有理数的运算练习题(综合题难题)教案资料
有理数及其运算教案

教师: 科目:学生:上课时间: 授课内容:有理数及其运算 第二章 有理数及其运算第一节、有理数的意义1. 数怎么不够用了知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,182,5.2也可写作+3,182+,+5.2;零既不是正数,也不是负数。
或巩固练习:选择题 1.关于数“0”,以下各种说法中,错误的是 ( )A. 0是整数B. 0是偶数C. 0是自然数D. 0既不是正数也不是负数2.–3.782 ( )A. 是负数,不是分数B. 不是分数,是有理数C. 是分数,不是有理数D. 是分数,也是负数二、将下列各数填入相应的集合中。
17,-1,12,0,-3.01,0.62,-15,182-,180,-42,-45%,π,1 整数:______________________ 自然数:__________________________正数:______________________ 负数: __________________________偶数:______________________ 奇数: __________________________分数:______________________ 非负数:__________________________非负整数: _________________ 非正分数:________________________非负有理数:________________ 有理数: ________________________填空题1、一个数的绝对值是 6 ,这个数是 。
2、绝对值小于3的整数有 个。
3、119-的相反数的倒数是 。
4、计算:20022(1)(2)0-⨯-⨯= 。
5、如果216a =,那么 a= 。
6、如果规定上升8米记作8米,那么-7米表示 ______________。
有理数的概念教案例题习题

有理数的概念-教案例题习题教案章节:一、有理数的定义与分类二、有理数的加法与减法三、有理数的乘法与除法四、有理数的乘方五、有理数的混合运算一、有理数的定义与分类1. 概念讲解:有理数是可以表示为两个整数比例的数,其中分子和分母都是整数,分母不为零。
2. 案例分析:分析几个具体的有理数案例,如2/3, -5/4等,解释它们是有理数的原因。
3. 习题练习:b. 找出下列有理数的相反数:2/5, -7/8二、有理数的加法与减法1. 概念讲解:有理数的加法是将两个有理数的分子相加,分母保持不变;有理数的减法则是将减数的分子取相反数后相加。
2. 案例分析:分析几个具体的有理数加法和减法案例,如2/3 + 1/4, -5/6 2/3等,解释运算过程。
3. 习题练习:三、有理数的乘法与除法1. 概念讲解:有理数的乘法是将两个有理数的分子相乘,分母相乘;有理数的除法则是将除数的分子乘以倒数,再与被除数的分子相乘,分母相乘。
2. 案例分析:分析几个具体的有理数乘法和除法案例,如2/3 ×4/5, -5/6 ÷2/3等,解释运算过程。
3. 习题练习:四、有理数的乘方1. 概念讲解:有理数的乘方是指将一个有理数自乘若干次,其中指数表示自乘的次数。
2. 案例分析:分析几个具体的有理数乘方案例,如2^3, (-3/4)^2等,解释运算过程。
3. 习题练习:五、有理数的混合运算1. 概念讲解:有理数的混合运算是指在一个表达式中包含有理数的加减乘除和乘方等运算。
2. 案例分析:分析几个具体的混合运算案例,如2/3 + 1/2 ×3/4, -5/6 ÷(-2/3) ×(-1/2)^2等,解释运算过程。
3. 习题练习:六、有理数的应用-比例与比例尺1. 概念讲解:比例是两个有理数的比较,比例尺是地图上距离与实际距离的比。
2. 案例分析:通过实际案例,如购物时打折的比例计算,地图上的距离与实际距离的换算等,解释比例和比例尺的计算方法。
有理数的概念教案例题习题

有理数的概念-教案例题习题第一章:有理数的概念与分类1.1 教学目标:了解有理数的定义及特点掌握有理数的分类方法能够正确识别各种有理数1.2 教学内容:有理数的定义及特点有理数的分类:整数、分数整数的分类:正整数、零、负整数分数的分类:正分数、负分数1.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学1.4 教学步骤:1. 引入话题:讨论日常生活中遇到的数,如身高、体重、温度等,引出有理数的概念2. 讲解有理数的定义及特点,如有限小数、无限循环小数等3. 讲解有理数的分类方法,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数的理解和分类方法5. 通过习题练习,巩固学生对有理数概念的理解1.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数概念的理解程度第二章:有理数的运算2.1 教学目标:掌握有理数的加、减、乘、除运算方法能够正确进行有理数的混合运算2.2 教学内容:有理数的加法、减法、乘法、除法运算方法有理数的混合运算顺序及运算法则2.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学2.4 教学步骤:1. 复习有理数的概念和分类,引出有理数的运算2. 讲解有理数的加、减、乘、除运算方法,并通过案例分析让学生理解并掌握3. 讲解有理数的混合运算顺序及运算法则,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数运算的理解和方法5. 通过习题练习,巩固学生对有理数运算的掌握程度2.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数运算的理解程度第三章:有理数的性质3.1 教学目标:掌握有理数的性质,如相反数、倒数、绝对值等能够运用有理数的性质解决实际问题3.2 教学内容:有理数的性质:相反数、倒数、绝对值、乘方等3.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学3.4 教学步骤:1. 复习有理数的概念、分类和运算,引出有理数的性质2. 讲解有理数的相反数、倒数、绝对值等性质,并通过案例分析让学生理解并掌握3. 讲解有理数的乘方运算方法,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数性质的理解和运用方法5. 通过习题练习,巩固学生对有理数性质的掌握程度3.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数性质的理解程度第四章:有理数的应用4.1 教学目标:能够运用有理数解决实际问题,如长度、面积、体积等计算能够运用有理数进行简单的金融计算,如利息、折扣等4.2 教学内容:有理数在实际问题中的应用,如长度、面积、体积等计算有理数在金融计算中的应用,如利息、折扣等计算4.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学4.4 教学步骤:1. 复习有理数的概念、分类、运算和性质,引出有理数的应用2. 讲解有理数在实际问题中的应用方法,如长度、面积、体积等计算,并通过案例分析让学生理解并掌握3. 讲解有理数在金融计算中的应用方法,如利息、折扣等计算,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数应用的理解和运用方法5. 通过习题练习,巩固学生对有理数应用的掌握程度4.5 教学评价:通过课堂提问、习第五章:有理数的综合练习5.1 教学目标:巩固对有理数的概念、分类、运算、性质的理解提高解决实际问题的能力5.2 教学内容:综合练习题,涵盖有理数的概念、分类、运算、性质等知识点5.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学5.4 教学步骤:1. 复习有理数的概念、分类、运算、性质,强调重点和难点2. 发放综合练习题,让学生独立完成3. 讲解练习题,解答学生的疑问4. 进行小组讨论,让学生分享自己的解题思路和方法5. 通过习题练习,巩固学生对有理数的综合掌握程度5.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数的综合理解程度第六章:有理数与无理数的区别6.1 教学目标:理解有理数和无理数的概念掌握有理数和无理数的区别6.2 教学内容:有理数和无理数的定义有理数和无理数的性质有理数和无理数的区别6.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学6.4 教学步骤:1. 引入有理数和无理数的概念,让学生了解它们的存在2. 讲解有理数和无理数的性质,并通过案例分析让学生理解并掌握3. 讲解有理数和无理数的区别,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数和无理数区别的理解5. 通过习题练习,巩固学生对有理数和无理数的掌握程度6.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数和无理数的理解程度第七章:无理数的概念与性质理解无理数的概念掌握无理数的性质7.2 教学内容:无理数的定义无理数的性质无理数的应用7.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学7.4 教学步骤:1. 引入无理数的概念,让学生了解无理数的存在2. 讲解无理数的性质,并通过案例分析让学生理解并掌握3. 讲解无理数的应用,如圆的周长、面积等,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对无理数性质的理解和运用方法5. 通过习题练习,巩固学生对无理数的掌握程度7.5 教学评价:通过课堂提问、习题练习等方式评估学生对无理数的理解程度第八章:无理数的运算8.1 教学目标:掌握无理数的运算方法能够正确进行无理数的混合运算无理数的加法、减法、乘法、除法运算方法无理数的混合运算顺序及运算法则8.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学8.4 教学步骤:1. 复习无理数的概念和性质,引出无理数的运算2. 讲解无理数的加法、减法、乘法、除法运算方法,并通过案例分析让学生理解并掌握3. 讲解无理数的混合运算顺序及运算法则,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对无理数运算的理解和方法5. 通过习题练习,巩固学生对无理数运算的掌握程度8.5 教学评价:通过课堂提问、习题练习等方式评估学生对无理数运算的理解程度第九章:无理数在实际中的应用9.1 教学目标:能够运用无理数解决实际问题,如圆的周长、面积等计算9.2 教学内容:无理数在实际问题中的应用,如圆的周长、面积等计算9.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学9.4 教学步骤:1. 复习无理数的概念和性质重点和难点解析1. 有理数的概念与分类:理解有理数的定义及特点,掌握有理数的分类方法。
有理数加减及混合运算教案

有理数的加法(1)20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。
可是上述问题不能得到确定答案,因为问题中并未指出行走方向。
二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。
(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方50米处。
这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处, 写成算式就是: (―20)+(―30)=―50。
(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。
(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。
即这位同学位于原来位置的( )方( )米处。
后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=( ); (+3)+(―10)=( ); (―5)+(+7)=( ); (―6)+ 2 = ( )。
再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。
(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。
我们不难得出它们的结果。
2.概括:综合以上情形,我们得到有理数的加法法则: 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。
有理数的混合运算练习题(含答案)(大综合17套)资料汇编

D.-30
A.0
B.-54
C.-72
D.-18
3. 计算 1 (5) ( 1) 5
5
5
A.1
B.25 C.-5
D.35
4. 下列式子中正确的是( )
A. 24 (2)2 (2)3 B. (2)3 24 (2)2
C. 24 (2)3 (2)2
D. (2)2 (3)3 24
5. 24 (2)2 的结果是( )
有理数的混合运算练习题(含答案)(大综合 17 套)
有理数混合运算练习题及答案 第 1 套
同步练习(满分 100 分) 1.计算题:(10′×5=50′)
13
(1)3.28-4.76+1 - ;
24
13 2
(2)2.75-2 -3 +1 ;
64 3
13
(3)42÷(-1 )-1 ÷(-0.125);
A.4
B.-4
C.2 D.-2
6. 如果 a 1 0, (b 3)2 0 ,那么 b 1的值是( ) a
A.-2 B.-3 C.-4 D.4
二.填空题
1.有理数的运算顺序是先算
,再算
,最算
;如果有括号,那么先算
。
2.一个数的 101 次幂是负数,则这个数是
。
3. 7.2 0.9 5.6 1.7
拓展测控
12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3
(3)(10-4)×3-(-6)
[解题思路]运用加,减,乘除四种运算拼凑得 24 点.
一.选择题
1. 计算 (2 5)3 ( )
有理数的混合运算习题 第 3 套
A.1000 B.-1000
有理数混合运算教案(汇总13篇)

有理数混合运算教案(汇总13篇)有理数混合运算教案第1篇教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.课堂教学过程设计一、从学生原有认知结构提出问题1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-101-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.二、讲授新课前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.有理数混合运算教案第2篇教学目的:1、要求学生理解加减混合运算统一为加法运算的意义。
2、能初步掌握有关有理数的'加减混合运算。
教学分析:重点:如何更准确地把加减混合运算统一成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
教学过程:一、知识导向:本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
有理数的加减混合运算教案(优秀4篇)
有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)
第二章有理数及其运算 6 有理数的加减混合运算第1课时教学重点与难点教学重点:1.含有分数或小数的有理数加减运算.2.有的题目可以先写成省略括号的和的形式再计算.3.还有的题目可以先将加减运算统一成加法,再按照加法法那么计算.教学难点:1.感受算法的多样化,并选择好适合自己思维特点的某种方法.2.用加减法列出算式解决生活中的实际问题.学情分析认知根底:学生在前面几节课中已经学习过有理数的加法、减法的法那么,并利用它们解决了一些简单的实际问题,但前面的运算多为整数运算不含分数或小数的运算,且多为单纯的加法或减法运算,而很少有加法、减法的混合运算.同时在本章前面的数学学习中学生已经具备了一定的运算技能,这些为本节课的学习作了很好的知识准备.活动经验根底:前面所学的内容虽然比拟单一,但是即使是一道加法计算题,往往也有不同的算法,而且有的算法明显比拟简捷.例如学生们在计算同一道题时,有的同学算的特别快,而有的同学就要算很长时间.这种差异,使得算得快的同学有优越感,算得慢的同学有渴望互相交流方法的好奇心.这些体验都成为开展本节课学习的积极因素.教学目标1.使学生理解有理数的加减法可以转化为加法,并感受、体会“代数和〞的思想(不必出现名称).2.能熟练正确地进行包括小数或分数的加减混合运算.3.培养学生的数感,提高计算能力和步步有据的推理能力.教材处理本节重在让学生感受算法的多样化,是先写成省略括号的和的形式再计算好呢?还是先将加减运算统一成加法,再按照加法法那么计算好.至于如何选择要“因题因人〞而异,教师要给学生创造讨论的时机,多提供些有多种算法的题目.教师在处理时切不可做简单的硬性规定.这样不但扼杀了学生的创造性,还容易养成学生不爱思考,“只等着教师来告诉我〞的懒惰的思维方式,还会使学生学习数学的兴趣越来越小.教学方法本节宜采用“探究〞法.本节课的知识点是在学生已有解题经验并结合创设的问题情境,由学生自主讨论、分析出来的,是学生在前面学习过程中产生的一种自发的渴望交流的需求,然后由教师补充和纠正,最后再由学生归纳得出的.即使学生说错,教师也不包办、不代替,只是进行补充和纠正.教学过程一、巧妙设疑,复习引入设计说明教师通过设置问题串,层层设疑,引导学生全面观察、审视自己所学过的知识,自主发现学习的新领域,既复习旧知,作好新知学习的铺垫,同时也不断激发学生对新课的好奇心,从而自然引入新课.问题1:有理数的定义是什么?学生答复出“整数和分数统称有理数〞,在此根底上,教师再进一步针对已学过的题目特点提出问题2.问题2:请翻阅教材第4节和第5节的内容,这些题目中的数字是哪种数?这是他们第一次从这个角度进行观察,教师紧接着点出本节课的学习要点,不少学生会产生极大的新鲜感.今天我们就来学习包括小数和分数的有理数加减混合运算,先入为主直接点出本节课的重点.问题3:口答以下各题,并说明计算的依据:(1)12.5-(-0.3);(2)17-⎝⎛⎭⎫-27;(3)12-⎝⎛⎭⎫-13;(4)-2.25+14;(5)14+⎝⎛⎭⎫-34;(6)17-25;(7)-11.5+4.5.教学说明问题1从根本概念入手分析,使学生对“有理数的加减混合运算〞有一个全面的认识,而不是仅仅局限于整数范围.然而在答复这个问题时,很可能有一局部学生一时想不起有理数的定义了,那可以采用多提问几个同学,多出现几种答案,然后再查阅教材原文,甚至可以全班齐读定义等方法,通过屡次感知和重复加深理解、记忆.如果课堂上真出现这种情况,那就更说明学生对于根本概念的掌握是不扎实的,是需要强化的.另外,强调这个概念还因为初一的学生的数感本身就是不够完善的,很多学生存在着“数〞=“整数〞,甚至于“数〞=“正整数〞这样的错误认识,因此我们要多为学生创造一些正确理解有理数的教学情境或者时机.问题2是让学生在明确了有理数的概念之后,通过教材的实例感受所学过的题型是不全面的.学生需要认真地观察一会儿,就能发现之前教材上的所有题目中的数字都是整数,更能激发学生的好奇心.问题3这组题是为了让学生的思维在减法与加法之间屡次反复,对某些思想懒惰易形成思维定势的学生来说,减去一个数等于加上它的相反数用的多了,看见加法就会创造出“加上一个数就等于减去它的相反数〞这样的算法,而且这样的学生并不少见.这组题是将教材中计算重新编排而成,学生在口答过程中说对答案的不在少数,能说清算理的人就不多了,可见有时学生能算对数可能只是初步的感性认识,是模糊的.通过这样交替进行的说与算的思维训练,为后面多步复杂的综合计算夯实根底.二、初步感知1.问题引入 阅读教材中的游戏题.学生经过交流,分组展示小丽和小彬所抽到的卡片并计算.2.稳固新知计算以下各题,说明最后一步的算理:(1)(-3.5)+15+⎝⎛⎭⎫-45;(2)⎝⎛⎭⎫-13+15.5+⎝⎛⎭⎫-23; (3)4.7-3.4-(-8.5);(4)0-12-⎝⎛⎭⎫-14+⎝⎛⎭⎫-34. 教学说明本环节设计的问题引导学生经历了两个过程.第一个环节,问题引入局部的两个设问可以设计为让学生分小组进行讨论.这是本节课上学生第一次分组讨论的问题,也是难点问题.第二个环节,先由三位同学板书,其他同学写在练习本上.无论采用哪种方法学生都有出错的可能,学生易错点的原因是由于算理模糊、不够熟练,为了防止这些错误,运算结果是否正确都要求讲明最后一步的算理,再由同组的另一位同学更正,加深全班同学的认识.这就完成了“模仿熟练〞的过程,为下一步的“提炼方法〞奠定根底.学生在本节课的探究过程中,说清算理是学法中的重要措施,也是突破难点(2)的重要手段.而且第(2)题还可以用来渗透结合律简化运算的技巧,为第二课时的内容作好铺垫.至此,本节课由复习引入到初步感知两个教学局部,充分展示了学生从“发现新知〞到“模仿熟练〞再到“提炼方法〞的思维过程,同时辅以“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.三、延伸拓展设计说明运用数学知识处理带有实际背景的问题,需要有较强的抽象思维能力和建模的数学思想,所以这类问题一直属于难点题型.通过以下两个练习训练学生以上能力.练习1:教材中 习题2.7问题解决2.练习2:北京某出租车司机小李某天营运全是在长安大街上进行的,如果规定向东为正,向西为负,他这天的行车里程(单位:千米)如下:15,-2,5,-1,10,-3,-2,12,4,-5,6.(1)将最后一名乘客送到目的地时,小李距离出车时的出发点有多远?(2)假设汽车耗油量为a 千克/千米,这天小李的车共耗油多少千克?解:(1)由题意可得:15-2+5-1+10-3-2+12+4-5+6=39(千米).(2)将以上各数的绝对值相加得65千米,耗油量为65a 千克.教学说明本环节的处理不能仅仅停留在就题论题的层面上,教师应该有意识地向学生渗透建模的数学思想以及处理这类问题的思维方法,这样才能逐渐的培养学生的逻辑思维.大体方法是这样的:1.审题,具体的就是弄懂题目中有关的数字所代表的实际意义.2.根据题目要求,将有关的数字运用数学知识进行重新组合(列算式或列方程或列函数关系式等等),这就是建模的过程.3.解决这个数学问题.练习2的难度就比拟大,它很好地表达了“代数和〞与“绝对值的和〞在实际意义上的不同,有利于学生更生动形象地理解数学定义.具体处理时方法和前面一样,要注意思维的条理性,培养逻辑思维能力和建模的数学思想.四、总结反思,提炼方法有理数加法的计算可以通过省略加号和括号的方法以及转化成加法直接计算,要让学生知道如何选择解题方法,在考虑自己解题特点的同时也要受题目客观条件的影响.表达因题因人而异的优选法.问题1:你认为自己做计算题时,比拟适合用哪种方法?问题2:你认为什么样的题目适合用省略加号和括号的方法计算?问题3:解决实际问题时,应该怎样做?评价与反思1.深挖教材,尽可能的为学生体会算法多样化创造适宜的问题情境,为此进行了教材原题的变式处理.2.“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。
部编数学七年级上册专题1.3有理数运算中的综合(压轴题专项讲练)(人教版)(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题1.3 有理数运算中的综合【典例1】如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8,那么a+b+c+d的最大值为 .根据a、b、c、d是四个不同的正整数,可知四个括号内是各不相同的整数,结合乘积为8,进行分类讨论.解:∵a、b、c、d是四个不同的正整数,∴四个括号内是各不相同的整数,不妨设(2019﹣a)<(2019﹣b)<(2019﹣c)<(2019﹣d),又∵(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8,∴这四个数从小到大可以取以下几种情况:①﹣4,﹣1,1,2;②﹣2,﹣1,1,4.∵(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=8076﹣(a+b+c+d),∴a+b+c+d=8076﹣[(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)],∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)越小,a+b+c+d越大,∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=﹣4﹣1+1+2=﹣2时,a+b+c+d取最大值=8076﹣(﹣2)=8078.故答案为:8078.1.(2021秋•曲阜市校级期中)我们常用的十进制数,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如2513=2×73+5×72+1×71+3)用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .1435天B .565天C .13天D .465天【思路点拨】根据题意和图形,可以列出算式1×73+4×72+3×71+5,然后计算即可.【解题过程】解:由图可知:1×73+4×72+3×71+5=1×343+4×49+3×7+5=343+196+21+5=565(天),即孩子自出生后的天数是565,故选:B .2.(2021秋•社旗县期中)下列变形正确的有( )个.①4.3﹣1.6﹣2.3+1.7=4.3﹣2.3+1.7﹣1.6;②312−(﹣214)+(−13)−14−(+16)=312+214−13−14+16;③124÷(13−14+112)=124÷13−124÷14+124÷112;④(﹣1002)×17=(﹣1000+2)×17.A .0B .1C .2D .3【思路点拨】根据加法的交换律可以判断①;根据省略加法的方法可以判断②;根据有理数的除法和加减法可以判断③;根据乘法分配律可以判断④.【解题过程】解:①4.3﹣1.6﹣2.3+1.7=4.3﹣2.3+1.7﹣1.6,故①正确;②312−(﹣214)+(−13)−14−(+16)=312+214−13−14−16,故②错误;③124÷(13−14+112)=124÷16=124×6=14,而124÷13−124÷14+124÷112=124×3−124×4+124×12=324−424+1224 =38≠14,故③错误;④(﹣1002)×17=(﹣1000﹣2)×17,故④错误;故选:B .3.(2021秋•韩城市期中)如果四个互不相同的正整数m 、n 、p 、q 满足(4﹣m )(4﹣n )(4﹣p )(4﹣q )=9,则4m +3n +3p +q 的最大值为( )A .40B .50C .60D .70【思路点拨】由题意确定出m ,n ,p ,q 的值,代入原式计算即可求出值.【解题过程】解:∵四个互不相同的正整数m ,n ,p ,q ,满足(4﹣m )(4﹣n )(4﹣p )(4﹣q )=9,∴要求4m +3n +3p +q 的最大值,则有:4﹣m =﹣3,4﹣n =3,4﹣p =﹣1,4﹣q =1,解得:m =7,n =1,p =5,q =3,则4m +3n +3p +q =50.故选:B .4.(2021秋•顺城区期末)观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1,给出定义如下:我们称使等式a ﹣b =2ab ﹣1成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b ),如:数对(1,23),(2,35)都是“同心有理数对”下列数对是“同心有理数对”的是( )A .(﹣3,47)B .(4,49)C .(﹣5,611)D .(6,713)【思路点拨】根据“同心有理数对”的定义判断即可.【解题过程】解:∵﹣3−47=−257,2×(﹣3)×47−1=−217,−257≠−217,∴数对(﹣3,47)不是“同心有理数对”;故选项A不合题意;∵4−49=329,2×4×49−1=239,329≠239,∴(4,49)不是“同心有理数对”,故选项B不合题意;∵−5−611=−6111,2×(−5)×611−1=−6611,−6111≠−6611,∴(﹣5,611)不是“同心有理数对”,故选项C不合题意;∵6−713=7113,2×6×713−1=7113,∴(6,713)是“同心有理数对”,故选项D符合题意;故选:D.5.(2021秋•旌阳区期末)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k;(其中k是使n2k为奇数的正整数),并且运算可以重复进行,例如,取n=26.则:若n=49,则第2021次“F”运算的结果是( )A.68B.78C.88D.98【思路点拨】根据运行的框图依次计算,发现其运算结果的循环规律:6次一循环,再计算求解即可.【解题过程】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336……5,则第2021次“F运算”的结果是98.故选:D.6.(2021秋•新华区校级期中)若a,b互为相反数,且ab≠0,c、d互为倒数,|m|=2,则(a+b)2021+(ba)3﹣3cd+2m的值( )A.0B.0或﹣8C.﹣2成6D.2或﹣6【思路点拨】根据相反数、倒数、绝对值得出a+b=0,ba=−1,cd=1,m=±2,代入求出即可.【解题过程】解:∵a、b互为相反数,且ab≠0,c、d互为倒数,|m|=2,∴a+b=0,ba=−1,cd=1,m=±2,当m=2时,(a+b)2021+(ba)3﹣3cd+2m=02021+(﹣1)3﹣3×1+2×2=0﹣1﹣3+4=0,当m=﹣2时,(a+b)2021+(ba)3﹣3cd+2m=02021+(﹣1)3﹣3×1+2×(﹣2)=0﹣1﹣3﹣4=﹣8.故(a+b)2021+(ba)3﹣3cd+2m的值是0或﹣8.故选:B.7.(2021秋•江岸区校级月考)下列说法中,正确的个数是( )①若|1a |=1a,则a≥0;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,则x=2;④若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,则该代数式值为2021;⑤a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|的值为±1.A .1个B .2个C .3个D .4个【思路点拨】根据各个小题中的说法,可以判断是否正确,尤其是对于错误的结论,我们只要说明理由或者举出反例即可.【解题过程】解:若|1a |=1a,则a >0,故①错误,不合题意;若|a |>|b |,则a >b >0或a >0>b >﹣a 或﹣a >b >0>a 或0>a >b ,当a >b >0时,则有(a +b )(a ﹣b )>0是正数,当a >0>b >﹣a 时,则有(a +b )(a ﹣b )>0是正数,当﹣a >b >0>a 时,则有(a +b )(a ﹣b )>0是正数,当0>a >b 时,则有(a +b )(a ﹣b )>0是正数,由上可得,(a +b )(a ﹣b )>0是正数,故②正确,符合题意;A 、B 、C 三点在数轴上对应的数分别是﹣2、6、x ,若相邻两点的距离相等,则x =2或﹣10或14,故③错误,不合题意;若代数式2x +|9﹣3x |+|1﹣x |+2011的值与x 无关,则2x +|9﹣3x |+|1﹣x |+2011=2x +9﹣3x +x ﹣1+2011=2019,故④错误,不合题意;∵a +b +c =0,abc <0,∴a 、b 、c 中一定是一负两正,b +c =﹣a ,a +c =﹣b ,a +b =﹣c ,不妨设a >0,b <0,c <0,∴b c |a|+a c |b|+a b |c|=−a a +−b −b +−c −c=﹣1+1+1=1,故⑤错误,不合题意;故选:A .8.(2021秋•溧水区期中)计算(19+110+111)﹣2×(18−19−110−111)﹣3×(19+110+111+112)的结果是 −12 .【思路点拨】根据题目中式子的特点,可以设19+110+111=a ,然后将所求式子变形整理,即可求得所求式子的结果.【解题过程】解:设19+110+111=a ,则原式=a ﹣2(18−a )﹣3(a +112)=a −14+2a ﹣3a −14=−12,故答案为:−12.9.(2021秋•溧水区期中)计算(134−78−712)÷78+78÷(134−78−712)的结果是 103 .【思路点拨】首先根据有理数除法法则将(134−78−712)÷78转化为(74−78−712)×87,再利用乘法分配律求出结果,再根据78÷(134−78−712)与(134−78−712)÷78互为倒数求出结果,进而得出结论.【解题过程】解:∵(134−78−712)÷78=(74−78−712)×87=74×87−78×87−712×87=2﹣1−23=13,∴78÷(134−78−712)=3,∴(134−78−712)÷78+78÷(134−78−712)=13+3=103.故答案为:103.10.(2021春•滨湖区期中)观察以下一系列等式:①31﹣30=(3﹣1)×30=2×30;②32﹣31=(3﹣1)×31=2×31;③33﹣32=(3﹣1)×32=2×32;④34﹣33=(3﹣1)×33=2×33;……利用上述规律计算:30+31+32+…+3100= 12(3101﹣1) .【思路点拨】根据已知等式,归纳总结得到一般性规律,原式计算即可求出值.【解题过程】解:根据题意得:31﹣30=(3﹣1)×30=2×30;32﹣31=(3﹣1)×31=2×31;33﹣32=(3﹣1)×32=2×32;34﹣33=(3﹣1)×33=2×33;……3101﹣3100=(3﹣1)×3100=2×3100,相加得:31﹣30+32﹣31+33﹣32+34﹣33+…+3101﹣3100=2×(30+31+32+…+3100),整理得:30+31+32+…+3100=12(3101﹣30)=12(3101﹣1).故答案为:12(3101﹣1).11.(2021•宝山区校级自主招生)[5×12021]+[5×22021]+…+[5×20212021]= 4045 (其中[a ]表示不超过a 的最大整数,如[1.4]=1,[﹣3.14]=﹣4等等).【思路点拨】利用取整函数把算式变为404×0+404×1+404×2+404×3+404×4+1×5,再进行计算即可.【解题过程】解:[5×12021]+[5×22021]+…+[5×20212021]=([5×12021]+…[5×4042021])+([5×4052021]+…[5×8082021])+([5×8092021]+…[5×12122021])+([5×12132021]+…[5×16162021])+([5×16172021]+…[5×20202021])+[5×20212021]=404×0+404×1+404×2+404×3+404×4+1×5=4045故答案为:4045.12.(2021秋•鄞州区期末)已知正整数a,b,c均小于5,存在整数m满足2022+1000m=2a+2b+2c,则m (a+b+c)的值为 ﹣14 .【思路点拨】首先根据正整数a,b,c均小于5,得出2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,即6≤2022+1000m≤48,解不等式组求出m的范围,根据m为整数,得出m=﹣2,那么2022+1000m=22.观察得只有2+4+16=22,求出a+b+c=1+2+4=7,进而得到m(a+b+c)=﹣2×7=﹣14.【解题过程】解:∵正整数a,b,c均小于5,∴2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,∴6≤2022+1000m≤48,∴﹣2.016≤m≤﹣1.974,∵m为整数,∴m=﹣2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=﹣2×7=﹣14.故答案为:﹣14.13.(2020秋•鄞州区期末)已知整数a,b,c,d的绝对值均小于5,且满足1000a+100b2+10c3+d4=2021,则abcd的值为 ±4 .【思路点拨】先根据条件确认个位上的1一定为d4产生,得d=±1或±3,①当d=±1时,d4=1,②当d=±3时,d4=81,分别代入计算可得答案.【解题过程】解:∵1000a+100b2+10c3+d4=2021,整数a,b,c,d的绝对值均小于5,∴个位上的1一定为d4产生,(±3)4=81,(±1)4=1,∴d=±1或±3,①当d=±1时,d4=1,∴1000a+100b2+10c3=2020,∴100a+10b2+c3=202,∴个位上的2是由c3产生的,∴c3=2或﹣8(﹣4~4中没有立方的个位数是2的),∴c3=﹣8,∴c=﹣2,∴100a+10b2﹣8=202,100a+10b2=210,10a+b2=21,∴个位上的1是由b2产生的,(±1)2=1,∴当b=±1时,10a=20,a=2,∴abcd=2×1×(−2)×1=−42×(−1)×(−2)×1=42×1×(−2)×(−1)=42×(−1)×(−2)×(−1)=−4,∴abcd=±4;②当d=±3时,d4=81,∴1000a+100b2+10c3=2021﹣81=1940,∴100a+10b2+c3=194,同理43=64,∴c=4,∴100a+10b2+64=194,100a+10b2=130,10a+b2=13,不存在整数满足条件,故d≠±3;综上,abcd=±4.故答案为:±4.14.(2022春•商城县校级月考)计算:(1)(﹣3)2×[−23+(−59)];(2)﹣14+(﹣3)×[(﹣4)2+2]﹣(﹣2)3÷4;(3)(﹣10)3+[(﹣4)2+(1﹣32)×2]﹣(﹣0.28)÷0.04×(﹣1)2020.【思路点拨】(1)原式先算乘方运算,再利用乘法分配律计算即可得到结果;(2)原式先算乘方,再算乘除,最后算加减即可得到结果;(3)原式先算乘方,再算乘除,最后算加减即可得到结果.【解题过程】解:(1)原式=9×(−23−59)=9×(−23)+9×(−59)=﹣6﹣5=﹣11;(2)原式=﹣1﹣3×(16+2)﹣(﹣8)÷4=﹣1﹣3×18+8÷4=﹣1﹣54+2=﹣53;(3)原式=﹣1000+[16+(1﹣9)×2]﹣(﹣0.28)÷0.04×1=﹣1000+(16﹣8×2)﹣(﹣7)×1=﹣1000+(16﹣16)+7=﹣1000+7=﹣993.15.(2022春•滨海县月考)阅读下列材料:小明为了计算1+2+22+…+22020+22021的值,采用以下方法:设S=1+2+22+…+22020+22021①则2S=2+22+…+22021+22022②②﹣①得,2S﹣S=S=22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220= 221﹣2 ;(2)求1+12+122+⋯+1250= 2−1250 ;(3)求1+a+a2+a3+…+a n的和.(a>1,n是正整数,请写出计算过程)【思路点拨】(1)(2)根据题目所给方法,令等式左边为S,表示出2S,相减即可得到结果;(3)根据题目所给方法,令等式左边为S,表示出aS,相减即可得到结果.【解题过程】解:(1)设S=2+22+…+220,则:2S=22+23+…+220+221,2S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2,∴S=221﹣2,故答案为:221﹣2.(2)设S=1+12+122+⋯+1250,则:2S=2+1+12+122+⋯+1249,2S﹣S=(2+1+12+122+⋯+1249)﹣(1+12+122+⋯+1250)=2−1250,∴S=2−1 250,故答案为:2−1 250.(3)设S=1+a+a2+a3+…+a n,则:aS=a+a2+a3+…+a n+a n+1,aS﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=a n+1−1 a−1.16.(2021秋•新都区期末)先观察下列各式,再完成题后问题:1 2×3=12−13;13×4=13−14;14×5=14−15.(1)①请仿照上面各式的结构写出:15×6= 15−16 ;②11×2+12×3+13×4+...+1n(n1)= nn1 ;(其中,n为整数,且满足n≥1)(2)运用以上方法思考:求14+112+124+140+160+184+1112+1144的值.【思路点拨】(1)①直接利用已知将原式分成两分数的差即可;②利用已知中规律将原式化简求出答案;(2)首先提取12,进而利用已知规律化简求出答案.【解题过程】解:(1)①15×6=15−16;故答案为:15−16;②原式=1−12+12−13+...+1n −1n 1=1−1n 1=n n 1;故答案为:n n 1;(2)原式=12×(12+16+112+...+156+172)=12×(11×2+12×3+13×4+...+17×8+18×9) =12×(1−12+12−13+13−14+...+17−18+18−19) =12×(1−19) =49.17.(2021秋•开江县期末)(概念学习)规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把a ÷a ÷a ÷⋯÷a ︸n 个(a ≠0)记作a ⓝ,读作“a的圈n 次方”.(初步探究)(1)直接写出计算结果:5③= 15 ,(−13)④= 9 .(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(﹣3)⑤= (−13)3 ;5⑧= (15)6 ;(12)⑩= 28 .(3)算一算:﹣92÷(−13)⑤×(−14)④﹣(−15)4÷5④.【思路点拨】(1)根据运算规定,用除法运算直接得出结果;(2)根据运算规定,用除法运算直接得出结果;(3)根据aⓝ的运算规定,按照有理数的运算顺序、运算法则计算出结果.【解题过程】解:(1)5③=5÷5÷5=1 5,(−13)④=(−13)÷(−13)÷(−13)÷(−13)=13×3×3×3=9.故答案为:15,9;(2)(﹣3)⑤=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=(﹣3)×(−13)×(−13)×(−13)×(−13)=(−13)3,5⑧=5÷5÷5÷5÷5÷5÷5÷5=5×15×15×15×15×15×15×15=(15)6,(12)⑩=12÷12÷12÷12÷12÷12÷12÷12÷12÷12=12×2×2×2×2×2×2×2×2×2=28,故答案为:(−13)3;(15)6;28;(3)由a的圈n次方=(1a)n﹣2,∴原式=﹣92÷(−13)⑤×(−14)④﹣(−15)4÷5④.=﹣81÷(﹣27)×16﹣(−15)4÷(15)2=48−1 25=4724 25.18.(2021秋•渑池县期末)2020年的“新冠肺炎“疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负).星期一二三四五六日超减产量/个+5﹣2﹣4+13﹣9+16﹣8(1)根据记录的数据可知,小王星期五生产口罩 291 个.(2)根据表格记录的数据,求出小王本周实际生产口罩数量;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元,若完不成每周的计划量.则少生产一个扣0.25元,求小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元,若超额完成每日计划工作量.则超过部分每个另外奖励0.2元,若完不成每天的计划量,则少生产一个扣0.25元,请直接写出小王这一周的工资总额是多少元?【思路点拨】(1)根据题意和表格中的数据,可以得到小王星期五生产口罩的数量;(2)根据题意和表格中的数据,可以得到该厂本周生产口罩的数量;(3)根据每周计件工资制,列出算式可以解答本题;(4)根据日计件工资制,列出算式可以解答本题.【解题过程】解:(1)小王星期五生产口罩数量为:300﹣9=291(个),故答案为:291;(2)+5﹣2﹣4+13﹣9+16﹣8=11(个),则本周实际生产的数量为:2100+11=2111(个)答:小王本周实际生产口罩数量为2111个;(3)一周超额完成的数量为:+5﹣2﹣4+13﹣9+16﹣8=11(个),所以,2100×0.8+11×(0.8+0.2)=1680+11×1=1680+11=1691(元),答:小王这一周的工资总额是1691元;(4)第一天:300×0.8+5×(0.8+0.2)=245(元);第二天:(300﹣2)×0.8﹣2×0.25=237.9(元);第三天:(300﹣4)×0.8﹣4×0.25=235.8(元);第四天:300×0.8+13×(0.8+0.2)=253(元);第五天:(300﹣9)×0.8﹣9×0.25=230.55(元);第六天:300×0.8+16×(0.8+0.2)=256(元);第七天:(300﹣8)×0.8﹣8×0.25=231.6(元);共245+237.9+235.8+253+230.55+256+231.6=1689.85(元).答:小王这一周的工资总额是1689.85元.。
初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(word文档物超所值)
环球雅思教育学科教师讲义讲义编号: GE—ZBM 副校长/组长签字:签字日期:学员编号:年级:课时数:3学员姓名:辅导科目:学科教师:课题有理数的混合运算、科学计数法和近似数授课日期及时段教学目的掌握混合运算的运算法则和近似数重难点有理数的混合运算【考纲说明】1、掌握有理数的加减法法则和有理数混合运算的运算步骤。
2、注意有理数混合运算符号混淆问题。
3、掌握科学计数法的表示方法和近似数的表示。
4、本部分在中考中占3-5分。
【趣味链接】科学计数法的前身我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.【知识梳理】一、有理数的混合运算1、有理数的加法法则:2、有理数的加法运算定律:.3、有理数减法法则及表达式:.4、有理数减法符号的确定及表示:.5、有理数加减法混合运算应注意的问题:.二、科学计数法1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数,且0<a<10),使用的是科学记数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的运算练习题
1、若m 是有理数,则||m m +的值( )
A 、可能是正数
B 、一定是正数
C 、不可能是负数
D 、可能是正数,也可能是负数 2、若m m m <-0,则||的值为( )
A 、正数
B 、负数
C 、0
D 、非正数 3、如果0m n -=,m n 则与的关系是 ( )
A 、互为相反数
B 、 m =±n ,且n ≥0
C 、相等且都不小于0
D 、m 是n 的绝对值 4、下列等式成立的是( ) A 、0=-+a a
B 、a a --=0
C 、0=--a a
D 、a --a =0
5、若230a b -++=,则a b +的值是( )
A 、5
B 、1
C 、-1
D 、-5
6、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3 B.-9 C.-3或-9 D.3或9
7、两个数的差为负数,这两个数 ( )
A 、都是负数
B 、两个数一正一负
C 、减数大于被减数
D 、减数小于被减数 6、负数a 与它相反数的差的绝对值等于( )
A 、 0
B 、a 的2倍
C 、-a 的2倍
D 、不能确定 8、下列语句中,正确的是( )
A 、两个有理数的差一定小于被减数
B 、两个有理数的和一定比这两个有理数的差大
C 、绝对值相等的两数之差为零
D 、零减去一个有理数等于这个有理数的相反数 9、对于下列说法中正确的个数( )
①两个有理数的和为正数时,这两个数都是正数 ②两个有理数的和为负数时,这两个数都是负数 ③两个有理数的和,可能是其中的一个加数 ④两个有理数的和可能等于0
A 、1
B 、2
C 、3
D 、4 10、有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A 、a +b =0
B 、a +b >0
C 、a -b <0
D 、a -b >0 11、下列各式中与a b c --的值不相等的是( )
A 、a b c --()
B 、a b c -+()
C 、()()a b c -+-
D 、()()-+-b a c 12、下列各式与a -b +c 的值相等的是( )
A .a -(b +c )
B .c +(a +b )
C .c -(b -a )
D .a +(b +c ) 13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )
A 、a +b -c =a +b +c
B 、a -b +c =a +b +c
C 、a +b -c =a +(-b )=(-c )
D 、a +b -c =a +b +(-c ) 14、若0a b c d <<<<,则以下四个结论中,正确的是( ) A 、a b c d +++一定是正数 B 、c d a b +--可能是负数 C 、d c a b ---一定是正数 D 、c d a b ---一定是正数
15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )
A 、被减数a 为正数,减数b 为负数
B 、a 与b 均为正数,切被减数a 大于减数b
C 、a 与b 两数均为负数,且减数 b 的绝对值大
D 、以上答案都可能
16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )
A 、-b <-a <b <a
B 、-a <b <a <-b
C 、b <-a <-b <a
D 、b <-a <a <-b 17、下列结论不正确的是( )
A 、若0a <,0b >,则0a b -<
B 、若0a >,0b <,则0a b ->
C 、若0a <,0b <,则()0a b -->
D 、若0a <,0b <,且a b >,则0a b -< 18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( ) A 、x
B 、x y +
C 、x y -
D 、y
19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( ) A 、m >m -n >m +n B 、m +n >m >m -n C 、 m -n >m +n >m D 、m -n >m >m +n 20、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A 、a B 、0 C 、-a D 、-2a 21、若a b >>00,,则下列各式中正确的是( ) A 、a b ->0 B 、a b -<0 C 、a b -=0
D 、--<a b 0
22、在数轴上,点x 表示到原点的距离小于3的那些点,那么||||x x -++33等于( ) A 、6 B 、 -2x C 、-6 D 、2x 23、如果 a 、b 是有理数,则下列各式子成立的是( )
A 、如果a <0,b <0,那么a +b >0
B 、如果a >0,b <0,那么a +b >0
C 、如果a >0,b <0,那么a +b <0
D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <0 24、已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于( ) A 、-3a +b +c B 、3a +3b +c C 、a -b +2c D 、-a +3b -3c
1、 111117(113)(2)92844⨯-+⨯-
2、419932(4)(1416)41313⎡⎤
--⨯-÷-⎢⎥⎣⎦
3、 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣
⎦ 4、2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦
5、(—3
1
5)÷(—16)÷(—2) 6、 –4 + 2 ×(-3) –6÷0.25
7、(—5)÷[1.85—(2—4
3
1)×7] 8、 18÷{1-[0.4+ (1-0.4)]×0.4
9、1÷( 61-31)×61 10、 –3-[4-(4-3.5×3
1
)]×[-2+(-3) ]
11、 (3.5-7.75-4.25)÷1.1 12、|])2
1((|3
1)3
22(|)2(4
1[|)11
6(2
1523---÷-⨯-+----
13、20012002200336353⨯+⨯- 14、(-371)÷(461-122
1)÷(-2511)×(-143
)
15、-42+5×(-4)2-(-1)51×(-61)+(-221)÷(-241) 16、―22+41×(-2)2
17、 200423)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷-- 18、 100()()222---÷3)2(32-+⎪⎭
⎫
⎝⎛-÷
19、 32
2)43(6)12(7311-⨯⎥⎦
⎤
⎢⎣⎡÷-+-- 20、 111117(113)(2)92844⨯-+⨯-
21、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦ 22 、12(4)4⎡⎤-|-16|-⨯-⎢⎥⎣⎦÷⎥⎦⎤⎢⎣⎡--)813(4
1
23、 2335(2)(10.8)114⎡⎤
---+-⨯÷--⎢⎥⎣⎦
24、 75)21(212)75(75211⨯-+⨯--⨯。