苏科版八年级数学下册 11.3 用反比例函数解决问题 同步测试

合集下载

八年级数学下册 第11章 11.3 用反比例函数解决问题同步练习(含解析)苏科版(2021学年)

八年级数学下册 第11章 11.3 用反比例函数解决问题同步练习(含解析)苏科版(2021学年)

八年级数学下册第11章11.3用反比例函数解决问题同步练习(含解析)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第11章11.3用反比例函数解决问题同步练习(含解析)(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第11章11.3 用反比例函数解决问题同步练习(含解析)(新版)苏科版的全部内容。

第11章11。

3用反比例函数解决问题一、单选题(共12题;共24分)1、已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()ﻫA、I=B、I=ﻫC、I=ﻫD、I=-2、(2016•海南)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( ) ﻫA、该村人均耕地面积随总人口的增多而增多ﻫB、该村人均耕地面积y与总人口x成正比例C、若该村人均耕地面积为2公顷,则总人口有100人D、当该村总人口为50人时,人均耕地面积为1公顷3、如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A、y=ﻫB、y=C、y=D、y=4、矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )A、ﻫB、ﻫC、D、5、如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且,则k的值是( )A、4B、2C、ﻫD、6、圆心角为60°的扇形面积为S,半径为r,则下列图像能大致描述S与r的函数关系的是( ) A、ﻫB、ﻫC、D、7、已知反比例函数y= (k≠0)的图像经过点M(﹣2,2),则k的值是( )A、﹣4ﻫB、﹣1C、1ﻫD、48、若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图像上,则a的值为( )A、8ﻫB、﹣8C、﹣7D、59、如图所示,点P(3a,a)是反比例函数y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )ﻫA、y=B、y= ﻫC、y=D、y=10、某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A、该村人均耕地面积随总人口的增多而增多B、当该村总人口为50人时,人均耕地面积为1公顷ﻫC、若该村人均耕地面积为2公顷,则总人口有100人ﻫD、该村人均耕地面积y与总人口x成正比例11、(2013•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=(k为常数,k≠0),其图象如图所示,则k的值为( )A、9ﻫB、﹣9C、4D、﹣412、(2012•湛江)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是( )A、B、C、ﻫD、二、填空题(共6题;共7分)13、在体积为20的圆柱中,底面积S关于高h的函数关系式是________14、如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴=1,则S1+S2=________ .影15、在温度不变的条件下,一定质量的气体的压强P与它的体积V成反比例,当V=200时,P=50,则当P=25时,V=________.16、已知点P是线段AB的黄金分割点,且PA>PB,若PA=2,AB=x,PB=y,则y与x之间的函数关系式为________.17、(2014•衢州)如图,点E,F在函数y= (x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是________,△O EF的面积是________(用含m的式子表示)18、(2012•深圳)如图,双曲线y= (k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为________.三、解答题(共3题;共20分)19、我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:ﻫ(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?20、某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值)(1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式?(2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数.21、某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变)。

11.3用反比例函数解决问题(1)课件-2023-—2024学年苏科版数学八年级下册

11.3用反比例函数解决问题(1)课件-2023-—2024学年苏科版数学八年级下册
(1)当x=50时,求y的值,并说明这个值的实际 意义;当x=100时,求y的值, 并说明这个值的实际意 义;当x =250呢?x =500呢?
x … 50 100 250 500 …
y…

11.3 用反比例函数解决问题
问题3 如图,阻力为1000N,阻力臂长为5cm.设动
力y(N),动力臂为x(cm)(图中杠杆本身所受重力
当p与V=V的1.2函时数,表p=达2式410.2为00 =p=22040V00000..
11.3 用反比例函数解决问题
问题2 某气球内充满了一定质量的气体,在温度不 变的条件下,气球内气体的压强p(Pa)是气球体积V(m3) 的反比例函数,且当V =1.5m3时p=16000Pa.
(2)当气球内的气压大于40000Pa时,气球将爆炸, 为确保气球不爆炸,气球的体积应不小于多少?
1. 面积为 2 的直角三角形一直角边为x,另一直角边 长为 y,则 y 与 x 的变化规律用图象可大致表示为
y
y
(C )
2
4
A.
B.
O1
ቤተ መጻሕፍቲ ባይዱ
x
y
O
4x
y
4
4
C.
D. 1
O1
x
O1 4
x
2. 体积为 20 cm3 的面团做成拉面,面条的总长度 y
(单位:cm) 与面条粗细 (横截面积) S (单位:cm2)
11.3 用反比例函数解决问题
问题2 某气球内充满了一定质量的气体,在温度不
变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)
的反比例函数,且当V =1.5m3时p=16000Pa.
(2)当气球内的气压大于40000Pa时,气球将爆炸,

最新苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

最新苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

第11章《反比例函数》综合测试题 (时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( )A. (2,1)-B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k <5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若OAB ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2-C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =->B. 5(0)y x x =>C. 6(0)y x x =->D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////BC EF y 轴,则A B C D E FS S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 .13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 .16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a xa =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x =进行探索,下列结论: ①图象在第一、二象限; ②图象在第一、三象限;③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x=的性质及它的图象特征的是 .(填写所有正确答案的序号)20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象.①21y x =+;②21y x =+.列表:画图象,并注明函数表达式. (2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x=+的图象;②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y kx b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式. (2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m .(1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90 yx =12. 1或2-13. 514. >15. 2y x=-16. 10或12或817.98 18. 3- 19. ①③⑥20. 15 1n21. (1)设y 与x 之间的函数关系式为k y x=, 由题意,得35k =, 解得15k = ∴15y x =(2)当15x =时,15115y ==. 22. (1)图略.(2)观察图象,完成填空:①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象;②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+. 解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-.∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩, 解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-.25.(1)将(40,1)代入k t v =, 得140k =, 解得40k =. 所以函数表达式为40t v =. 当0.5t =时,400.5m =. 解得80m =.所以40,80k m ==.(2)令60v =,得402603t ==. 结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-. 解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =, 所以资金紧张的时间为826-=(个)月.。

苏科版八年级数学下册反比例函数同步习题含解析

苏科版八年级数学下册反比例函数同步习题含解析

反比例函数同步习题一.选择题1.货车每次运货吨数、运货次数和运货总吨数这三种量中,成反比例的是()A.货车每次运货吨数一定,运货次数和运货总吨数B.货车运货次数一定,每次运货吨数和运货总吨数C.货车运货总吨数一定,每次运货吨数和运货次数2.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是()A.y=6x B.y=C.y=D.y=3.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是4.下列说法中,两个量成反比例关系的是()A.商一定,被除数与除数B.比例尺一定,图上距离与实际距离C.圆锥的体积一定,圆锥的底面积和高D.圆柱的底面积一定,圆柱的体积和高5.已知y=2x2m是反比例函数,则m的值是()A.m=B.m=﹣C.m≠0D.一切实数6.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数7.若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣18.若y与x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定9.下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=﹣;(3);(4)﹣xy=3;(5);(6);(7)y=2x﹣2;(8).A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)10.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.6二.填空题11.若函数y=是反比例函数,则k0.(填“<”、“>”或“≠”)12.y=(k≠0)叫函数,x的取值范围是.13.给出的六个关系式:①x(y+1);②y=;③y=;④y=﹣;⑤y=;⑥y=x﹣1,其中y是x的反比例函数是.14.已知函数y=是y关于x的反比例函数,则m=.15.下表中,如果a与b成正比例,则“?”中应填的数是,如果a与b成反比例,“?”应填.a35b45?三.解答题16.下列哪些关系式中的y是x的反比例函数?y=4x,=3,y=﹣,y=6x+1,y=x2﹣1,y=,xy=123.17.给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成反比例.18.已知函数y=(m2+2m)(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.参考答案一.选择题1.解:A、因为:运货总吨数÷运货次数=每次运货吨数(一定),所以运货次数和运货总吨数成正比例,不合题意;B、因为:运货总吨数÷每次运货吨数=运货次数(一定),所以每次运货的吨数和运货总吨数成正比例,不合题意;C、因为:每次运货的吨数×运货的次数=运货总吨数(一定),所以每次运货的吨数和运货的次数成反比例,符合题意;故选:C.2.解:把x=2,y=3代入得k=6,所以该函数表达式是y=.故选:C.3.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.4.解:A、=商一定,故两个量成正比例函数,故此选项不合题意;B、,不成反比例函数,故此选项不合题意;C、圆锥的体积=圆锥的底面积×高,圆锥的体积一定,圆锥的底面积和高成反比例关系,故此选项合题意;D、=圆柱的底面积一定,圆柱的体积和高成正比例关系,故此选项不符合题意;故选:C.5.解:y=2x2m是反比例函数,则2m=﹣1,所以.故选:B.6.解:函数y=中,自变量x的取值范围是x≠0,故选:C.7.解:由题意得:m2﹣2=﹣1且m+1≠0;解得m=±1,又m≠﹣1;∴m=1.故选:A.8.解:∵y与x成反比例,x与成正比例,∴设y=,x=a•(k、a为常数,k≠0,a≠0),∴y==z,即y是z的正比例函数,故选:A.9.解:(1)y=3x,是正比例函数,故此选项错误;(2)y=﹣,是反比例函数,故此选项正确;(3)是正比例函数,故此选项错误;(4)﹣xy=3是反比例函数,故此选项正确;(5),y是x+1的反比例函数,故此选项错误;(6),y是x2的反比例函数,故此选项错误;(7)y=2x﹣2,y是x2的反比例函数,故此选项错误;(8),k≠0时,y是x的反比例函数,故此选项错误.故选:A.10.解:y1=﹣=﹣,把x=﹣+1=﹣代入y=﹣中得y2=﹣=2,把x =2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A.二.填空题11.解:函数y=是反比例函数,则k≠0,故答案为:≠.12.解:y=(k≠0)叫反比例函数,x的取值范围是x≠0.13.解:①x(y+1)不是函数,不符合题意;②y=是y关于x+2的反比例函数,不符合题意;③y=是y关于x2的反比例函数,不符合题意;④y=﹣=,是y关于x的反比例函数,符合题意;⑤y=是y关于x的正比例函数,不符合题意;⑥y=x﹣1=,是y关于x的反比例函数,符合题意;故答案为:④⑥.14.解:∵函数y=是y关于x的反比例函数,∴解得m=﹣2,故答案为:﹣2.15.解:如果a与b成正比例,则“?”中应填的数是5×=75,如果a与b成反比例,“?”应填45×3÷5=27.故答案为:75;27.三.解答题16.解:y=4x不是反比例函数,=3不是反比例函数,y=﹣是反比例函数,y=6x+1不是反比例函数,y=x2﹣1不是反比例函数,y=不是反比例函数,xy=123是反比例函数.17.解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.18.解:(1)由y=(m2+2m)是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;(2)由y=(m2+2m)是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.。

八年级数学苏科版下册随堂测试第11单元 《11.3 用反比例函数解决问题》(含答案解析)

八年级数学苏科版下册随堂测试第11单元 《11.3 用反比例函数解决问题》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!随堂测试11.3用反比例函数解决问题一、选择题1.用电器的输出功率P 与通过的电流I、用电器的电阻R 之间的关系是P=I 2R,下面说法正确的是()A.P 为定值,I 与R 成反比例B.P 为定值,I 2与R 成反比例C.P 为定值,I 与R 成正比例D.P 为定值,I 2与R 成正比例2.现有一水塔,内装水20m 3,若匀速放水x m 3/h,则需要y h 才能把水放完,那么表示y 与x 之间函数关系的图象是()3.体育中考中,男生将进行1000米跑步测试,王亮跑步速度v(米/分)与测试时间t(分)的函数图象是()4.某厂现有500吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是()A.()5000y x x => B.()5000y x x =³ C.y=500x(x≥0)D.y=500x(x>0)5.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V=Sh(V≠0),则S 关于h 的函数图像大致是()6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为()A.2I R = B.3I R = C.6I R = D.6I R =-7.已知长方形的面积为20cm 2,设该长方形一边长为ycm,另一边长为x cm,则y 与x 之间的函数图像大致是()8.某种气球内充满了一定质量的气体.当温度不变时,气球内气体的气压p(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内气体的气压大于120kPa 时,气球将爆炸.为了安全,气体的体积应该()A.不大于54m 3B.小于54m 3C.不小于45m 3D.小于45m 3二、填空题9.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V=200时,p=50,则当p=25时,V=_______.10.实验表明,当导线的长度一定时,导线的电阻与它的横截面积成反比例.一条长为100cm 的导线的电阻R(Ω)与它的横截面积S(cm 2)的函数图象如图所示,那么,其函数解析式为R=,当S=2cm 2时,R=Ω.11.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm 2)的反比例函数,假设其图像如图所示,则y 与x 的函数关系式为_______.12.已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图像如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_______米.13.如图所示是一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数关系图象,若要5小时排完水池中的水,则每小时的排水量应为m3.14.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(分)的函数关系如图所示.已知药物燃烧阶段,y与x成正比例,燃烧完后,y与x成反比例.现测得药物10分钟燃烧完,此时教室内每立方米空气的含药量为8mg.当每立方米空气中的含药量低于1.6mg时,对人体才能无毒害作用.那么从消毒开始,经过________分钟后教室内的空气才能达到安全要求.三、解答题15.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.16.为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:(1)求y与x的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?17.如图所示,墙MN长为12m,要利用这面墙围一个矩形小院,面积为60m2,现有建材能建围墙总长至多26m,设AB=x m,BC=y m.(1)写出y与x之间的函数解析式;(2)要求x和y都取整数,且小院的长宽比尽可能的小,x应取何值?18.驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?参考答案1.B2.C.3.C.4.A5.C6.C7.B8.C.9.40010.29S,14.5.11.y=128x12.3613.9.6.14.5015.解:(1)y=60x;(2)满足条件的围建方案:AD=5m,DC=12m 或AD=6m,DC=10m 或AD=10m,DC=6m16.解:(1)设y 与x 的函数关系式为:y=(k≠0),把P(144,0.5),代入得:0.5=,解得:k=72,∴y 与x 的函数解析式为:y=;(2)当x=180时,y==0.4(万元),答:则每月应还款0.4万元.17.解:(1)y=60x .(2)∵y=60x,x,y 都是整数,且2x+y≤26,0<y≤12.∴120y+y≤26,且0<y≤12.∴y 的值只能取6,10,12,对应的x 的值依次是10,6,5.则符合条件的建设方案只有BC=6cm,AB=10cm;BC=10cm,AB=6cm;BC=12cm,DC=5cm.∵610<106<125,∴x=10.18.解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,400)代入得:400=4k,解得:k=100,故直线解析式为:y=100x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,400)代入得:400=,解得:a=1600,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=100x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=200,则200=100x,解得:x=2,当y=200,则200=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于200微克/毫升的持续时间6小时.。

苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

苏科版八年级数学下册第11章《反比例函数》综合测试题含答案

第11章《反比例函数》综合测试题(一)(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( ) A. (2,1)- B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k 值为( ) A. 1k = B. 1k =- C. 2k = D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k < 5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若OAB ∆的面积为2,则21k k -的值为( ) A. 2- B. 2 C. 4- D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( )A. 4B. 5C. 5或32D. 4或328.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2- C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =-> B. 5(0)y x x => C. 6(0)y x x =-> D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////BC EF y 轴,则ABC DEF S S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 . 13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是mn .(填“>”或“=”“<”) 15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 .16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 . 17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y ax a =≥,与双曲线3y x =交于1122(,),(,)A x y B x y 两点,则122143x y x y -= . 19.我们已经学习过反比例函数1y x =的图象和性质,请回顾研究它的过程,对函数21y x=进行探索,下列结论:①图象在第一、二象限; ②图象在第一、三象限; ③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x =的性质及它的图象特征的是 .(填写所有正确答案的序号) 20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S =(1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象. ①21y x =+;②21y x =+. 列表:画图象,并注明函数表达式.(2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y kx b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n .(1)求直线与双曲线的表达式.(2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式k t v,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m .(1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间对应的函数关系式. (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90y x= 12. 1或2- 13. 5 14. >15. 2y x =- 16. 10或12或817. 98 18. 3-19. ①③⑥ 20.15 1n21. (1)设y 与x 之间的函数关系式为ky x=, 由题意,得35k =, 解得15k = ∴15y x=(2)当15x =时,15115y ==. 22. (1)图略.(2)观察图象,完成填空: ①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+. 解得2m =.∴一次函数的表达式为12y x =+.由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-. ∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-. 25.(1)将(40,1)代入k t v=, 得140k =, 解得40k =.所以函数表达式为40t v =. 当0.5t =时,400.5m=.解得80m =.所以40,80k m ==. (2)令60v =,得402603t ==. 结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设ky x=,把(1,200)代入, 得200k =, 即200y x=②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-. (2)当200y =时,2002060x =-.解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =, 所以资金紧张的时间为826-=(个)月.。

八年级数学下册 第11章 反比例函数水平测试 苏科版(1)(2021年整理)

八年级数学下册 第11章 反比例函数水平测试 苏科版(1)(2021年整理)

八年级数学下册第11章反比例函数水平测试(新版)苏科版(1) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第11章反比例函数水平测试(新版)苏科版(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第11章反比例函数水平测试(新版)苏科版(1)的全部内容。

第十一章 反比例函数一、选一选,看完四个选项再做决定!(每小题3分,共24分)1.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A 、1-B 、0 C、21D 、12.当k >0,x <0时,反比例函数xky =的图象在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.若函数xky =的图象过点(3,—7),那么它一定还经过点 ( ) A 、(3,7) B 、(-3,—7) C 、(—3,7) D 、(2,-7) 4.如图,A 为反比例函数xky =图象上一点,AB ⊥x 轴与点B,若3=∆AOB S ,则k 为( )法确定A 、6B 、3C 、23D 、 无5.函数xky =的图象经过(1,)1-,则函数2-=kx y 的图象是 ( )6.在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )7.正比例函数y x =与反比例函数1y x=的图象交于A,C 两点AB ⊥X 轴于B ,CD ⊥X 轴于 于D,则四边形ABCD 的面积( ) A 、1 B 、32C 、2D 、52函数xy 1=的图8.如图所示,A(1x ,1y )、B (2x ,2y )、C (3x ,3y )是2222-2-2-2-2O OOOyy y yxxxx BC D象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是 ( )A 、 S 1<S 2〈S 3B 、 S 3 〈S 2< S 1C 、S 2< S 3< S 1D 、S 1=S 2=S 3二、填一填,要相信自己的能力!(每小题3分,共24分)1.已知函数x m y =,当21-=x 时,6=y ,则函数的关系式是 。

八年级数学下册第11章反比例函数测试卷苏科版

八年级数学下册第11章反比例函数测试卷苏科版

第十一章《反比例函数》一、选择题1、函数ky x =的图象经过点(12)A -,,则k 的值为( ) A .12B .12-C .2D .2-2、已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <3、用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,2I 与RC .P 为定值,I 与R 成正比例D .P 为定值,2I 与4、如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( )A .2y x= B .2y x =- C .12y x=D .12y x=-5、若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图 象在( )A .第一、二象限;B .第一、三象限;C .第二、四象限; D .第三、四象限6、已知三角形的面积一定,则它底边a 上的高h 与底边致是( )A .B .C .7、如图,一次函数11y x =-与反比例函数22y x=的图像则使12y y > 的x 的取值范围是( ) A .2x >B .2x >或10x -<<C .1-<8、已知120k k <<,则函数1y k x =和2k y x=的图象大致是9、已知函数5y x =-+,4y x=,它们的共同点是:①在xxxA .随x 的增大而 增大;②都有部分图象在第一象限;③都经过点(14),,其中错误..的有( ) A.0个B.1个C.2个D.3个10、平面直角坐标系中有六个点(15)A ,,533B ⎛⎫-- ⎪⎝⎭,,(51)C --,,522D ⎛⎫- ⎪⎝⎭,,533E ⎛⎫⎪⎝⎭,,522F ⎛⎫⎪⎝⎭,,其中有五个点在同一反比例函数图象上,不在这个反比例函数图象上的点是( ) A .点C B .点DC .点ED .点F二、填空题11、已知广州市的土地总面积约为7 434 km 2,人均占有的土地面积S (单位:km 2/人)随全市人口n (单位:人)的变化而变化,则S 与n 的函数关系式为_ __. 12、一个反比例函数的图象经过点(15)P -,,则这个函数的表达式是 . 13、反比例函数k y x=的图象经过点(—2,1),则k 的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用反比例函数解决问题
1.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系如果500度近视
眼镜片的焦距为0.2 m,则表示y 与x 的函数关系式为 ( ) A.y=x 500 B. y=x 51 C.y=x 100 D. y=x
4001 2.如果以12 m'/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,
使进水速度达到Q(m 3/h),那么此时注满水箱所需要的时间t(h)与Q( m 3/h)之间的
函数关系式为 ( ) A. t=Q 60 B. t= 60Q C. t=12-Q 60 D. t= 12+Q
60 3.如果等腰三角形的面积为10,底边长为x,底边 上的高为y,则y 与x 的函数关系
式为( ) A. y=x 10 B. y=x 5 C. y=x 20 D. y=20
x 4.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加
压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:
则可以反映y 与x 之间的关系的式子是( )
A. y=3 000x
B. y=6 000x
C. y=x 3000
D. y=x
6000 5.把一个长、宽、高分别为3 cm,2 cm,1cm 的长方体铜块铸成一个圆柱体铜块,则
该圆柱体铜块的底面积S(cm 2)与高h( cm)之间的函数关系式为
6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例如图表示的
是该电路中电流I 与电阻R 之间函数关系的图像.当电阻R 为6Ω时,电流I 为
A.
7.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v( km/h)满足函数关
k,其图像为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5),则系:t=
v
k= ,m= ;若行驶速度不得超过60 km/h,则汽车通过该路段最少需要h
8.如图,制作某金属工具先将材料煅烧6min温度升到800℃,再停止煅烧进行锻造,8 min温度降为600℃ .煅烧时温度y(℃)与时间x( min)成一次函数关系;锻造时温度y(℃)与时间x( min)成反比例函数关系.该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?
9.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长y(单位:m)随另边长x(单位:m)的变化而变化的图像可能是( )
10.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光
照且温度为18℃的条件下生长最快的新品种如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图像,其中BC 段是双曲线y=x
k (k ≠0)的一部分,则当x= 16时,大棚内的温度约为( )
A.18℃
B.15.5℃
C.13.5 ℃
D.12℃
11. 甲、乙、丙三人直立在相同大小的平板上,平板对水平地面的压强 y(Pa)
与平板面积x(m2 )的关系分别如图中的y=
x k 1,y=x k 2,y=x k 3,则当平板面积增加量相同时,甲、乙、丙三人所站的平板对水平地面的压强变化的关系是( )
A. 甲压强增加量>乙压强增加量>丙压强增加量
B. 甲压强减少量>乙压强减少量>丙压强减少量
C. 乙压强减少量>甲压强减少量>丙压强减少量
D.丙压强减少量>乙压强减少量>甲压强减少量
12.某气球内充气球内气体的气压充满了一定质量的

体,当温度不变时,p(kPa)是气体体积V(cm 3)的反比
例雨数;其图保如用所示,当气球内气压大于10Pa 时,
气球将爆炸,为了安全,该气球内气体体积V(em ”)的
取值范围是
13.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90天与150天)完成总量300万米的土石方运送,设运输公司完成任务所需的时间为y(单位:天),
平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围:
14.如图,块长方体大理石板的A、B、C三个面上的边长如图所示,如果大理石板的A面向下放在地上时地面所受压强为m Pa,则把大理石板B面向下放在地上时,地面所受压强是 m Pa.
15.某汽车油箱的容积为70升,小王把油箱注满油后准备驾驶汽车从县城到300千米外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:
(1)油箱注满油后,汽车能够行使的总路程y(单位:千米)与平均耗油量x(单位:升/千米)之间有怎样的函数关系?
(2)如果小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时由于下雨小王降低了车速,此时每行驶1千米的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?
16.丽水某公司将“丽水山耕"农副产品运往杭州市场进行销售,记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)汽车上午 7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;
(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.
17.为适应日益激烈的市场竞争要求,某工厂从2016年1月开始限产,并对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元设2016年1月为第1个月,第x个月的利润为y万元,其图像如图所示,试解决下列问题:
(1)分别求该工厂对生产线进行升级改造期间和完成后,y与x之间的函数关系式;
(2)到第几个月时,该工厂月利润才能再次达到
100万元?
(3)当月利润少于50万元时,为该工厂的资金紧
张期,问该工厂资金紧张期共有几个月?
18.如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例雨数图像传递动点T(m,n)表示火炬位置,火炬从离北京路10 m处的点M开始传递,到离北京路1000m的点N时传递活动结束迎圣火临时指挥部设在坐标原点0(北京路与奥运路的十字路口),0ATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10 000 m2(路线宽度均不计).
(1)求图中反比例函数的关系式(不需写出自变量的取值范围);
(2)设t=m-n,用含1的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时确定此时火炬的位置
(用坐标表示).。

相关文档
最新文档