一次函数 二次函数

合集下载

一次函数与二次函数

一次函数与二次函数

(1)注意k≠0这一条件,当k=0时,函数为y=b,它不再
是一次函数,其函数图象是平行于x轴或与x轴重合的一条
直线.
(2)b为任意的常数.特别地,当b=0时,函数y=kx(k≠0) 为正比例函数.
[例1] 已知函数y=(2m-1)x+1-3m,试求m为何值时,
(1)这个函数为正比例函数;
(2)这个函数为一次函数;
开口向下.
二次函数 f(x)= ax2+ bx+ c(a≠0)的图象是一条抛物线, 对称
3.二次函数的单调性及最值 (1)当 a>0
b 递减 时,函数在-∞,-2a上______,
4ac-b =________. 4a
b 递增 ,并且当 在 -2a,+∞ 上 ______ 2
[例3] (12分)已知f(x)为一次函数且满足4f(1-x)-2f(x-1)
=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2 012)和
f(2 013)的大小.
[思路点拨] 首先用待定系数法求解析式,再研究其性质.
[精解详析] 由已知可得.
设 f(x)=kx+b(k≠0).
x x 解析:由 y1>y2,得不等式 +2> +3,解得 x>6. 2 3 ∴当 x∈(6,+∞)时,y1>y2.
答案:(6,+∞)
6.已知一次函数y=(a+1)xa
2- 3
+b是奇函数,且在定义
域R内单调递减,求a,b的值. 解:因为函数是一次函数,所以a2-3=1,解得a=±2. 又一次函数是减函数,所以a+1<0,即a=-2.
4=-3k+b, 则 2=-k+b, k=-1, 解得 b=1.
∴一次函数解析式为 y=-x+1. 其图象如图.

一次函数与二次函数的性质及其像

一次函数与二次函数的性质及其像

一次函数与二次函数的性质及其像一次函数和二次函数在数学中扮演着重要的角色。

本文将探讨一次函数和二次函数的性质以及它们的像。

我们将首先介绍一次函数,然后转向二次函数,并详细讨论两者的相似之处和不同之处。

一、一次函数(线性函数)一次函数是指具有以下形式的函数:f(x) = ax + b,其中a和b为常数,且a不等于零。

一次函数的图像是一条直线,直线的斜率为a,截距为b。

斜率表示了直线的倾斜程度,截距则表示了直线与y轴的交点。

一次函数的性质:1. 直线的斜率决定了函数的增减性。

当斜率大于零时,函数单调递增;当斜率小于零时,函数单调递减。

2. 零点是一次函数的特殊点,即f(x) = 0的解。

零点表示函数与x轴的交点,也就是函数的根。

3. 一次函数的图像是一条直线,因此没有曲线部分。

4. 一次函数的像是一条直线。

二、二次函数(抛物线函数)二次函数是指具有以下形式的函数:f(x) = ax^2 + bx + c,其中a、b 和c为常数,且a不等于零。

二次函数的图像是一条抛物线,抛物线可能开口向上(a>0)或向下(a<0),具体取决于二次函数的开口方向。

二次函数的性质:1. 抛物线的顶点是二次函数的特殊点,即顶点的横坐标为 -b/2a。

顶点表示抛物线的最高或最低点。

2. 当二次函数的a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 抛物线的轴对称线是与抛物线关于该线对称的直线,其方程为x = -b/2a。

4. 二次函数的像是一条抛物线。

一次函数与二次函数的相似之处:1. 一次函数和二次函数都是多项式函数的特殊形式。

2. 一次函数和二次函数都是连续函数,其图像没有间断。

3. 一次函数和二次函数的像都可以用解析式表示。

一次函数与二次函数的不同之处:1. 一次函数是一条直线,而二次函数是一条抛物线。

2. 一次函数的最高次幂是1,而二次函数的最高次幂是2。

3. 一次函数的图像没有曲线部分,而二次函数的图像有曲线部分。

一次函数及二次函数

一次函数及二次函数

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

一次函数和二次函数

一次函数和二次函数

一次函数和二次函数一次函数一次函数是一种函数,它的自变量和因变量之间的关系是一个线性关系。

这种函数的特点是,它的图像是一条直线,且斜率不变,斜率也可以理解为函数的变化率。

一次函数的公式为y=ax+b,a是斜率,b是函数的截距,给定a和b的值可以求出x和y的值,也可以反过来求出a和b的值。

一次函数有许多特殊的应用,包括水平线、电力线、经济学中的折线图等。

水平线是一次函数应用最为广泛的情况,它可以帮助我们在计算机中实现垂直线的绘制,以满足特定的功能需求。

在电力线中,一次函数可以用来表示电力线的电压和电流之间的关系,它可以帮助我们更好地控制电力线的运行状态。

在经济学中,一次函数可以用来表示投入产出曲线的变化规律,从而分析经济的发展趋势。

二次函数二次函数是一种函数,它的自变量和因变量之间的关系是一个二次方的关系。

它的图像是一条弧线,且斜率会变化,斜率的变化率可以理解为二次函数的变化率。

二次函数的公式为y=ax2+bx+c,a是斜率变化率,b是斜率,c是函数的截距,给定a、b和c的值可以求出x和y的值,也可以反过来求出a、b和c的值。

二次函数在实际应用中也有许多,包括空气阻力、压力曲线、经济学中的均衡分析等等。

空气阻力是一种二次函数应用最为广泛的情况,它可以帮助我们分析飞行物体在空气阻力作用下的行为,以满足特定的功能需求。

在压力曲线中,二次函数可以用来表示液体在受力作用下的压力变化,它可以帮助我们更好地控制液体的压力。

在经济学中,二次函数可以用来表示均衡分析的变化规律,从而分析经济的发展趋势。

总之,一次函数和二次函数是数学中的重要概念,它们的应用也极其广泛,从水平线到压力曲线,从经济学中的折线图到均衡分析,它们都起着重要的作用。

二次函数和一次函数的概念和性质

二次函数和一次函数的概念和性质

二次函数和一次函数的概念和性质二次函数和一次函数是数学中常见的两种函数类型。

它们在数学领域具有重要的概念和性质。

本文将介绍二次函数和一次函数的定义、图像特征、性质以及它们在实际问题中的应用。

一、二次函数的概念和性质二次函数是指函数的公式中含有二次方项的函数形式。

一般来说,二次函数的标准形式为:f(x) = ax^2 + bx + c其中,a、b和c是常数,且a不等于0。

二次函数的图像通常是一个开口朝上或朝下的抛物线。

当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。

二次函数的图像特征还包括顶点坐标和轴对称性。

对于标准形式的二次函数f(x),顶点的x坐标为 -b/2a,y坐标为 f(-b/2a)。

此外,二次函数具有轴对称性,即以顶点为对称轴。

二、一次函数的概念和性质一次函数是指函数的公式中只含有一次方项的函数形式。

一般来说,一次函数的标准形式为:f(x) = mx + b其中,m和b是常数,且m不等于0。

一次函数的图像通常是一条直线,具有斜率和截距。

一次函数的斜率表示函数图像的倾斜程度,斜率越大,函数图像的倾斜程度越大;斜率为正表示函数上升,斜率为负表示函数下降。

一次函数的截距表示函数图像与y轴的交点坐标。

三、二次函数和一次函数的比较1. 图像特征:二次函数的图像为抛物线,具有开口方向、顶点和轴对称性;一次函数的图像为直线,具有斜率和截距。

2. 变化趋势:二次函数的变化趋势在抛物线上是非线性的,根据a的正负值可以分为开口向上或开口向下的情况;一次函数的变化趋势线性,变化速率恒定。

3. 特殊性质:二次函数的顶点坐标可以通过公式 -b/2a 计算得出,具有对称性;一次函数没有特殊的对称性质。

四、二次函数和一次函数的应用1. 二次函数的应用:二次函数在物理学、经济学和工程学等领域有广泛的应用。

例如,自由落体运动的物体高度和时间的关系、抛物线轨迹的碰撞问题等都可以使用二次函数进行建模和解决。

2. 一次函数的应用:一次函数在线性方程组、经济学和工程学中也有重要的应用。

一次函数与二次函数

一次函数与二次函数

一次函数、二次函数1. 一次函数、二次函数的定义⑴一般地,如果)0,,(≠+=k b k b kx y 为常数,那么y 就叫做x 的一次函数。

其中k 是一次项的系数,b 是图象与y 轴交点的纵坐标,叫做直线在y 轴上的截距。

特别地,当0=b 时,一次函数就变成了正比例函数)0,(≠=k k kx y 为常数。

⑵函数)0(2≠++=a c bx ax y 叫二次函数,它的定义域是R 。

c bx ax y 2++=(a ≠0)是二次函数的一般形式,另外还有顶点式:)0()(2≠+-=a k h x a y ,其中),(k h 是抛物线顶点的坐标。

两根式:)0)()((21≠--=a x x x x a y ,其中21x ,x 是抛物线与x 轴交点的横坐标。

2. 一次函数与二次函数的图象和性质⑴一次函数)为常数0,,(≠+=k b k b kx y 的图象与性质⑵ 二次函数的图象是一条抛物线,经过配方,可得到c bx ax y ++=2a b ac a b x a 44)2(22-++=,顶点为)44,2(2ab ac a b --,对称轴为直线bx -=,其图象及主要性质如下表:知识点一:用待定系数法求函数的解析式:待定系数法是一种求未知数的方法。

一般用法是:将一个多项式表示成另一种含有待定系数的新的形式,从而得到一个恒等式,然后根据恒等式的性质得出系数应满足的方程或方程组,最后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。

k≠),当x=4时,y的值为9;当x=2例1. 已知一次函数y=kx+b(k,b为常数,0时,y的值为-3;求这个函数的关系式。

2已知一个二次函数的图象经过点(0,1),它的顶点坐标为(8,9),求这个二次函数的关系式。

3抛物线的图象经过(0,0)与(12,0)两点,其顶点的纵坐标是3,求它的函数关系式。

知识点二:二次函数的性质及应用例4 求函数322++-=x x y 的顶点坐标,对称轴及函数的单调区间。

二次函数与一次函数

二次函数与一次函数

二次函数与一次函数二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。

一次函数(linearfunction),也作线性函数,在x,y坐标轴中可以用一条直线表示。

设一次函数为:y=kx+b,k≠0二次函数为:y=ax2+bx+c,a≠01.首先,我们从一次函数的自变量进行对比:一次函数:存在自变量x,并且最高次数是1,x可以为x轴上任意值;二次函数:存在自变量x,并且最高次数是2,x可以为x轴上任意值;2.在直角坐标系中他们的表现形式进行对比:一次函数:在直角坐标系中,y=kx+b,(k≠0)为一条直线,与x轴,y轴分别交于点(-b/k,0),(0,b).并且当b=0时,一次函数y=kx+b,(k≠0)过原点,直线关于原点对称。

当K>0时,一次函数y=kx+b,(k≠0)随x值变大而变大;当k<0时,一次函数y=kx+b,(k≠0)随x值变大而减小;当k=0时,一次函数y=kx+b,(k≠0)为常量,即y=b,与x轴平行。

二次函数:在直角坐标系中,y=ax2+bx+c,a≠0为一条曲线,同时也是一条抛物线,关于x=-b/2a对称,存在一个顶点(-b/2a,4ac-b2/4a).并且当△=b2-4ac>0时,与x轴有两个交点,当△=b2-4ac<0时,与x轴无交点。

当△=b2-4ac=0时,与x轴有一个交点。

并且当a>0时,开口向上,当a<0是,开口向下。

3.一次函数与二次函数的解析式的求解方法:一次函数解析式:一般常用的有两种方法a.两点式,如一次函数y=kx+b,(k≠0),过点(x1,y1)(x2,y2),那么k=(x1-x2)/(y1-y2)求出k值,将点(x1,y1)代入函数y=kx+b,(k≠0)中,求出b值,即得出一次函数的解析式。

b交点是,根据一次函数与x轴、y轴的交点,求出k,b值,即得出一次函数解析式。

二次函数解析式:一般常用的有三种方法a.y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b2/4a).把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

二次函数和一次函数知识点

二次函数和一次函数知识点

二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b^2;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与二次函数
一次函数和二次函数是初等数学中最基本的函数类型,它们在现实生活中有着广泛的应用。

本文将对一次函数和二次函数的定义、性质、图像以及应用进行详细的介绍。

一、一次函数
1. 定义:一次函数是指形如y = ax + b(a≠0)的函数,其中a和b为常数,x为自变量,y为因变量。

一次函数又称为线性函数。

2. 性质:
(1)一次函数的图像是一条直线,且斜率为a,截距为b。

(2)当a>0时,一次函数的图像从左到右呈上升趋势;当a<0时,一次函数的图像从左到右呈下降趋势。

(3)当a>0且b>0时,一次函数的图像在第一象限;当a>0且b<0时,一次函数的图像在第四象限;当a<0且b>0时,一次函数的图像在第二象限;当a<0且b<0时,一次函数的图像在第三象限。

3. 图像:一次函数的图像是一条直线,其斜率和截距可以通过公式y = ax + b计算得出。

4. 应用:一次函数在实际生活中有很多应用,例如速度与时间的关系、距离与时间的关系、价格与数量的关系等。

二、二次函数
1. 定义:二次函数是指形如y = ax² + bx + c(a≠0)的函数,其中a、b、c为常数,x为自变量,y为因变量。

二次函数又称为抛物线函数。

2. 性质:
(1)二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, f(-b/2a)),对称轴为x = -b/2a。

(2)当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

(3)当Δ= b² - 4ac > 0时,二次函数有两个不相等的实根;当Δ= b² - 4ac = 0时,二次函数有两个相等的实根;当Δ= b² - 4ac < 0时,二次函数没有实根。

3. 图像:二次函数的图像是一个抛物线,其顶点坐标、对称轴和判别式可以通过公式y = ax² + bx + c计算得出。

4. 应用:二次函数在实际生活中有很多应用,例如物体自由落体运动的速度与时间的关系、抛物线的弹道运动、经济学中的二次方程求解等。

三、一次函数与二次函数的关系
1. 一次函数可以看作是二次函数的特例。

当二次函数的系数满足a=1且b=0时,二次函数变为一次函数。

例如,y = x² + 1
是一个二次函数,而y = x + 1就是一个一次函数。

2. 一次函数与二次函数可以通过加减、乘除等运算相互转换。

例如,将一个一次函数乘以一个常数可以得到一个新的一次函数;将一个二次函数除以一个常数可以得到一个新的二次函数。

3. 一次函数与二次函数在一定条件下可以相互转化。

例如,将一个二次函数的顶点移到原点,可以得到一个新的二次函数;将一个二次函数沿着对称轴翻折,可以得到一个新的二次函数。

总之,一次函数和二次函数是初等数学中最基本的函数类型,它们在现实生活中有着广泛的应用。

掌握一次函数和二次函数的性质、图像以及应用,对于解决实际问题具有重要的意义。

相关文档
最新文档