华南农业大学 离散数学 期末考试2013试卷及答案

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于多少?A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B2. 命题“若x>0,则x^2>0”的逆否命题是?A. 若x^2≤0,则x≤0B. 若x^2>0,则x>0C. 若x≤0,则x^2≤0D. 若x≤0,则x^2>0答案:C3. 在图论中,一个图是连通的当且仅当?A. 存在一个顶点到所有其他顶点的路径B. 存在一个顶点到所有其他顶点的回路C. 图中没有孤立的顶点D. 图中至少有两个顶点答案:A4. 以下哪个选项是二元关系的自反性质?A. 对于所有元素x,(x, x)∉RB. 对于所有元素x,(x, x)∈RC. 对于所有元素x,y,(x, y)∈R且(y, x)∈RD. 对于所有元素x,y,z,(x, y)∈R且(y, z)∈R则(x, z)∈R5. 以下哪个命题是真命题?A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 所有的马都不是白色的答案:B6. 以下哪个选项是等价命题?A. p∧q和p∨qB. p∧q和¬p∨¬qC. p∧¬q和¬p∨qD. p∧q和¬p∧¬q答案:D7. 在集合论中,以下哪个操作是幂集?A. 并集B. 交集C. 对称差D. 包含所有子集的集合答案:D8. 以下哪个选项是图的路径?A. 一条边B. 一个顶点C. 一系列顶点和边,使得每对连续的顶点由一条边连接D. 一个环答案:C9. 以下哪个选项是命题逻辑中的合取?B. p∧qC. ¬pD. p→q答案:B10. 以下哪个选项是图的连通分量?A. 一个顶点B. 一条边C. 图的一个极大连通子图D. 图的一个极大不连通子图答案:C二、填空题(每题2分,共20分)1. 集合{1,2,3}的子集个数为__7__。

华南农业大学 离散数学 期末考试2012试卷 2013-01-08

华南农业大学 离散数学 期末考试2012试卷 2013-01-08
A、B、C、D、
23、以下无向图中,不是平面图的是_____。
A、B、C、D、
24、由0、1、2、3这四个数字能构成_____个3位数。
A、64 B、48 C、24 D、18
25、四个人比赛,名次允许并列,则有______种比赛结果。
A、256 B、72 C、75 D、24
得分
二、计算题:(本大题共5个小题,每题5分,共25分)
2、一个多米诺骨牌是一个由两个正方体组成的长方体,每个正方体上用数字0,1,…,6标注,一套多米诺骨牌如下图所示。一个多米诺骨牌的两个正方体上可以有相同的数字,请说明一套多米诺骨牌可以放在一个回路里,并且相邻两张骨牌连接处数字相同。(4分)
解:(1)R的集合表达式:
R的关系图:R的关系矩阵:
(2)R的自反闭包r(R)关系图:对称闭包s(R)关系图:
13、设 ,*表示求两个数的最小公倍数的运算,则对于*运算的幺元是______。
A、0 B、1 C、任意值D、不存在
14、设R是实数集合,“ ”为普通乘法,则代数系统< ,×>是_______。
A、群B、阿贝尔群C、半群D、含幺半群
15、非同构的无向的4阶自补图有______个。
A、0 B、1 C、2 D、3

其中 , 分别表示关系 的自反闭包和传递闭包。
3、设 阶 条边的无向图 中, ,证明 中存在顶点 : ≥3。
4、若 是群, ,定义G中的运算“ ”为: ,对
证明 为含幺半群。
得分
四、应用题(共4分,任选一题,多选不加分)
1、一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜。已知驴一次性可驮1000根胡萝卜,但每走1公里又要吃掉1根胡萝卜。问:商人最多可卖出多少胡萝卜?(4分)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。

(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。

(10分)5. 试判断),(≤z 是否为格?说明理由。

(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。

(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。

求证:g f 和都是满射;但不是单射。

(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。

华农-2013-2014(1)大学数学1试卷(A卷)参考答案

第 1 页 共 3 页华南农业大学期末考试试卷(A 卷)参考答案2013-2014学年第 1 学期 考试科目: 大学数学Ⅰ 考试类型:(闭卷)考试 考试时间: 120 分钟一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)1. C2. B3. D4. C5. A二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1. 2e -2. 33. 12-4. -15. 640220002-⎛⎫⎪- ⎪ ⎪⎝⎭6. 3, 124,,ααα (注: 答案不唯一)三、 计算题(本大题共 5 小题,每小题 7 分,共35分)1. 解 00111lim lim 1(1)x x x x x e x x e x e →→--⎛⎫-= ⎪--⎝⎭(2分) 01lim x x e xx x→--=⋅ (3分) 01lim 2x x e x→-= (5分) 01lim 22x x e →==. (7分) 2. 解 2arctan 1xy x x'=++, (3分) 22222211221(1)(1)x x x y x x x +-⋅''=+=+++. (7分)3. 解22x xx e dx x de --=-⎰⎰22x x x e xe dx -=-+⎰ (2分) 22x x x e xde -=--⎰第 2 页 共 3 页()22x x x x e xe e dx --=---⎰ (5分) 22()x x x x e xe e C --=--++2(22)x x x e C -=-+++. (7分)4. 解2122111()ln f x dx x dx xdx --=+⎰⎰⎰ (2分)[] 123111ln 3x x x x -⎡⎤=+-⎢⎥⎣⎦12ln 23=-. (7分)5. 解12(2)sin y zy x y x x-∂=+-∂, (3分) 由ln(2)(2)cos cos y y x y z x y x e x +=++=+, 得[]ln(2)ln(2)(2)ln(2).2y x y y y z y e y x y x y x y y x y +⎛⎫∂'=⋅+=+++ ⎪∂+⎝⎭ (7分) 四、解答题(本大题共 4 小题,每小题 8 分,共32分) 1. 解 依题意,220,0x x y y =='''=<,即40, 20a b a -=<. (1) (2分)又曲线bx ax y -=2与x 轴的交点坐标为()(0,0),,0(4,0)b a=, (4分)所以曲线与x 轴所围图形的面积为42064()883ax bx dx a b -=-=⎰ (2) (6分) 联立(1)、(2), 解得3, 3.4a b =-=-. (8分)2.解 积分区域为2{(,)|01,}D x y y y x y =≤≤≤≤ (2分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰ (4分) 1(1)cos y ydy =-⎰ (5分)11cos cos ydy y ydy =-⎰⎰1cos1.=- (8分)第 3 页 共 3 页3. 解(1)TAB =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪ (2分)=861810310⎛⎝ ⎫⎭⎪⎪⎪. (4分)(2) 因为1203402121A ==--, (6分)所以, 34464(2)128A A ==⨯-=-. (8分) 4. 解 方程组的增广矩阵2131210211021113201112130141r r r r A λλ+---⎛⎫⎛⎫ ⎪ ⎪=--−−−→- ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭,32102101110050r r λ+-⎛⎫ ⎪−−−→- ⎪ ⎪-⎝⎭. (3分)(1) 当5λ≠时, ()()3R A R A n ===, 方程组有唯一解; (4分) (2) 当5λ=时,()()23R A R A n ==<=,方程组有无穷多解, (5分)此时得同解方程组1323121x x x x =--⎧⎨=+⎩(3x 为自由未知量), 取3x k =,得通解为1231211,.01x x k k R x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(8分)。

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

2013大学数学2A_华南农业大学期末考试试卷.

华南农业大学期末考试试卷(A 卷)2013-2014学年第 2 学期 考试科目: 大学数学Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共6小题,每小题3分,共18分)1. 随机事件A 与B 互不相容,且A B =,则()P A =______________.2.设随机变量的分布律为1(),1,2,2kP X k k === ,则(4)P X >=___________ 3. 已知离散型随机变量X 的概率分布为:(1)0.2,(2)0.3,(3)0.5P X P X P X ======求X 的方差为()D X =___________4. 123,,X X X 是来自于标准正态总体X 的一个样本,则统计量2122231()2X X X +服从的分布是______________5. 12,n X X X 是来自于正态总体2~(,)X N μσ, 当μ已知时,则方差2σ的置 信度为1α-的置信区间是___________________6. 一元线性回归模型为201,~(0,)y x N ββεεσ=++,若(,),1,2i i x y i n = 为一组观察值,则参数1β 的估计量为1ˆβ=________________(用,,,i i x y x y 的表达式)二、单项选择题(本大题共6小题,每小题3分,共18分) 1. 假设任意的随机事件A 与B ,则下列一定有( ) A. ()1P A B += B. ()1()P A B P AB +=- C. ()0P A B += D. 0()1P A B <+<2. 连续型随机变量X 的密度函数()f x 和分布函数()F x ,则下列正确的是( )A. 0()()xF x f t dt =⎰ B. ()()F x f x dx +∞-∞=⎰C. ()1()xF x f t dt +∞=-⎰D.()1+()xF x f t dt +∞=⎰.3. 设随机变量X 和Y 相互独立,且~(1,2),~(1,2)X N Y N -,则下列正确的是( )A. (0)0.5P X Y -≤=B. (1)0.5P X Y -≤=C. (0)0.5P X Y +≤=D.(1)0.5P X Y +≤=.4. 设12,n X X X 是来自于标准正态分布总体X 的一个样本,X 和S 分别是该 样本均值和样本标准差,则下列正确的是( ) A. ~(0,1)X N B. ~(0,1)nX NC. ~(1)Xt n S - D. 221~()ni i X n χ=∑5. 设123,,X X X 是来自于均值为θ的指数分布总体的一个样本,其中θ未知,则下列估计量中不是θ的无偏估计量( ). A. 1231225X X X T ++=B. 12322527X X X T ++=C. 12332327X X X T ++=D. 12342338X X X T ++=6. 设总体2~(,)X N μσ,其中2σ已知,12,,n x x x 是来自于该总体的样本观测值,记x 为样本均值,对假设检验:H μμ= vs :H μμ≠取检验统计量为x U =α下拒绝域为( )A. /2{}U u α>B. {}U u α>C. {}U u α>D. /2{}U u α>三、计算题(本大题共4小题,共40分)1.(本题10分) 发报台分别以概率 0.6 和 0.4发出信号“ .”和“ - ”,•由于通信系统受到干扰,当发出信号“ .”时,收报台分别以概率 0.8 及 0.2 收到信号 “ .”和“ - ”,同样,当发报台发出信号“ - ”时,收报台分别以概率 0 .9 和 0.1 收到信号“ - ”和“ .”.求 (1) 收报台收到信号“ .”的概率.(2) 当收报台收到信号“ .”时,发报台确系发出信号“ .”的概率.2. (本题10分)设随机变量X 的密度函数为||(),x f x Ce x -=-∞<<+∞求:(1)常数C ;(2) X 落在区间(0,1)内的概率; (3)(5)P X ≥3. (本题10分)设随机变量X 的概率密度函数为0()0xe xf x x -⎧>=⎨≤⎩,求(1)随机变量X 的分布函数()X F x (2)求2Y X =的概率密度函数()Y f y4. (本题10分)设X 和Y 的联合分布函数为220,0(,)0x ye x yf x y --⎧>>=⎨⎩其他,求(1) X 和Y 的边缘密度函数 (2) X 和Y 相互独立吗?请说明理由 (3) 求Y 的期望()E Y 和方差()D Y四、解答题(本大题共3小题,每题8分,共24分)1. (本题8分)假定某地一旅游者的消费额X 服从正态分布2(,)N μσ,且标准差σ=12元,现在要对该地旅游者的平均消费额()E X 加以估计,为了能以95%的置信度相信这种估计误差小于2元,问至少要调查多少人? (0.9750.951.96, 1.64u u ==)2.(本题8分)假定考试成绩服从正态分布,在一次英语测验中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分? (0.9750.95(35) 2.0301,(35) 1.6896t t ==)3.(本题8分)用4种不同的安眠药在兔子上试验,特选24只健康的兔子,随机的把它们均分为4组,各组服1组安眠药,安眠药的数据经过统计分析后,形成下面的方差分析表:(1)给出本实验的原假设,检验统计量(2)在方差分析表中,填入括号内的数字以完成方差分析表。

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 下列哪一项是图论中的基本概念?A. 集合B. 函数C. 映射D. 顶点答案:D2. 在逻辑中,下列哪一项表示合取?A. ∨B. ∧C. →D. ¬答案:B3. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬p → p答案:B4. 在集合论中,下列哪个符号表示集合的交集?A. ∪B. ∩C. ⊆D. ⊂答案:B二、填空题(每题5分,共20分)1. 如果一个图是无环的,则称该图为________。

答案:树2. 在布尔代数中,逻辑或运算的符号是________。

答案:∨3. 如果一个函数f: A → B,则称A为函数f的________。

答案:定义域4. 一个集合的子集个数是2的该集合元素个数次方,这个结论被称为________。

答案:幂集定理三、简答题(每题10分,共30分)1. 请简述图的邻接矩阵和邻接表的定义。

答案:邻接矩阵是一个二维数组,其元素表示图中两个顶点之间是否存在边。

邻接表是图的一种表示方法,其中每个顶点对应一个链表,链表中存储的是与该顶点相邻的顶点。

2. 什么是哥德尔不完备性定理?答案:哥德尔不完备性定理表明,在任何包含基本算术的一致形式系统内,都存在这样的命题:这个命题既不能被证明为真,也不能被证明为假。

3. 请解释什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个子集,它包含所有满足特定条件的有序对。

例如,整数集合上的大于关系就是一个二元关系。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4},请计算集合A的幂集。

答案:集合A的幂集是{∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4},{2,3,4}, {1,2,3,4}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业①本试题分为试卷与答卷2部分。

试卷有四大题,共6页。

②所有解答必须写在答卷上,写在试卷上不得分。

一、选择题(本大题共 25 小题,每小题 2 分,共 50 分)1、下面语句是简单命题的为_____。

A 、3不是偶数B 、李平既聪明又用功C 、李平学过英语或日语D 、李平和张三是同学2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。

”可以符号化为______。

A 、r q p →⌝∧⌝B 、r q p ⌝→∧⌝C 、r q p →⌝∧D 、r q p ∧→3、下列谓词公式不是命题公式P →Q 的代换实例的是______。

A 、)()(y G x F →B 、),(),(y x yG y x xF ∃→∀C 、))()((x G x F x →∀D 、)()(x G x xF →∃4、设个体域为整数集,下列公式中其值为1的是_____。

A 、)0(=+∃∀y x y xB 、)0(=+∀∃y x x yC 、)0(=+∀∀y x y xD 、)0(=+∃⌝∃y x y x5、下列哪个表达式错误_____。

A 、B x xA B x A x ∧∃⇔∧∃)())(( B 、B x xA B x A x ∨∃⇔∨∃)())((C 、B x xA B x A x →∃⇔→∃)())((D 、)())((x xA B x A B x ∃→⇔→∃ 6、下述结论错误的是____。

A 、存在这样的关系,它可以既满足对称性,又满足反对称性B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性C 、存在这样的关系,它可以既满足自反性,又满足反自反性D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。

A 、自反性、对称性和传递性B 、自反性、反对称性和传递性C 、反自反性、对称性和传递性D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。

A 、R 是自反的,则2R 一定是自反的B 、R 是反自反的,则2R 一定是反自反的C 、R 是对称的,则2R 一定是对称的D 、R 是传递的,则2R 一定是传递9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。

A 、11--R RB 、11--S RC 、11--S SD 、11--R S10、右图描述的偏序集中,子集},,{f e b 的上界为_____。

A 、c b , B 、b a , C 、b D 、c b a ,,11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。

A 、1,2,2,3,4,5B 、1,2,2,3,3,5C 、2,2,3,4,5,6D 、1,1,2,3,4,512、设无向图G 的关联矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000210010111000111,则G 的顶点数与边数分别为_____。

A 、 4, 5 B 、4, 10 C 、5, 4 D 、5, 1013.设G 是简单有向图,可达矩阵P(G)刻划了_____的关系。

A 、点与边B 、边与点C 、点与点D 、边与边14.设},,,,,{f e d c b a V =,},,,,,,,,,,,{><><><><><><=e f e d d a a c c b b a E ,则有向图>=<E V G ,是_____。

A 、强连通的B 、单向连通的C 、弱连通的D 、不连通的 15、以下无向图中,不是二部图的是_____。

C16、下图中既不是欧拉图,也不是哈密尔顿图的是_______。

CD17、以下无向图中,不是平面图的是_____。

18、已知一棵无向树T 中有4度、3度和2度分支点各1个,其余顶点均为树叶,则T 有 个树叶。

A 、2B 、3C 、4D 、519、具有6 个顶点,12条边的连通简单平面图中,次数为3的面有______个。

A 、5B 、 6C 、 7D 、 8 20、下面编码_____不是前缀码。

A 、11,00,10,01B 、01,11,101,1001C 、11,101,001,011,010D 、11,010,011,1011,0101,1010121、满足等式84321=+++x x x x 的正整数解的个数有______。

A 、47CB 、48C C 、311C D 、411C22.在自然数集N 上,下列_____运算是可结合的。

(对任意N b a ∈,) A 、b a b a -=* B 、),max(b a b a =* C 、b a b a 5+=* D 、b a b a -=*23、设V 1=<R*,+>,V 2=< R*, ⋅> 是代数系统, R*为非零实数的集合,+为普通加法,⋅为普通乘法,下面函数中是V 1到V 2的同态映射的是_____。

A 、f (x )=2x B 、f (x )= -x C 、 f (x )=1/x D 、f (x )=e x24、设>⊕<,6Z 是代数系统,}5,4,3,2,1,0{6=Z ,⊕为模6加法运算,则(5)-4= _____。

A 、1B 、1/625C 、4D 、2 25.具有如下定义的代数系统>*<,G ,_____不构成群。

A 、}10,1{=G ,*是模11乘B 、}9,5,4,3,1{=G ,*是模11乘C 、}1,0{=G ,*是普通加法D 、Q G =(有理数集),*是普通加法二、计算题:(本大题共 5个小题,每题 5 分,共 25 分) 1、 求下列谓词公式的前束范式,请写出推导过程:)),(),((y x yG y x yF x ∀→∃∀2、给出集合}12,10,9,8,6,4,3,2{=A ,分别求出: (1)画出集合A 的整除偏序关系的哈斯图;(2)指出集合A 的最大元,最小元,极大元,极小元;(3)指出集合}6,4,2{=B 的上界,下界,最小上界,最大下界。

3、如下图所示的赋权图表示某六个城市621,,,V V V ,及预先算出它们之间直接通信线路造价(以百万元为单位),试给出一个设计方案,使得各城市之间能够通信而且总造价最小,并计算出最小造价。

4、画出5阶所有非同构的根树。

5、四个人比赛,名次允许并列,总共有多少种比赛结果。

三、证明题:(本大题共 4 个小题,每题 5 分,共 20 分)1、 用等值演算法证明下列等值式。

p → (q ∧r) ⇔(p → q) ∧(p → r)2、设++⨯=Z Z A ,在A 上定义二元关系R 如下:| ,,,{>><><<=d c b a R ,,++⨯>∈<Z Z b a ,,++⨯>∈<Z Z d c }c b d a +=+证明:R 是A 上的等价关系。

3、设T=<V , E>是n 阶非平凡的无向树,证明:T 至少有两片树叶。

4、实数集R 上定义运算*,2ba b a ⋅=*,·为普通乘法。

判断<R,*> 能构成半群、独异点和群中的何种代数系统。

写出详细证明过程。

四、 应用题(2选1,两道都做仅以第1道算分;5分)1、构造一个与英文字母b, d, g, o ,y e 对应的前缀码,并画出该前缀码对应的二叉树,写出good bye 的编码信息。

2、计算机系期末要安排7门公共课的考试,课程编号为1到7,下列每一对课程有学生同时选修:1和2、1和3、1和4、1和7、2和3、2和4、2和5、2和7、3和4、3和6、3和7、4和5、4和6、5和6、5和7、6和7。

这7门课的考试至少要安排在几个不同的时间段?给出一个安排方案。

华南农业大学期末考试参考答案(A 卷)一、选择题(本大题共 25 小题,每小题 2 分,共 50 分)二、计算题:(本大题共 5 个小题,每题 5 分,共 25 分)1、解:)),(),(()),(),(()),(),(()),(),((z x G y x F z y x z x zG y x F y x z x zG y x yF x y x yG y x yF x →∀∀∀⇔∀→∀∀⇔∀→∃∀⇔∀→∃∀2、解:(1) 集合A 的整除偏序关系的哈斯图(2)集合A 没有的最小元与最大元; 极小元为2,3;极大元为8,9,10,12。

(3)集合}6,4,2{=B 的上界为12,下界为2,最小上界12,最大下界2。

3、解:首先将各边的权重按小到大排序:1,2,3,4,5,6,7,8,9然后使用避圈法得到如下最小生成树,其总权重为1+2+4+6+8=214、5、解:以下几种情况: (1)四个不同名次:4!=24(2)三个不同名次:3!4!/2!/2!=36 (3)两个不同名次:4+6+4=14 (4)同一个名次:1 一共24+36+14+1=75三、证明题:(本大题共 4 个小题,每题 5 分,共 20 分)1、证明:p → (q ∧r) ⇔)(r q p ∧∨⌝⇔)()(r p q p ∨⌝∧∨⌝⇔(p → q) ∧(p → r)2、证:| ,,,{>><><<=d c b a R ,,++⨯>∈<Z Z b a ,,++⨯>∈<Z Z d c }c b d a +=+ | ,,,{>><><<=d c b a R ,,++⨯>∈<Z Z b a ,,++⨯>∈<Z Z d c }d c b a -=- (1)自反性:对于任意的A y x >∈<,R y x y x y x y x >>∈<>⇔<<-=-,,,(2)对称性:对于任意的R v u y x >>∈<><<,,,R y x v u y x v u v u y x >>∈<>⇔<<-=-⇔-=-⇔,,,(3)传递性:对于任意的R s r y x s r y x s r v u v u y x >>∈<>⇔<<-=-⇔-=-∧-=-⇔,,,3、证明:由于T 为非平凡树,则n>1,且任何顶点的度数都大于等于1;设T 中m 条边,k 片树叶(顶点度数为1),则其余n-k 个分支点的度数均大于等于2,由握手定理与树的性质(m=n-1)有:)(2)(22)1(22k n k v d n n m i -+≤=-=-=∑,显然k ≥2,这说明T 至少有两片树叶。

相关文档
最新文档