函数中,自变量a的取值范围是.【答案】a≥2.【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.根据题意得:a-2≥0,解得a≥2,则自变量a的取值范围是a≥2.【考点】1.函数自变量的取值范围; 2.二次根式有意义的条件.7.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.【答案】;3【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,第7排是奇数排,最中间的也就是这排的第4个数是1,那么第3个就是:;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;3.8.已知实数a在数轴上的对应点,如图所示,则化简所得结果为【答案】2a+1.【解析】:由数轴表示数的方法得到a>0,然后利用二次根式的性质得到原式=|a|+|a+1|=a+a+1,再合并即可.试题解析:∵a>0,∴原式=|a|+|a+1|=a+a+1=2a+1.考点: 1.二次根式的性质与化简;2.实数与数轴.9.当1<x<3时,|1-x|+等于_________________【答案】2【解析】=|a|=当1<x<3时,1-x<0,x-3<0.∴原式=(x-1)+(3-x)=2.10.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.11.已知0<x<1,化简:-.【答案】2x.【解析】-=-=- ,因为0<x<1,所以原式=x+-(-x)=x+-+x=2x.12.计算:【答案】14.【解析】根据有理数的乘方、绝对值、零次幂、立方根、负整数指数幂的意义进行计算即可求出代数式的值.试题解析:.考点: 实数的混合运算.13.下列各式中计算正确的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式考点1: 平方根、立方根 相关知识:1.任何非负数都有平方根:正数有两个平方根,它们互为相反数,正数a 的平方根表示为a ±;0的平方根为0;负数没有平方根.2.非负数a 的非负平方根叫做算术平方根,表示为a .3.正数有一个正的立方根,负数有一个负的立方根,0的立方根为0. 任何数a 的立方根表示为3a . 相关试题1. (2011内蒙古乌兰察布,1,3分)4 的平方根是( ) A . 2 B . 16 C. ±2 D .±16 2 .(2011湖南怀化,1,3分)49的平方根为 A .7 B.-7 C.±7 D.±73 (2011山东日照,1,3分)(-2)2的算术平方根是( )(A )2 (B ) ±2 (C )-2 (D )2 4. (2011江苏泰州,9,3分)16的算术平方根是 . 5. (2011江苏盐城,9,3分)27的立方根为 ▲ . 6. (2011江苏南京,1,2分)9的值等于A .3B .-3C .±3D .37 .(2011江苏南通,3,3分)计算327的结果是A. ±33B. 33C. ±3D. 38. (2011江苏无锡,11,2分)计算:38 = ____________. 9 .(2011浙江杭州,1,3)下列各式中,正确的是( )A .2(3)3-=- B .233-=- C .2(3)3±=± D .233=±10. (2011广东茂名,12,3分)已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是 .考点2: 二次根式的定义相关知识:一般地,形如a (a ≥0)的代数式叫做二次根式。
二次根式定义要求被开方式是非负数。
只有在a ≥0时,a 才有意义。
相关试题1. (2011四川宜宾,2,3分)根式3-x 中x 的取值范围是( ) A .x≥3 B .x≤3 C .x <3 D .x >32. (2011山东滨州,2,3分)若二次根式12x +有意义,则x 的取值范围为( ) A.x ≥12B. x ≤12C.x ≥12-D.x ≤12-3. (2011湖北黄冈,3,3分)要使式子2a a+有意义,则a 的取值范围为_____________________.4. (2011湖北荆州,13,4分)若等式1)23(0=-x 成立,则x 的取值范围是 .5. (2011四川凉山州,5,4分)已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152- D .152考点3 二次根式的性质相关知识:二次根式的非负性,在0a ≥时,0a ≥。
相关试题1. (2011四川内江, 6分)已知2263(5)36(3)m n m m n -+-=---,则m n -= .2. (2011山东济宁,5,3分)若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-73. (2011山东日照,15,4分)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么x 2011-y 2011= .4. (2011内蒙古乌兰察布,13,4分)()0201112=-++y x 则yx =考点4 二次根式的运算法则相关知识:1.乘法法则a b ab ⋅=(a ≥0,b ≥0 ) 2.除法法则a a bb =(a ≥0,b >0 )相关试题1. (2011山东泰安,7 ,3分)下列运算正确的是( )A.25=±5B.43-27=1C.18÷2=9D.24·32=62. (2011山东济宁,4,3分)下列各式计算正确的是 A .235+=B .2222+= C .33222-= D .1210652-=-3. (2011山东潍坊,1,3分)下面计算正确的是( )A.3333+=B.2733÷=C.235=D.2(2)2-=-4. (2010湖北孝感,4,3分)下列计算正确的是( )A822-=B.2+3= 5 C.236⨯= D.824÷=考点5 二次根式的化简 相关知识:1.二次根式化简要求 (1)、被开方式中不含能开方的因数或因式,(2)、被开方式中没有分母2.化简的主要根据是2a a =(a ≥0), 必须注意公式的条件a ≥0 ,在a <0时,2a a =-。
相关试题1. (2011山东临沂,4,3分)计算221-631+8的结果是( )A .32-23 B .5-2C .5-3D .222. (2011上海,3,4分)下列二次根式中,最简二次根式是( ). (A)15; (B) 0.5; (C) 5; (D) 50 .3. (2011山东菏泽,4,3分)实数a 在数轴上的位置如图所示,则22(4)(11)a a -+- 化简后为A . 7B . -7C . 2a -15D . 无法确定a 1050第2题图4. (2011山东烟台,5,4分)如果2(21)12a a -=-,则( ) A .a <12B. a ≤12C. a >12D. a ≥12考点6 二次根式的估值相关知识:估值是二次根式部分常见题型,一般都是根据算术平方根的意义估值,当然能化简的先化简。
相关试题1. (2011安徽芜湖,14,5分)已知a 、b 为两个连续的整数,且28a b <<,则a b += .2. (2011安徽,4,4分)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和53. (2011山东威海,1,3分)在实数0、3-、2、2-中,最小的是( ) A .2-B .3-C .0D .24. (2011四川凉山州,25,5分)已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分,且21amn bn +=,则2a b += 。
考点7 二次根式的运算相关知识:运算顺序和运算法则和有理数的运算一样,只是在做完运算以后必须化简,最后的结果必须是最简的。
中考中的二次根式的运算题是很简单的。
比较多的题目是与分式结合,只要化简分式,代入求值即可。
相关试题1.(2011广东肇庆,11,3分)化简:12 = ▲ .2.(2011江苏南通,12,3分)计算:28-= ▲ .4.(2011山东聊城,13,3分)化简:20-5=_____________.5.(2011湖南衡阳,11,3分)计算123+= .6.(2011台湾台北,4)计算75147-+27之值为何?A .53B .33C .311D . 911 7.(2011台湾全区,17)17.计算631254129⨯÷之值为何?A .123 B .63 C .33 D .4338.(2011四川内江,6分)若201120121m =-,则54322011m m m --的值是 .9.(2011浙江省,7,3分)已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A.9B.±3C.3D. 5 10. (2011山东德州12,4分)当2x =时,2211x x x---=_____________.11. (2011山东威海,13,3分)计算(508)2-÷的结果是 .12. (2011江苏南京,9,2分)计算(21)(22)+-=_______________.13. (2011广东中山,8,4分)计算(348227)3-÷14. (2011山东枣庄,16,4分)对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =ba b a -+,如3※2=32532+=-.那么8※12= .15.(2011上海,19,10分)计算:01(3)271232--+-++.16. (2011四川绵阳19(1),4)计算:(12)-2 -|22-3 | +3817. (2011广东茂名,16(1),3分)化简:)212(8-⨯18. (2011四川宜宾,17⑴,5分)计算:20110)1(51520)3(3-+---π19. (2011山东烟台,19,6分)先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.20. (2011山东日照,18,6分)化简,求值:111(11222+---÷-+-m m m m m m) ,其中m =3.21. (2011江西,17,6分)先化简,再求值:(aa a a -+-112)÷a ,其中a =12+.22. (2011江苏苏州,21,5分)先化简,再求值:(a -1+12+a )÷(a 2+1),其中a =2-1.23. (2011江苏泰州,20,8分)解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值.24. (2011四川成都,17,8分)先化简,再求值:12)113(2--÷--+x x x x x x ,其中23=x .25. (2011四川宜宾,17⑵,5分)先化简,再求值:231839x x ---,其中103x =-.26. (2011重庆綦江,21,10分) 先化简,再求值:)12(1)1(22x xx xx --÷-+ 其中x =227. (2011湖北黄石,18,7分)先化简,后求值:(2222444yxy x yy x ++-)·(x y x xy+-24),其中⎪⎩⎪⎨⎧+=-=1212y x28. (2011山东东营,18(2),4分)先化简,再求值: 22121(1)1x x x x -+-÷-,其中2x =29. (2011内蒙古乌兰察布,19,8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=31+30. (2011贵州安顺,20,8分)先化简,再求值:⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a aa ,其中a =2-331. (2011湖南湘潭市,18,6分)先化简,再求值:)111(+-x xx ,其中15-=x .。