一次函数讲解
一次函数的应用知识点梳理及经典例题讲解

一次函数的应用知识点梳理及经典例题讲解知识梳理10 min.1、一次函数的概念若两个变量x 、y 间的关系式可以表示成y=kx+b (k 、b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)特别地,当b=0时,称y 是x 的正比例函数。
2、一次函数的图象①一次函数y=kx+b 的图象是一条经过(0,b )(- b k ,0)的直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线。
②在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.典例精讲27 min.例1 .已知函数21y x =-的图象如图所示,请根据图象回答下列问题:(1)当0x =时,y 的值是多少? (2)当0y =时,x 的值是多少? (3)当x 为何值时,0y >?(4)当x 为何值时,0y <?答案:解:(1)当0x =时,1y =-;(2)当0y =时,12x =; (3)当12x >时,0y >;(4)当12x <时,0y <. 例2、如图,直线对应的函数表达式是()答案:A例3、(2008 江苏常州)甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:【 】(1)他们都骑行了20km; (2)乙在途中停留了0.5h; (3)甲、乙两人同时到达目的地; (4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有 A.1个B.2个C.3个D.4个答案:B例4.某产品的生产流水线每小时可生产100件产品.生产前没有产品积压,生产3h 后安排工人装箱,若每小时装产品150件,未装箱的产品数量()y 是时间()t 的函数,那么这个函数大致图象只能是( ) 答案:A例5.如图所示,是某企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象.请你根据图象回答下列问题:(1)张总工程师五月份工资是3 000元,这个月他应缴个人养老保险费 元;A .B .C.D.(2)小王五月份工资为500元,他这个月应缴纳个人养老保险费 元.(3)当月工资在600~2 800元之间,其个人养老保险费y (元)与月工资x (元)之间的函数关系式为 .答案:(1)200 (2)40(3)4405511y x =-例6.已知A B 、两市相距80km .甲乙两人骑自行车沿同一公路各自从A 市、B 市出发,相向而行,如图所示,线段EF CD 、分别表示甲、乙两人离B 市距离s (km) 和所用去时间t (h)之间的函数关系,观察图象回答问题: (1)乙在甲出发后几小时才从B 市出发? (2)相遇时乙走了多少小时? (3)试求出各自的s 与t 的关系式. (4)两人的骑车速度各是多少? (5)两人哪一个先到达目的地?)答案:解:(1)乙在甲出发后1h ,才从B 市发出; (2)7721199-=(h),即相遇时,乙走了719h ;(3)设甲的函数关系式为11S k t b =+甲,将7(080)2409⎛⎫⎪⎝⎭,,代入得111802540.9b k b =⎧⎪⎨+=⎪⎩,解得1172580.k b ⎧=-⎪⎨⎪=⎩,∴甲的函数关系式为72805s t =-+甲. 设乙的函数关系式为22s k t b =+乙.将7(10)2409⎛⎫⎪⎝⎭,、,代入得222202540.9k b k b =+⎧⎪⎨=+⎪⎩,,解得2245245.2k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴乙的函数关系式为454522s t =-乙; (4)14.4v =甲km/h ,22.5v =乙km/h ; (5)在72805s t =-+甲中,当0s =甲时,720805t =-+. 509t ∴=, 在454522s t =-乙中,当80s =乙时,即45454180229t t =-=,. 504199> , ∴乙先到达目的地.例7、已知两条直线y1=2x-3和y2=5-x . (1)在同一坐标系内做出它们的图像; (2)求出它们的交点A 坐标;(3)求出这两条直线与x 轴围成的三角形ABC 的面积;(4)k 为何值时,直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.分析 (1)这两个都是一次函数,所以它们的图像是直线,通过列表,取两点,即可画出这两条直线.(2)两条直线的交点坐标是两个解析式组成的方程组的解.(3)求出这两条直线与x 轴的交点坐标B 、C ,结合图形易求出三角形ABC 的面积. (4)先求出交点坐标,根据第四象限内的点的横坐标为正,纵坐标为负,可求出k 的取值范围. 解 (1)(2)⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫⎝⎛37,38.(3)当y1=0时,x =23所以直线y1=2x-3与x 轴的交点坐标为B(23,0),当y2=0时,x =5,所以直线y2=5-x 与x 轴的交点坐标为C(5,0).过点A 作AE ⊥x 轴于点E ,则124937272121=⨯⨯=⨯=∆AE BC S ABC .(4)两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k解这个关于x 、y 的方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x由于交点在第四象限,所以x >0,y <0.即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k .例8:旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图像,并求旅客最多可以免费携带多少千克的行李?分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x 轴的交点横坐标的值.即当y =0时,x =30.由此可知这个函数的自变量的取值范围是x ≥30. 解函数561-=x y (x≥30)图像为:当y =0时,x =30.所以旅客最多可以免费携带30千克的行李.例9:今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量x (吨)的函数,当0≤x ≤5时,y =0.72x ,当x >5时,y =0.9x -0.9. (1)画出函数的图像;(2)观察图像,利用函数解析式,回答自来水公司采取的收费标准.分析画函数图像时,应就自变量0≤x ≤5和x >5分别画出图像,当0≤x ≤5时,是正比例函数,当x >5是一次函数,所以这个函数的图像是一条折线.解(1)函数的图像是:(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元例10.如图所示的曲线表示一辆自行车离家的距离与时间的关系,骑车者9点离开家,15点回家,根据这个曲线图,请你回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少?(6)他在何时至何时停止前进并休息午餐?(7)他在停止前进后返回,骑了多少千米?(8)返回时的平均速度是多少?(9)11:30和13:30时,分别离家多远?(10)何时离家22km?答案:解:(1)到达离家最远地方的时间是12点到13点,离家30km . (2)10点半开始第一次休息,休息了半小时. (3)第一次休息时离家17km . (4)11:00到12:00,他骑了13km .(5)9:00~10:00的平均速度是10km/h ;10:00~10:30的平均速度是14km/h. (6)从12点到13点间停止前进,并休息午餐较为符合实际情形. (7)返回骑了30km .(8)返回30km 共用了2h ,故返回时的平均速度是15km/h . (9)设直线DE 所在直线的解析式为:s kt b =+.将(1117)(1230)D E ,、,的坐标代入,得11171230.k b k b +=⎧⎨+=⎩,解得13126.k b =⎧⎨=-⎩,所以13126s t =-. 当11.5t =时,23.5s =,故11:30时,离家23.5km .(在用样的方法求出 13:30,离家22.5km 之后,你是否能想出更简便的方法?) (10)由(9)的解答可知,直线DE 的解析式为13126s t =-,将22S =代入得11.3t =,即11点18分时离家22km ,在FG 上同样应有一点离家22km ,下面可以这样考虑:13点至15点的速度为15km/h ,从F 点到22km 处走了8km ,故需815h (即32min ),故在13点32分时间同样离家22km .例11..假定甲、乙两人一次赛跑中,路程s (m)与时间t (s)的关系如图所示,那么可以知道: (1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 .答案:(1)100(2)甲(3)8m/s例12.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为1Q 吨,加油飞机的加油油箱余油量2Q 吨,加油时间为t 分钟,12Q Q 、与t 之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2)全加油过程中,求运输飞机的余油量1Q (t)与时间t (min)的函数关系式.(3)运输飞机加完油后,以原速继续飞行,需10h 到达目的地,油料是否够用? 说明理由.y (m)答案:解:(1)由图象知,加油飞机的加油油箱中装载了30t 油.全部加给运输飞机需10min .(2)设1Q kt b =+,把(040),和(1069),代入,406910.b k b =⎧⎨=+⎩,解得 2.940.k b =⎧⎨=⎩,1 2.940(010)Q t t ∴=+≤≤;(3)由图象可知运输飞机的耗油量为0.1t/min . ∴10h 耗油量为:10600.160t 69t =<××.故油料够用.例13:.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2h 时血液中含药量最高,达6ug/ml (1ug 310-=mg ),接着逐渐衰减,10h 时的血液中含药量为每毫升3ug ,每毫升血液中含药量y (ug)随时间t (h)的变化如图.当成人按规定剂量服药后:(1)分别求出2x ≤和2x ≥时,y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为4ug 或4ug 以上时在治疗疾病时是有效的,那么这个有效时间多长?答案:解:当2x ≤时,设1y k x =,由题意,得162k =, 133.k y x ∴=∴=,当2x ≥时,设2y k x b =+由题意得2262310.k b k b =+⎧⎨=+⎩,解得23827.4k b ⎧=-⎪⎪⎨⎪=⎪⎩,32784y x ∴=-+;(2)当2x ≤时,4y ≥,即4343x x ≥,≥; 当2x ≥时,4y ≥,即327224843x x -+≥,≤. ∴有效治疗时间为:224633-=.即这个有效治疗时间为6h .例14:.两个物体A B 、所受的压强分别为A B P P ,(都为常数)它们所受压力F 与受力面积S 的函数关系图象分别是射线A B l l ,如图所示,则( )A.A B P P < B.A B P P = C.A B P P >D.A B P P ≤答案:A例15.如图是某固体物质在受热熔解过程中物质温度T (℃)与时间(s)的关系图,其中A 阶段物质为固态,B 阶段为固液共存,C 阶段为液态.(1)物质温度上升温度最快的是 阶段,最慢的是 阶段; (2)物质的温度是60℃,那么时间t 的变化范围是 .答案:(1)C B (2)2050t ≤≤例16.某图书出租店,有一种图书的租金y (元)与出租天数x (天)之间的关系如图所示,则两天后,每过一天,累计租金增加 元.t)答案:0.5例17甲、乙两辆汽车同时从相距280km 的A B 、两地相向而行,s (km)表示汽车与A 地的距离,t (min)表示汽车行驶的时间,如图所示,12l l 、分别表示两辆汽车的s 与t 的关系.(1)1l 表示哪辆汽车到A 地的距离与行驶时间的关系; (2)汽车乙的速度是多少?(3)1h 后,甲、乙两辆汽车相距多少千米? (4)行驶多长时间,甲、乙两辆汽车相遇?答案:解:(1)1l 表示汽车乙到A 地的距离与时间之间的关系; (2)汽车乙的速度是80km/h ;(3)1h 后,甲、乙两辆汽车相距140km ;(4)280(6080)2+=÷,即行驶2h ,甲、乙两辆汽车相遇.例18:.水库的库容通常是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.(1)将上表中的各对数据作为坐标()x y ,,在给出的坐标系中用点表示出来:(2)用线段将(1)中所画的点从左到右顺次 连接.若用此图象来模拟库容y 与水位高低x 的函数 关系.根据图象的变化趋势,猜想y 与x 间的函数关系,求出函数关系式并加以验证;(3)由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任 务约800万立方米.若该水库当前水位为65米,且最 高水位不能超过79米.请根据上述信息预测:该水库 能否承担这项任务?并说明理由.(第25题)答案:(1)描点如图所示. (2)连线如图所示.猜想:y 与x 具有一次函数关系. 设其函数解析式为(0)y kx b k =+≠.把(103000)(203600),、,代入得:300010360020.k b k b =+⎧⎨=+⎩,解得:602400.k b =⎧⎨=⎩,602400y x ∴=+将(304200),、(40,4800)分别代入上式, 得:420060302400=⨯+,480060402400.=⨯+所以(304200),、(40,4800)均在 602400y x =+的图象上.(3)能承担.当79x =时,179602400y =⨯+. 当65x =时,265602400y =⨯+.1260(7965)6014840y y -=-=⨯=.840800> . ∴该水库能接受这项任务.例19:.种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式; (1) 怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润. 答案:解:(1)所求函数关系式为12002000(22)y x x =+-即80044000y x =-+(2)由于草莓必须在10天内售完 则有22104xx +-≤ 解之,得16x ≥在函数80044000y x =-+中,8000-<y ∴随x 的增大而减小∴当16x =时,y 有最大值31200(元)22166-=,1644÷=,616÷=答:用4天时间运往省城批发,6天时间在本地零售.(回答销量也可)才使获利 润最大,最大利润为31200元.例20.已知一次函数y ax b =+(a 、b 是常数),x 与y 的部分对应值如下表:那么方程0ax b +=的解是 ;不等式0ax b +>的解集是 .答案:1x =;1x <.。
一次函数知识点经典例题讲解

一次函数的基本概念知识点1:理解一次函数、正比例函数的概念.形如y=kx +b (k ≠0)的函数,称y 是x 的一次函数;特殊地,若b=0,即y=kx(k ≠0)的函数,称y 是x 的正比例函数。
一次函数有两个基本特征:其一是自变量x 的次数是1;其二是自变量的系数 k ≠0例 1、判断哪些函数是一次函数:3y x =,2y x =+,213x y -=,92y x=+,12y x =-例2:已知y 是x 的一次函数,当3x =时,1y =,当2x =-时,14y =-,求:(1)这个一次函数的关系式和自变量的取值范围。
(2)当5x =时函数的值。
(3)当4y =时自变量的值。
例3..已知m y +与n x -成正比例(其中m ,n 是常数)(1)求证:y 是x 的一次函数;(2)如果1-=x 时,15-=y ,7=x 时,1=y ,求这个一次函数的解析式.这里,先设所求的一次函数关系式为y kx b =+,其中k ,b 是待确定的常数,然后根据已知条件列出以k ,b 为未知数的方程组,求得k ,b 的值,从而求出所求的关系式。
这种求函数关系式的方法叫做待定系数法。
待定系数法是一种重要的数学方法,有广泛的用途。
例3是例2的深化知识点2:y=kx+b(k≠0)的图象1、图象:一条直线;2、与坐标轴的交点:①y=kx+b(k≠0)交x轴于(-b/k,0),交y轴于(0,b);②y=kx(k≠0)过坐标原点(只有这一个交点),即(0,0)。
3、位置:由k、b决定①b决定图象与y轴的交点在x轴的上方还是下方(即(0,b)点的位置);②K决定直线的位置(即过一、三象限或二、四象限)。
注意看图识性,见数想形.例4.已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?知识点3:y=kx+b(k≠0)图象的性质k>0时,y随x的增大而增大,从左到右直线上升。
一次函数与方程不等式讲解

一次函数与方程不等式讲解一次函数与方程不等式是数学中非常重要的概念,它们在日常生活中也有广泛应用。
本文从定义、性质、求解方法等方面进行讲解,希望能够帮助读者更好地掌握这些知识。
一、一次函数的定义与性质一次函数是指形如y=kx+b的函数,其中k和b是常数,x是自变量,y是因变量。
它的图像通常是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
一次函数的性质包括:1.斜率相同的两条直线平行,斜率相反的两条直线相交于一点。
2.直线的截距可以通过函数的图像或方程求解。
3.直线的图像在x轴和y轴上的截距分别为(-b/k,0)和(0,b)。
二、一次方程的定义与性质一次方程是指形如ax+b=c的方程,其中a、b、c是已知数,x是未知数。
它的求解方法可以用解方程、平衡法、加减混合法等。
一次方程的性质包括:1.方程的解可以唯一确定未知数的取值。
2.方程的解可以用代数方法求解,也可以利用图像方法求解。
3.方程的解可以分为有理数解和无理数解。
三、一次不等式的定义与性质一次不等式是指形如ax+b<0或ax+b>0的不等式,其中a、b是已知数,x是未知数。
它的求解方法与一次方程相似,只需要将等式改为不等式,并分析不等式的性质即可。
一次不等式的性质包括:1.不等式的解可以是一个区间,也可以是整个实数集。
2.不等式的解可以用代数方法求解,也可以利用图像方法求解。
3.不等式的解可以分为正数解和负数解。
综上所述,一次函数、方程、不等式是数学中非常重要的概念,它们的应用十分广泛。
在学习和应用过程中,我们需要了解其定义、性质和求解方法,有助于更好地掌握这些知识,并解决相关问题。
希望本文能够对读者有所启发,促进学习和实践的提高。
专题08 一次函数【考点精讲】

边在第一象限作正方形 ABCD ,则对角线 BD 所在直线的解析式为( A )
A.
y
1 7
x
4
B.
y
1 4
x
4
C.
y
1 2
x
4
D. y 4
2.(2020•河北)表格中的两组对应值满足一次函数 y=kx+b,现画出了它的图象
为直线 l,如图.而某同学为观察 k,b 对图象的影响,将上面函数中的 k 与 b
3.一次函数的图象与性质
函数 系数取值 大致图象
k>0 y=kx (k≠0)
k<0
k>0b>0
y=kx+b (k≠0)
k>0b<0 k<0b>0
k<0b<0
经过的象限 一、三 二、四
一、二、三 一、三、四 一、二、四 二、三、四
函数性质 y随x增大而增大 y随x增大而减小 y随x增大而增大
y随x增大而减小
【例 1】(2021·辽宁营口市·中考真题)已知一次函数 y kx k 过点1,4 ,则下列结论
正确的是( C )
A.y 随 x 增大而增大
C.直线过点 1,0
B. k 2
D.与坐标轴围成的三角形面积为 2
【例 2】(2020•杭州)在平面直角坐标系中,已知函数 y=ax+a(a≠0)的图象过点 P(1,2)
B. x 4
C. x 2 D. x 4 或 x 2
【例 5】(2021·广西贺州市·中考真题)直线 y ax b ( a 0 )过点 A0,1 , B2,0 ,
则关于 x 的方程 ax b 0 的解为( C )
A. x 0 B. x 1 C. x 2 D. x 3
一次函数的图象和性质知识讲解

一次函数的图象和性质知识讲解一次函数是数学中最简单的函数之一,通常表示为y = ax + b,其中a和b都是实数且a ≠ 0。
一次函数也被称为线性函数,因为它的图像是一条直线。
1.找到x轴和y轴的交点,并标记为(x1,0)和(0,y1)。
2.连接两个点,得到直线。
如果x1等于0,则直线与y轴平行;如果y1等于0,则直线与x轴平行;如果两个轴的交点都不是原点,则直线会穿过原点。
1.斜率:一次函数的斜率是直线的倾斜程度。
斜率可以通过直线上的两个点计算得出,斜率等于纵坐标的变化量除以横坐标的变化量。
在一次函数中,斜率等于a。
2.y轴截距:一次函数在y轴上的截距是直线与y轴的交点的纵坐标。
在一次函数中,截距等于b。
3.x轴截距:一次函数在x轴上的截距是直线与x轴的交点的横坐标。
在一次函数中,截距等于-x1/a(如果存在)。
4.定义域和值域:一次函数的定义域是所有实数,因为对于任何实数x,一次函数都有对应的y值。
一次函数的值域也是所有实数,因为直线可以无限延伸。
5.单调性:如果a大于0,则一次函数是增函数,意味着随着x的增加,y值也增加。
如果a小于0,则一次函数是减函数,意味着随着x的增加,y值减少。
6.对称性:一次函数的图像在直线y=x/2上对称,这意味着如果一个点(x,y)在一次函数的图像上,则另一个点(y,x)也在图像上。
7.平移:通过改变常数b的值,可以使一次函数的图像平移。
当b大于0时,图像向上平移;当b小于0时,图像向下平移。
8.相关性:一次函数的系数a和b的值决定了直线的斜率和截距。
更具体地说,a决定了直线的倾斜程度,而b决定了直线与y轴的交点的纵坐标。
总结:一次函数是数学中最简单的函数之一,其图像是一条直线,由斜率和截距决定。
一次函数具有很多重要的性质,如斜率、截距、定义域、值域、单调性、对称性、平移和相关性。
熟悉这些性质可以帮助我们更好地理解和分析一次函数的特征和行为。
一次函数讲解

第 14 讲 一次函数
目 录 首 页 上一页 下一页 末 页
宇轩图书
考 点 知 识 精 讲
中 考 典 例 精 析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
知
考点一 一次函数的定义
识
一般地,如果 y=kx+b(k、b 是常数,k≠0),那么 y 叫做 x 的一次函数.
精
析
举 一 反 三
考 点 训 练
目 录 首 页 上一页 下一页 末 页
宇轩图书
考
点
(2010·宁波)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校
知 与天一阁的路程是 4 千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好
识 精 讲
到达天一阁,图中折线 O—A—B—C 和线段 OD 分别表示两人离学校的路程 s(千米)与所经 过的时间 t(分钟)之间的函数关系,请根据图象回答下列问题:
考
典
例
(2)(2010·济南)一次函数 y=-2x+1 的图象经过哪几个象限( )
精 析
A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.二、三、四象限
举 一
(3)(2010·盐城)给出下列四个函数:①y=-x;②y=x;③y=1x;④y=x2.当 x<0 时,y
反 随 x 的增大而减小的函数有( )
宇轩图书
【点拨】本题考查一次函数的应用,从图象或题意中获取信息是解题的关键.
考 点 知
【解答】(1)15
4 15
(2)由图象可知,s 是 t 的正比例函数.
识
设所求函数的解析式为 s=kt(k≠0),
一次函数的图象和性质 基础 知识讲解

一次函数的图象和性质基础知识讲解一次函数的图象和性质基础知识讲解一次函数的图象和性质(基础)知识讲解一次函数的图象与性质(基础)1.理解一次函数的概念,理解一次函数y=kx+b的图象与正比例函数y=kx的图象之间2.能够恰当图画出来一次函数y=kx+b的图象.掌控一次函数的性质.利用函数的图象化解与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3.对分段函数存有初步重新认识,能够运用所学的函数科学知识化解实际问题.要点一、一次函数的定义通常地,形似y=kx+b(k,b就是常数,k≠0)的函数,叫作一次函数.要点诠释:当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k,b的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y=kx+b(k、b为常数,且k≠0)的图象是一条直线;当b>0时,直线y=kx+b就是由直线y=kx向上位移b个单位长度获得的;当b<0时,直线y=kx+b是由直线y=kx向下平移|b|个单位长度得到的.2.一次函数y=kx+b(k、b为常数,且k≠0)的图象与性质:3.k、b对一次函数y=kx+b的图象和性质的影响:k同意直线y=kx+b从左向右的趋势,b同意它与y轴交点的边线,k、b一起同意直线y=kx+b经过的象限.4.两条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由其系数确定:(1)k1≠k2⇔l1与l2平行;(2)k1=k2,且b1≠b2⇔l1与l2平行;要点三、待定系数法求一次函数解析式一次函数y=kx+b(k,b就是常数,k≠0)中存有两个未定系数k,b,须要两个单一制条件确认两个关于k,b的方程,这两个条件通常为两个点或两对x,y的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y=kx+b中有k和b两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式则表示,因此获得的函数就是形式比较复杂的分段函数.解题中要特别注意解析式对应的自变量的值域范围,分段考量问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.类型一、未定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【变式1】未知一次函数的图象与正比例函数y2x的图象平行且经过(2,1)点,则一次函数的解析式为________.【变式2】(2021春•广安校级月托福)未知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)谋出来函数图象与x轴围起三角形的面积.类型二、一次函数图象的应用2、为减轻用电紧绷的矛盾,某电力公司制订了代莱用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.根据图象求出y与x的函数关系式.【变式】大低从家骑著自行车回去学校上学,先跑上坡路抵达点a,再走下坡路抵达点b,最后走平路到达学校c,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()a.14分钟b.17分钟c.18分钟d.20分钟类型三、一次函数的性质3、未知一次函数y=(2m+4)x+(3-n).(1)当m、n是什么数时,y随x的增大而增大;(2)当m、n就是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m、n的取值范围.4、(2021春•咸丰县期末)未知点a(4,0)及在第一象限的动点p(x,y),且x+y=5,0为座标原点,设立△opa的面积为s.(1)求s关于x的函数解析式;(2)谋x的值域范围;(3)当s=4时,求p点的坐标.举一反三:【变式】函数y=kx+k(k≠0)在直角坐标系则中的图象可能将就是().。
一次函数所有知识点讲解

一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。
在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。
一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。
当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。
四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。
当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。
2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。
因此,截距b可以用来确定函数的位置。
3. 一次函数的定义域为全体实数,值域为全体实数。
五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。
例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。
2. 一次函数可以用来描述经济问题中的成本和收益关系。
例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。
3. 一次函数可以用来描述物理问题中的速度和加速度关系。
例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。
一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数讲解
一次函数是初中数学中最基础、最简单的函数之一。
它是一种线性函数,由一个常数和一个一次项组成。
在本文中,我们将深入探讨一次函数的定义、图像、性质、应用以及解题技巧。
一、定义
一次函数也称为线性函数,其定义为:f(x) = kx + b,其中k 和b分别是常数,x是自变量,f(x)是因变量。
其中,k称为函数的斜率,b称为截距。
二、图像
一次函数的图像是一条直线。
其中,斜率k表示这条直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
截距b表示直线与y轴的交点。
三、性质
1.一次函数是一种线性函数,其图像是一条直线。
2.斜率k表示直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
3.截距b表示直线与y轴的交点。
4.一次函数的自变量和因变量成正比例关系。
5.一次函数的定义域为实数集,值域为实数集。
四、应用
1.物理学中,一次函数可以用来描述速度、加速度等物理量的变化规律。
2.经济学中,一次函数可以用来描述商品价格、销售量等经济变量的关系。
3.工程学中,一次函数可以用来描述电压、电流等工程量的变化规律。
4.统计学中,一次函数可以用来描述数据的线性趋势。
五、解题技巧
1.求斜率k:斜率k可以通过两个点的纵坐标之差除以横坐标之差来求得。
2.求截距b:截距b可以通过直线与y轴的交点来求得。
3.求函数解析式:可以通过已知的两个点的坐标来求得函数解析式。
4.求函数值:可以直接代入自变量的值来求得函数值。
六、例题解析
1.已知一次函数y = 2x + 3,求当x = 5时的函数值。
解:将x = 5代入函数中,得到y = 2 × 5 + 3 = 13。
因此,当x = 5时,函数值为13。
2.已知一次函数y = kx + 2,当x = 3时,y = 5;当x = 4时,y = 8。
求函数解析式。
解:根据已知条件,可以列出如下方程组:
k × 3 + 2 = 5
k × 4 + 2 = 8
解得k = 1。
因此,函数解析式为y = x + 2。
七、总结
一次函数是初中数学中最基础、最简单的函数之一。
它是一种线性函数,由一个常数和一个一次项组成。
一次函数的图像是一条直线,斜率表示直线的倾斜程度,截距表示直线与y轴的交点。
一次函数在物理学、经济学、工程学、统计学等领域有广泛的应用。
在解题时,需要掌握求斜率、截距、函数解析式和函数值的技巧。