北师版八年级数学(上)第五章二元一次方程组分节练习与答案【含知识点】
北师大版八年级上册数学第五章 二元一次方程组 含答案

北师大版八年级上册数学第五章二元一次方程组含答案一、单选题(共15题,共计45分)1、二元一次方程组的解是( )A. B. C. D.2、已知m=2x﹣3,n=﹣x+6,若规定y= ,则y的最大值为()A.0B.1C.-1D.23、已知且x+y=3,则z的值为()A.-3B.-5C.7D.14、已知|2x+3y﹣5|+=0,则y x的值是()A. B.-6 C.9 D.5、以方程组的解为坐标的点(x,y)在().A.第一象限B.第二象限C.第三象限D.第四象限6、已知x,y满足方程组,则x﹣y等于()A.9B.3C.1D.﹣17、如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.8、若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为()A.(﹣4,6)B.(4,6)C.(4,﹣6)D.(﹣4,﹣6)9、用加减法解方程组时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①②③④,其中变形正确的是()A.①②B.③④C.①③D.②④10、下列是二元一次方程的是()A. B. C. x= y2+1 D. x+ y=111、我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦, 3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,那么可列方程组为( )A. B. C. D.12、用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×313、若函数y=3x-6和y=-x+4有相等的函数值,则x的值为()A. B. C.1 D.14、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球的个数为()A.21B.12C.8D.3515、方程组的解是()A. B. C. D.二、填空题(共10题,共计30分)16、已知方程组的解x、y,且2<k<4,则x-y的取值范围是________17、中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为________.18、已知,则x+y=________.19、一次函数与图象的交点是,则方程组的解为________.20、若一次函数、的图象相交于,则关于x、y的方程组的解为________.21、若方程组的解x、y的和为0,则k的值为________.22、下列方程:①x+2>0;②x+y=1;③2x+1=4.其中是二元一次方程的是________.23、若是关于、的二元一次方程,则的值为________.24、如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组的解是________.25、《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果木条长x尺,绳子长y尺,可列方程组为________.三、解答题(共5题,共计25分)26、已知试解关于m、n的方程组27、某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?28、已知二次函数y=x2+bx+c的图象过(2,-1)和(4,3)两点,求y=x2+bx+c的表达式29、3月1日至12月31日,北京延庆总工会推出“世界葡萄博览园畅游优惠活动”.活动期间,工会会员成人票优惠价每张48元,学生门票每张20元,某天共售出门票3000张,共收入68400元,这天售出成人票和学生票各多少张?30、《孙子算经》中有一道题目:“今有木,不知长短。
北师大版八年级上册数学第五章 二元一次方程组含答案(综合知识)

北师大版八年级上册数学第五章二元一次方程组含答案一、单选题(共15题,共计45分)1、如图,直线l1、l2的交点坐标可以看作方程组()的解.A. B. C. D.2、甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为()A. B. C. D.3、某校150名学生参加数学考试,平均分55分,其中及格学生平均77分,不及格学生平均47分,则不及格的学生人数为()A.49B.101C.110D.404、已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个5、如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x,y 的方程组的解为()A. B. C. D.6、二元一次方程组的解为()A. B. C. D.7、设“ ”分别表示三种不同的物体,如图3,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处全放“ ”的个数为()A.5B.4C.3D.28、今年植树节,学校团委组织60位团员去植树,他们共种了130棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B. C. D.9、今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x岁,妹妹y岁,依题意,得到的方程组是()A. B. C.D.10、用加减法解方程组,下列解法正确的是( )A.①×3+②×2,消去yB.①×2-②×3,消去yC.①×(-3)+②×2,消去x D.①×2-②×3,消去x11、下列等式:①2 ;②3xy=7;③ ;④ ,二元一次方程的个数是()A.1B.2C.3D.412、已知|x+y﹣3|+(x﹣2y)2=0,则()A. B. C. D.13、已知方程组的解满足x+y=3,则k的值为( ).A.10B.8C.2D.-814、二元一次方程组的解是()A. B. C. D.15、下列方程中,是二元一次方程的是()。
北师大版八年级上册数学第五章 二元一次方程组含答案

北师大版八年级上册数学第五章二元一次方程组含答案一、单选题(共15题,共计45分)1、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,推断■的值()A.不可能是2B.不可能是1C.不可能是0D.不可能是﹣12、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所列的二元一次方程组是()A. B. C. D.3、如果5x3m-2n-2y n-m+11=0是二元一次方程,则()A.m=1,n=2B.m=2,n=1C.m=-1,n=2D.m=3,n=44、如图所示,在直角坐标系中的两条直线分别是y=﹣x+1和y=2x﹣5,那么方程组的解是()A. B. C. D.5、方程2x﹣3y=5,x+ =6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1B.2C.3D.46、二元一次方程组的解是()A. B. C. D.7、下列各对数中,满足方程组的是()A. B. C. D.8、若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为()A.3B.-3C.-4D.49、如果单项式2x m+2n y与-3x4y4m-2n是同类项,则m、n的值为()A.m=-1,n=2.5B.m=1,n=1.5C.m=2,n=1D.m=-2,n=-110、下列方程是二元一次方程的是()A.x+ =1B.2x+3y=6C.x 2﹣y=3D.3x﹣5(x+2)=211、已知实数a,b分别满足,且a≠b,则的值是( )A.7B.-7C.11D.-1112、10年前,母亲的年龄是儿子的6倍,10年后,母亲的年龄是儿子的2倍,设母亲现年x岁,儿子现年y岁,列出方程组是()A. B. C.D.13、小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是()A. B. C. D.14、下列式子是二元一次方程的是()A. B. C. D.15、方程组的解为,则“?“代表的两个数分别为()A.5,2B.1,3C.2,3D.4,2二、填空题(共10题,共计30分)16、若x3m﹣2﹣2y n﹣1=3是二元一次方程,则m=________ , n=________17、二元一次方程组= =x+2的解是________.18、如图,一次函数与的图象相交于点,则方程组的解是________.19、某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2kgA水果,4kgB水果;乙种搭配是:3kgA水果,8kgB水果,1kgC水果;丙种搭配是:2kgA水果,6kgB水果,1kgC水果;如果A水果每kg售价为2元,B 水果每kg售价为1.2元,C水果每kg售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是________元.20、方程组的解为________.21、八块相同的长方形地砖拼成一个矩形,则每块长方形地砖的长和宽分别是________cm 、________ cm22、某品牌网上旗舰店售卖两种规格的积木玩具:A规格一盒里面一个独立包装袋,共有40块积木;B规格一盒里面有三个独立包装袋,共有n块积木.小开的爸爸在网上买了两种规格的积木若干盒,结果运输过程中遭遇暴力快递,收货时发现里面的独立包装袋被损坏,积木全部混在了一起,经盘点发现,共有20个独立包装袋和290块积木,则n=________.23、方程组的解是________24、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为________.25、我国古代数学名著《孙子算经》中记载了一道题,大意是: 匹马恰好拉了片瓦,已知匹小马能拉片瓦,匹大马能拉片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为________.三、解答题(共5题,共计25分)26、解方程组:27、五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?28、我国古代算术名著《算法统宗》中有这样一道题,原文如下:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?大意为:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?请列方程(或方程组)解答上述问题.29、小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?30、某商场按定价销售某种电器时,每台可获利60元,按定价的九折销售该电器10台与将定价降低30元销售该电器13台所获得的利润相等.求该电器每台的进价、定价各是多少元?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、A6、B7、A8、D9、B10、B12、B13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
八年级数学上册《第五章 用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版)

八年级数学上册《第五章用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版) 一、选择题1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )3.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2B.x<2C.x>-1D.x<-14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<32B.x<3C.x>-32D.x>35.如图,直线y=x+32与y=kx﹣1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx ﹣1的解集在数轴上表示正确的是 ( )6.已知直线l 1:y =-3x +b 与直线l 2:y =kx -1在同一坐标系中的图象交于点(1,-2),那么方程组⎩⎨⎧3x +y =b ,kx -y =1的解是( ) A.⎩⎨⎧x =1,y =-2 B.⎩⎨⎧x =1,y =2 C.⎩⎨⎧x =-1,y =-2 D.⎩⎨⎧x =-1,y =27.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组的解为( ) A. B. C. D. 8.如图,一次函数y 1=mx +2与y 2=﹣2x +5的图象交于点A(a,3),则不等式mx +2>﹣2x +5的解集为( )A.x>3B.x <3C.x>1D.x <1二、填空题9.如图,直线l 1,l 2交于点A.观察图像,点A 的坐标可以看作方程组_______的解.10.已知方程组⎩⎨⎧y =ax +b ,y =kx ,的解是⎩⎨⎧x =1,y =3,则一次函数y =ax +b 与y =kx 的交点P 的坐标是 . 11.已知函数y 1=k 1x +b 1与函数y 2=k 2x +b 2的图象如图所示,则不等式y 1<y 2的解集是 .12.已知直线y =x-3与y =2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 13.如果一次函数y 1=ax+b 和y 2=cx+d 在同一坐标系内的图象如图,并且方程组⎩⎨⎧+=+=dcx y b ax y 的解⎩⎨⎧==n y m x ,则m,n 的取值范围是 .14.如图,经过点B(-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b <0的解集为 .三、解答题15.已知一次函数y =kx +2与y =x ﹣1的图象相交,交点的横坐标为2.(1)求k 的值;(2)直接写出二元一次方程组的解.16.如图直线y 1=kx +b 经过点A(﹣6,0),B(﹣1,5).(1)求直线AB 的表达式;(2)若直线y 2=﹣2x ﹣3与直线AB 相交于点M ,则点M 的坐标为(_____,_____);(3)根据图像,直接写出关于x 的不等式kx +b ﹤﹣2x ﹣3的解集.17.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎨⎧y =x +1,y =mx +n ,请你直接写出它的解; (3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.18.如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是________;(2)关于x的不等式mx+n<1的解集是________;(3)当x为何值时,y1≤y2?(4)当x<0时,比较y2与y1的大小关系.19.小颖根据学习函数的经验,对函数y=1﹣|x﹣1|的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表:x…﹣2 ﹣2 0 1 2 3 4 …y…﹣2 ﹣1 0 1 0 ﹣1 k …①k=______;②若A(7,﹣5),B(m,﹣5)为该函数图象上不同的两点,则m=______.(2)描点并画出该函数的图象.(3)根据函数图象可得:①该函数的最大值为______;②观察函数y=1﹣|x﹣1|的图象,写出该图象的两条性质:______,______;③已知直线y1=12x﹣1与函数y=1﹣|x﹣1|的图象相交,则当y1≤y时x的取值范围是______.参考答案1.C2.D3.D4.A5.A.6.A7.A.8.C9.答案为:.10.答案为:(1,3).11.答案为:x <1. 12.答案为:58x y =-⎧⎨=-⎩13.答案为:m >0,n >0.14.答案为:-2<x <-1.15.解:(1)将x =2代入y =x ﹣1,得y =1则交点坐标为(2,1).将(2,1)代入y =kx +2得2k +2=1解得k =-12;(2)二元一次方程组的解为. 16.解:(1)(1)∵直线1y kx b =+经过点A(﹣6,0)、B(﹣1,5) 605k b k b -+=⎧∴⎨-+=⎩,解方程组得16k b =⎧⎨=⎩∴直线AB 的解析式为y =x +6;(2)(2)∵直线223y x =--与直线AB 相交于点M623y x y x =+⎧∴⎨=--⎩,解得33x y =-⎧⎨=⎩∴点C 的坐标为(﹣3,3)故答案为:﹣3,3;(3)(3)由图可知,关于x 的不等式23kx b x +<--的解集是3x <-.17.解:(1)b =2(2)⎩⎨⎧x =1,y =2 (3)直线y =nx +m 也经过点P∵点P(1,2)在直线y =mx +n 上∴m +n =2∴2=n ×1+m ,这说明直线y =nx +m 也经过点P.18.解:(1)∵直线y 2=ax+b 与x 轴的交点是(4,0)∴当x <4时,y 2>0,即不等式ax+b >0的解集是x <4;故答案是:x <4;(2)∵直线y 1=mx+n 与y 轴的交点是(0,1)∴当x <0时,y 1<1,即不等式mx+n <1的解集是x <0;.故答案是:x <0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y 1的图象在y 2的下面时,有x ≤2,所以当x ≤2时,y 1≤y 2;(4)如图所示,当x <0时,y 2>y 1. 19.解:(1)①当4x =时14113132y =--=-=-=-,即2k =- 故答案为:2-;②把5y =-代入11y x =--得 511m -=--∴16m -=,解得:17m = 25m =-∵()7,5A -,(),5B m -为该函数图象上不同的两点∴5m =-故答案为:-5;(2)解:该函数的图象如图所示(3)解:根据函数图象可知:①该函数的最大值为1,故答案为:1;②性质:该函数的图象是轴对称图形;当1x <时,y 随着x 的增大而增大,当1x >时,y 随着x 的增大而减小;③如图,直线1112y x =-与1|1|y x =--的图象相交于点(2,2)-- ()20, 由函数图象得:当1y y ≤时,x 的取值范围为22x -≤≤ 故答案为:22x -≤≤.。
初中数学北师大版(2024)八年级上册 第五章 二元一次方程组(含简单答案)

第五章 二元一次方程组一、单选题1.下列方程组是二元一次方程组的是( )A .{x +y =1z +x =6B .{x +y =3xy =12C .{x +y =61x+y =4D .{x =y +13−2x =y +132.二元一次方程2x−3y =1有无数个解,下列选项中是该方程的一个解的是( )A .{x =12y =0B .{x =1y =1 C .{x =1y =0D .{x =32y =433.已知方程组{x +2y =m +22x +y =3m,未知数x 、y 的和等于2,则m 的值是( )A .1B .2C .3D .44.已知直线y=﹣x+4与y=x+2的图象如图,则方程组{x +y =4−2=x−y的解为( )A .B .C .D .5.买苹果和梨共100千克,其中苹果的质量比梨的质量的2倍少8千克,求苹果和梨各买了多少.若设买苹果x 千克,则列出的方程组应是( )A .{x +y =100y =2x +8B .{x +y =100y =2x−8C .{x +y =100x =2y +8D .{x +y =100x =2y−8 6.已知m 为正整数,且二元一次方程组{mx +2y =103x−2y =0 有整数解,则m 的值为( )A .1B .2C .3D .77.把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1种B .2种C .3 种D .4种8.已知一次函数y =3x 与y =−32x +92图象的交点坐标是(1,3),则方程组{y =3xy =−32x +92的解是()A .{x =2y =6B .{x =−1y =3C .{x =0y =0D .{x =1y =39.如图,在长为18m ,宽为15m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,则其中一个小长方形花圃的面积为( )A .15m 2B .18m 2C .28m 2D .35m 210.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶和1个小桶可以盛酒3斛,1个大桶和5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为( )A .{5x +y =3x +5y =2B .{5x−y =3x +5y =2C .{5x +y =2x +5y =3D .{x−5y =25x +y =3二、填空题11.由方程组{x +m =2y−3=−m,可得x —y 的值是 .12.已知2y−x =4,用含y 的代数式表示x =.13.若方程组{x +y =2,2x +2y =3没有解,则直线y =2−x 与直线y =32−x 的位置关系是 .14.五一小长假,小亮和家人到公园游玩.湖边有大小两种游船,小亮发现2艘大船与3艘小船一次共可以满载游客58人,3艘大船与2艘小船一次共可以满载游客72人.则1艘大船与1艘小船一次共可以满载游客的人数为.15.如图,在长方形ABCD 中,放入6个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为 cm 2.16.已知关于x ,y 的二元一次方程a 1x +b 1y =c 1的部分解如表:x…−125811…y …−19−12−529…关于x ,y 的二元一次方程a 2x +b 2y =c 2的部分解如表:x …−125811…y…−70−46−22226…则关于x ,y 的二元一次方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是.17.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需元.18.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x 只,兔y 只,则可列出的二元一次方程组为 .三、解答题19.解方程组:(1){3x +y =155x−2y =14;(2){3x−2y =7x−2y 3+2y−12=1.20.在平面直角坐标系中有A (−1,4),B (−3,2),C (0,5)三点.(1)求过A ,B 两点的直线的函数解析式;(2)判断A ,B ,C 三点是否在同一条直线上?并说明理由.21.已知关于x ,y 的二元一次方程组{2x +3y =kx +2y =−1的解互为相反数,求k 的值.22.阅读:某同学在解方程组{3x +2y =72x−1y=14时,运用了换元法,方法如下:设1x =m ,1y =n ,则原方程组可变形为关于m ,n 的方程组{3m +2n =72m−n =14,解这个方程组得到它的解为{m =5n =−4 .由1x=5,1y =−4,求得原方程组的解为{x =15y =−14.请利用换元法解方程组:{5x−1+12y =113x−1−12y=13.23.在平面直角坐标系内,已知点A (a,0),B (b,2),C (0,2).a ,b 是方程组{2a +b =13a +2b =11的解.(1)求a ,b 的值;(2)过点E (6,0)作PE ∥y 轴,Q (6,m )是直线PE 上一动点,连接QA ,QB .试用含有m 的式子表示三角形ABQ 的面积.24.某商场销售甲、乙两种商品,其中甲种商品进价为20元/件,售价为30元/件;乙种商品进价为50元/件,售价为80元/件.现商场用13000元购进这两种商品并全部售出,两种商品的总利润为7500元,问该商场购进甲、乙两种商品各多少件?25.某市绿道免费公共自行车租赁系统正式启用.市政府投资了200万元,建成40个公共自行车站点、配置800辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资432万元,新建80个公共自行车站点、配置1760辆公共自行车.请问每个站点的造价和每辆公共自行车的配置费分别是多少万元?26.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?27.如图,已知一次函数y=3x+3与y轴交于点A,与x轴交于点B,直线AC与x正半轴交于点C,且AC=BC.(1)求直线AC的解析式;(2)点D为线段AC上一点,点E为线段CD的中点,过点E作x轴的平行线交直线AB 于点F,连接DF交x轴于点G,求证:AD=BG;(3)在(2)的条件下,线段EF、DG分别与y轴交于点M、N,若∠AFD=2∠BAO,求线段MN的长.参考答案1.D2.A3.A4.B5.D6.B7.C8.D9.C10.A11.-112.2y−413.平行14.2615.2716.{x=8y=217.52518.{x+y=432x+4y=10219.(1){x=4y=3(2){x=165y=131020.(1)y=x+5(2)A,B,C三点在同一条直线上21.−122.{x=43y=−18.23.(1)a=5,b=3(2)m+1或−m−124.该商场购进甲种商品150件,乙种商品200件25.每个站点的造价为1万元,每辆公共自行车的配置费为0.2万元.26.(1)第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元;(2)A 型台灯每台售价为340元,B 型台灯每台售价为120元27.(1)y =﹣34x +3;(3)45104.。
北师版八年级上册数学第五章--二元一次方程组知识点及练习题

例3:一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
练习:小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.
商品销售利润问题:标价=成本(进价)×(1+利润率);实际售价=标价×打折率;
增长率问题:
解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;
原量×(1-减少率)=减少后的量.
例7:某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?
练习:某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。
5.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为 , ,那么下列求出这两个角的度数的方程是( )
A. B. C. D.
6.若关于 , 的方程组 的解是 ,则 为( )
A.1 B.3 C.5 D.2
7.已知 与 是关于二元一次方程y=kx+b的解,则k,b的值分别是( )
例6:某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
北师大版八年级上册 第5章 二元一次方程组 单元练习(答案解析)

第5章二元一次方程组一.选择题1.若方程3x2m+1﹣2y n﹣1=7是二元一次方程,则m、n的值分别为()A.m=1,n=1B.m=1,n=2C.m=0,n=1D.m=0,n=2 2.方程|x﹣y|+(2﹣y)2=0且x+2y﹣m=0,则m的值为()A.5B.6C.7D.83.二元一次方程2x+y=5的正整数解有()组.A.1B.2C.3D.44.已知是二元一次方程组的解,则m+3n的值是()A.4B.6C.7D.85.若二元一次方程组无解,则一次函数y=3x﹣5与y=3x+1的位置关系为()A.平行B.垂直C.相交D.重合6.两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()A.B.C.D.7.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.8.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需52min,从乙地到甲地需40min.设从甲地到乙地上坡与平路分别为xkm,ykm,依题意所列方程组正确的是()A.B.C.D.9.五月底,全体九年级师生共422人参加社会实线活动,当时预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二.填空题11.若是方程2x﹣3y+4=0的解,则6a﹣9b+5=.12.若关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,则k的值为.13.已知方程组与有相同的解,则m=,n=.14.一个两位数,个位数字是x,十位数字是y,将个位和十位数字对调后,所得到新的两位数,与原两位相加的和是110,可以列方程为.15.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款元.16.如图,直线y=x+1与直线y=mx﹣n相交于点M(1,b),则关于x,y的方程组的解为.三.解答题17.解方程组:(1)(2).18.已知方程组是二元一次方程组,求m的值.19.已知关于x、y的方程组和的解相同,求a、b值.20.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?21.如图,直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m)(1)求m的值;(2)方程组的解是;(3)直线y=﹣bx﹣k是否也经过点P?请说明理由.22.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?参考答案一.选择题1.D.2.B.3.B.4.D.5.A.6.D.7.A.8.A.9.A.10.解B.二.填空题11.﹣7.12.2.13..14.10x+y+10y+x=110.15.8.16..三.解答题17.解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.18.解:依题意,得|m﹣2|﹣2=1,且m﹣3≠0、m+1≠0,解得m=5.故m的值是5.19.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组,得解这个方程组,得a=1,b=2.20.解:设甲,乙速度分别为x,y千米/时,,,甲的速度是3.6千米每小时,乙的速度是6千米每小时.21.解:(1)将点P(﹣1,m)代入直线方程y=2x+6得:﹣2+6=m,所以m的值是4;(2)方程组的解为,故答案为:,(3)直线y=﹣bx﹣k也经过点P.理由如下:∵点P(﹣1,4),在直线y=﹣bx﹣k上,∴b﹣k=4,∵y=kx+b交于点P,∴﹣k+b=4,∴b﹣k=﹣k+b,这说明直线y=﹣bx﹣k也经过点P.22.解析:(1)设需甲车型x辆,乙车型y辆,得:,解得.答:需甲车型8辆,乙车型10辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,得:,消去z得5x+2y=40,x=8﹣y,因x,y是正整数,且不大于14,得y=5,10,由z是正整数,解得,,当x=6,y=5,z=5时,总运费为:6×400+5×500+5×600=7900元;当x=4,y=10,z=2时,总运费为:4×400+10×500+2×600=7800元<7900元;∴运送方案:甲车型4辆,乙车型10辆,丙车型2辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.八(上) 第五章二元一次方程组 分节练习第 1 节 认识二元一次方程组01、【基础题】若方程 3x 3m+2 y n=4 是二元一次方程,那么 m + n 的值是 ______. 02、【基础题】下面 4 组数值中,哪些是二元一次方程 2x + y =10 的解?x -2 x 3 x 4 ( 1) 6 ( 2) 4 (3) ( 4)y y y 3x + = 2.1 、【基础题】二元一次方程组2 y 10y 的解是 ______.=2xx 6y -2x 4 ( 2) x 3x 2x4( 1)3y (3)y 4( 4)2 y6y= + x 3m 1 是二元一次方程 4x -3y =10 的一个解,求 m 的值 .2.2 、【基础题】若= - y 2 2m 3、根据题意列方程组:( 1)小明从邮局买了面值 50 分和 80 分的邮票共 9 枚,花了 6.3 元,小明买了两种邮票各多少枚?( 2)周末, 8 个人去红山公园玩,买门票一共花了 34 元,已知每张成人票 5 元,每张儿童票 3 元,请问8个人中有几个成人、几个儿童?( 3)某班共有学生45 人,其中男生比女生的 2 倍少 9 人,则该班男生、女生各多少人?( 4)老牛比小马多驮了 2 个包裹,如果把小马驮的其中 1 个包裹放到老牛背上,那么老牛的包裹是小马的 2 倍,请问老牛和小马开始各驮了多少包裹?( 5)将一摞笔记本分给若干同学 . 每个同学 5 本,则剩下 8 本;每个同学 8 本,又差了 7 本 . 共有多少本笔记本、多少个同学?第 2 节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:y =2 x (1) (2) x +y =12 x =y -52( 3)x +y =11 x -y 7 (4)3x -2y =9 x +2 y 3x -3 y =2 ( 5) (6)y x3x +2 y =14 (9) (10) x y +34x +3y =65x +y =52x +y 82x +3y =16x +4 y 13 ( 7)4x +3 y =5 x -2y 4( 8)m - n =222m +3n 125、【基础题】用加减消元法解下列方程组:..(1) 7x -2y =3 ; ( 2) 6x -5y =3 ; ( 3) + 2 y - 6x + y -9x 19 152x + = - = + 3y 12 ( 6)3( x 1) y 5( 5) + ; - ;3x 4 y 17 5( y +1) 3( x 5)+ = ; ( 4) 5x-= 9 ; 4s 3t 5 6 y - - 7x - 4 y - 5 2s t 55.1 、【基础题】用加减消元法解下列方程组:- 3y =- 5y =- 21 + =- ( 1) 4 x 14( 2) 2x 4x 7 y 19; + ;+ ; (3) ; (4)31 3y 23 -17 5x 3y4x 4x 5 y( 5) 3x -5 y =3(6)y +1= x +2 ; ( 7) x - y ; 4 31 x -(3y - x)=12 35.2 、【综合Ⅰ】 如果 x 1 是二元一次方程组ax by 1) y 2 bx ay 的解,那么 a ,b 的值是(2 ( A ). a 1( B ). a1 a 0 a 0 bb0 ( C ). 1 ( D ).1bb第 3 节 应用二元一次方程组 —— 鸡兔同笼6、【综合Ⅰ】 列方程解应用题:( 1)小梅家有鸡也有兔,鸡和兔共有头 16 个,鸡和兔共有脚 44 只,问:小梅家的鸡与兔各有多少只? ( 2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?( 3)今有牛五、羊二,直金十两;牛二、羊五,直金八两 . 请问牛、羊各直金几何? 题目大意是: 5 头牛和2 只羊共价值 10 两金子, 2 头牛和 5 只羊共价值 8 两金子,每头牛、每只羊各价值多少两金子 .( 4)《孙子算经》中记载了一道题,大意是: 100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉 3 片瓦, 3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?( 5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出 8 元,多 3 元;每人出 7 元,少 4 元 . 问有多少人?该物品价值多少元? 6.1 、【综合Ⅱ】列方程解应用题:( 1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺 . 请问,绳长、井深各几何? ( 2)用一根绳子环绕一棵大树,若环绕大树 3 周,则绳子还多 4 尺;若环绕大树 4 周,则绳子又少了3 尺, 那么这根绳子有多长?环绕大树一周需要多少尺?第 4 节应用二元一次方程组——增收节支..7、【综合Ⅱ】列方程解应用题:( 1)某工厂去年的利润(总产值减总支出)为200 万元 . 今年总产值比去年增加20%,总支出比去年减少 10%,今年的利润为 780 万元 . 去年的总产值、总支出是多少万元?( 2)一、二班共有100 名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是 87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?( 3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5 单位蛋白质和1 单位铁质,每克乙原料含 0.7 单位蛋白质和 0.4 单位铁质,若病人每餐需要 35 单位蛋白质和 40 单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?( 4)甲、乙两人从相距36 km 的两地相向而行,如果甲比乙先走 2 h ,那么他们在乙出发2.5 h 后相遇;如果乙比甲先走 2 h ,那么他们在甲出发3 h 后相遇,请问甲、乙两人的速度各是多少?7.1 、【综合Ⅱ】列方程解应用题:( 1)某旅馆的客房有三人间和两人间两种,三人间每人每天25 元,两人间每人每天 35 元,一个 50 人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510 元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长 400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔 30 s 相遇一次;如果同向而行,那么每隔80 s 乙就追上甲一次 .甲、乙的速度分别是多少?( 3)某一天,蔬菜经营户花 90 元从蔬菜批发市场批发了黄瓜和茄子共40 kg ,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价 / (元 /kg ) 2.4 2零售价 / (元 /kg ) 3.6 2.8他当天卖完这些黄瓜和茄子可赚多少元?第 5 节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:( 1)小明和小亮做加法游戏,小明在一个加数后面多写了一个 0,得到的和为 242;而小亮在另一个加数后面多写了一个 0,得到的和为 341,原来的两个加数分别是多少?( 2)有一个两位数,个位上的数字比十位上的数字的 3 倍多 2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的 3 倍少 2,求原来的两位数.( 3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数 .( 4)一个两位数,减去它的各位数字之和的 3 倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是 1. 这个两位数是多少?8.1 、【综合Ⅱ】列方程解应用题:( 1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min ,已知小颖在上坡路上的平均速度是 4.8 km/h ,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?..(2)某商店准备用两种价格分别为36 元 / kg 和 20 元 / kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28 元/ kg 。
现在要配制杂拌糖果 100 kg ,需要两种糖果各多少千克?第 6 节二元一次方程与一次函数3x-y=19、【基础题】已知一次函数y=3x-1 与y=2x 图像的交点是( 1, 2),求方程组的解 .y 2x-++=x 439.1 、【基础题】已知方程组3x y 3 0的解是 3 ,试求直线y=3x-3 与y=-x+3的+-60 23x 2 yy 1交点坐标 .2x-y=09.2 、【综合Ⅰ】已知直线 y= 2x 与y=- x+ b 的交点为( 1, a ),试确定方程组的解x+y-b 0 和 a、 b 的值 .y=3x-5 9.3 、【综合Ⅰ】一次函数y=3x-5 与y=2x+ b 的图象的交点为P( 1,-2),试确定方程组y 2x+b 的解和 b 的值 .10、【综合Ⅱ】在同一直角坐标系内分别画出一次函数y=5-x 和 y=2 x-1 的图象,并求出它们图象的交点坐标 .10.1 、【综合Ⅱ】在同一直角坐标系中,一次函数y= x+1 与y= x-2 的图象有怎样的位置关系?x-y=-1方程组的解得情况如何?x-y 210.2 、【综合Ⅱ】是否有一组数同时适合方程x+ y= 2 和x+ y=5 吗?直线y=2- x 与y=5- x 之间有什么关系?第 7 节用二元一次方程组确定一次函数表达式11、【综合Ⅰ】在弹性限度内,弹簧的长度y( cm)是所挂物体质量 x( kg)的一次函数。
当所挂物体的质量为 1 kg 时,弹簧长 15 cm;当所挂物体的质量为 3 kg 时,弹簧长 16 cm。
写出 y 与 x 之间的关系式,并求当所挂物体的质量为 4 kg 时弹簧的长度。
11.1 、【综合Ⅰ】某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李..票,且行李费 y(元)是行李质量x( kg)的一次函数。
已知李明带了 60 kg 行李,交了行李费5 元;张华带了 90 kg 的行李,交了行李费10 元。
( 1)写出 y 与 x 之间的函数表达式;(2)旅客最多可免费携带多少千克的行李?11.2 、【综合Ⅰ】生物学研究表明,某种蛇的长度 y( cm)是其尾长x( cm)的一次函数。
当蛇的尾长为 6 cm 时,蛇长为 45.5 cm ;当蛇的尾长为 14 cm 时,蛇长为 105.5 cm.( 1)写出 x、 y 之间的关系式;( 2)当一条蛇的尾长为 10 cm 时,这条蛇的长度是多少?11.3 、【综合Ⅱ】为了倡导节约用水,某城市规定:每户居民每月的用水标准为8 m 3,超过标准部分加价收费。