校园水环境质量监测方案

合集下载

清华大学校内饮用水水质检测方案

清华大学校内饮用水水质检测方案

清华大学校内饮用水水质检测方案方案指导老师: 余 刚方案组班级:环 31 班方案组成员: 孔令群(2003010303) 马安安(2003010319)王明炜(2003010329)项目报告完成时间:2005年5月15日目录1 概述 (3)2 监测目的 (4)3 方案调研 (5)3.1 背景调研 (5)3.2 检测方法调研 (6)4 监测方案 (7)4.1 方案概述 (7)4.2 布点采样 (8)4.3 检测方法 (10)4.4 数据表格 (13)4.5 结果预计 (13)5 方案实施计划 (13)5.1 仪器列表 (13)5.2 时间安排 (14)6 参考文献 (15)7 附录1 (15)附录2 (23)1 概述对于人体来说,水是最重要的物质,是人体不可缺少的成分,约占人体重量的三分之二以上,被喻为生命之源。

每天我们都要摄取一定量的水来保证自身生理活动的需要,而这些水的水质状况直接影响着我们身体健康。

(饮用水水质对人体健康影响见附录)在校园里,我们经常饮用的水有:自来水,各个教学楼、紫荆公寓、东北区的开水房的开水,这些饮用水是否是合格的饮用水呢?我们小组将从这些饮用水中选择几种,测定几种典型指标,来判断这些饮用水的水质状况。

方案设计思路:2 监测目的此次校园饮用水水质监测的目的主要有以下几个方面:1、巩固水环境监测的原理与知识,了解调查研究的基本方法与步骤,通过严格科学的训练锻炼同学的思考能力、实践能力、创新能力,通过深入了解接触我们所处的环境提高同学的环保意识;2、培养独立开展环境监测实验的能力;3、通过监测反映校内饮用水质量现状,为广大学生和教职工的身体健康保障提供参考性依据,同样为开展和校园相关的环境管理提供科学依据3 方案调研3.1背景调研m,相当于全国人均占有量的 北京市是严重缺水的城市,人均水资源占有量不足40031/6,世界人均占有量的1/25。

北京地处华北平原的西北端。

西部山地属太行山脉;北部山地属燕山山脉;东南部为冲洪积物组成的北京山前倾斜平原。

学校环境监测系统解决方案

学校环境监测系统解决方案

学校环境监测系统解决方案随着社会的不断进步和环境问题的日益重视,学校环境监测成为了教育领域中一个不可忽视的议题。

为了保障学生和教职员工的健康与安全,学校需要建立一个全面、准确的环境监测系统。

本文将介绍一个高效的学校环境监测系统解决方案。

一、需求分析:学校环境监测系统的建立需要考虑多方面的需求。

首先是空气质量监测,学校应该实时监测空气中的污染物含量,如PM2.5、CO2等。

其次是水质检测,学校的自来水是否安全饮用也需要定期检测。

此外,噪音和温湿度的监测也是必要的,以保证学生在安静、舒适的环境中学习。

最后,还应该考虑到灯光和紫外线的监测,确保学生的视力健康。

二、系统架构设计:1. 传感器网络:学校应该布置一系列传感器,覆盖整个校园的各个区域。

这些传感器可以实时检测环境参数,并将数据传输到中央控制系统。

2. 中央控制系统:该系统可以集中管理和分析来自传感器的数据。

它应该具有强大的数据处理能力和存储能力,以及友好的用户界面,方便学校管理人员进行查看和分析。

3. 数据通信:传感器和中央控制系统之间需要建立可靠的数据通信渠道,以确保传感器数据的实时和准确传输。

4. 数据分析与报警:中央控制系统可以对传感器数据进行实时分析,并设定阈值。

一旦环境参数超过预设的范围,系统将自动触发报警机制,提醒学校管理人员进行相应的处理。

三、系统特点:1. 全面性:该系统能够监测多个环境参数,包括空气质量、水质、噪音、温湿度、灯光和紫外线等。

覆盖面广,能够全方位了解学校的环境状况。

2. 实时性:传感器几乎可以实时收集数据,并通过数据通信渠道传输到中央控制系统。

学校管理人员可以随时了解环境参数的变化情况。

3. 准确性:传感器的准确度是保证系统正常运行的基础。

学校需要选择品质可靠的传感器设备,以确保监测数据的准确性。

4. 报警功能:系统设有报警功能,一旦环境参数超出阈值,即可触发报警机制。

这样可以及时提醒学校管理人员并采取相应的措施,保障师生的健康与安全。

环境监测方案制定校园水环境监测方案

环境监测方案制定校园水环境监测方案

环境监测方案制定校园水环境监测方案环境监测方案制定校园水环境监测方案校园水环境监测指的是对校园水环境中各种物质、质量指标、微生物等因素进行监测、检测以及分析评估的过程。

环境监测方案是根据校园水环境的实际情况,科学制定的监测计划和方法方案。

通过环境监测方案的制定,可以更加全面、科学的了解校园水环境的质量状况,及时发现和解决环境问题,保障健康安全。

本文介绍的是校园水环境监测方案的制定。

一、确定监测的目的和范围为了科学制定监测方案,首先需要明确监测的目的和范围。

根据校园特点和环境问题,目的可以包括以下几个方面:全面了解校园水环境的质量状况、掌握水环境的变化趋势、及时发现和解决环境问题,保障师生健康安全。

范围可以分为宏观和微观两个方面:宏观方面包括汇水区、河流、池塘等校园水来源的环境状态,微观方面则包括水体中的物质、质量指标、微生物等因素。

二、确定监测指标根据监测目的和范围,结合国家和地方的环境法规标准,对监测指标进行选定,以便后续的监测工作能够更加具体。

监测指标可以分为物理指标、化学指标和微生物指标三个类别。

物理指标主要包括水体温度、PH值、浊度、色度等,化学指标包括化学需氧量、氨氮、总磷、总氮等,微生物指标包括大肠菌群、肠球菌等指标。

三、确定监测频次和监测时间监测频次和监测时间是环境监测中非常关键的两个因素。

监测频次既要保证监测时间的连续性、稳定性,又要保证监测的有效性。

监测时间需要充分考虑校园水环境受到影响的因素,如气温、降水量、水体水位等。

四、确定监测方法环境监测方法是环境监测的核心部分。

不同的监测指标需要使用不同的监测方法。

环境监测方法需要科学、规范和准确。

因此,在制定监测方案时,需要考虑监测方法的适用性、实用性、标准性等因素,并对质量控制、数据处理进行规定。

五、制定环境监测报告环境监测报告是环境监测的最终成果。

监测报告的制作需要注重报告的结构和信息交流的清晰,以及发现问题和解决问题的能力。

在监测报告中需要体现多种信息:监测结果、环境因素分析、问题评估和对策提出等,总结水环境质量情况和变化趋势,向相关部门和社会公众公开监测信息,达到预期的监测目的。

校园水质监测方案

校园水质监测方案

校园水质监测方案1. 引言随着人口的增加和工业的快速发展,水质污染问题日益突出。

特别是在校园环境中,水质安全对师生的健康至关重要。

为了保障校园水质的安全,本文提出了校园水质监测方案,旨在及时检测和预警水质问题,确保师生饮用水的健康与安全。

2. 监测设备为了监测校园水质,我们需要使用一些专业的监测设备。

以下是我们推荐的一些设备:2.1 pH值监测仪pH值是衡量水的酸碱度的重要指标之一,也是判断水质好坏的关键因素。

通过使用pH值监测仪,我们可以准确地测量水的pH值,并及时发现和解决酸碱度异常的问题。

2.2 溶解氧检测仪溶解氧是水中重要的营养物质之一,也是衡量水体生态环境质量的重要指标。

溶解氧检测仪可以测量水中存在的溶解氧量,帮助我们评估水质是否富含氧气,并指导我们进行相应的调整和处理。

2.3 浑浊度检测仪浑浊度是指水中微粒子的含量,也是衡量水体质量的重要指标之一。

浑浊度检测仪可以帮助我们测量水的浑浊度,并及时发现和解决悬浮物超标的问题,确保水质的清澈度。

2.4 电导率检测仪电导率是指液体中导电性的程度,也是水质监测中的一个重要参数。

通过使用电导率检测仪,我们可以测量水中的电导率,并判断水质是否受到了污染,从而采取相应的措施进行治理和预防。

3. 监测方案为了确保校园水质的安全和可靠,我们建议采取以下监测方案:3.1 定期监测定期监测是确保水质安全的关键步骤。

我们建议每月进行一次全面的校园水质监测,包括pH值、溶解氧、浑浊度和电导率等参数。

定期监测可以及时发现水质问题,并采取相应的纠正措施。

3.2 实时监测除了定期监测之外,我们还建议安装实时监测设备,对校园的重要水源进行实时监测。

这些设备可以将数据实时传输到中央监测系统,将水质数据直接反馈给相关人员,实现对水质的全程监控和预警。

3.3 数据分析与报告监测数据的分析和报告是保障水质安全的重要环节。

我们建议建立一个专门的数据分析与报告系统,对所收集到的监测数据进行实时分析和报告生成。

水环境监测方案

水环境监测方案

水环境监测方案随着城市化进程的加速和人口的快速增长,水资源的保护和管理变得尤为重要。

水环境监测方案作为一种能够了解和评估水环境质量的工具,对于保护水资源、维护生态平衡具有重要意义。

本文将从监测目标、监测方法、监测指标和监测技术等方面讨论水环境监测方案。

一、监测目标水环境监测方案的首要目标是了解水环境的质量和状况,以便采取相应的措施进行调控和管理。

同时,水环境监测还应关注水体的污染源和排放情况,以及水资源的利用情况。

监测目标包括但不限于水质、水量、水体生物多样性等。

二、监测方法水环境监测可以采用不同的方法,包括现场监测和实验室分析两种主要方法。

现场监测是指直接在水环境中进行监测和观测,通过采集和分析水样来评估水质状况。

这种方法可以全面地了解水体中的污染物浓度和分布情况,并可以实时进行监测。

实验室分析则是将采集的水样带回实验室进行综合分析。

这种方法需要一定的实验技术支持,能够更加准确地测定水样中的污染物浓度和特征。

三、监测指标水环境质量的评估需要借助一些监测指标,以便对水体的状况进行定量评价。

常见的水环境监测指标包括水温、溶解氧、pH值、电导率、浊度、氨氮、总氮、总磷等。

这些指标可以反映出水环境的污染程度、富营养化程度、酸碱性、悬浮物含量等信息。

另外,为了更全面地了解水环境的状况,还可以考虑监测一些生物指标,如浮游植物、底栖动物的群落结构等。

这些生物指标能够反映水体的生态状态和生物多样性。

四、监测技术随着科技的进步,水环境监测技术也在不断创新和发展。

传统的监测方法主要依靠人工采样和实验室分析,具有准确性高的优点,但是在实时监测和大面积监测上存在学通限制。

近年来,一些新兴技术被应用于水环境监测中。

例如,遥感技术可以通过卫星图像获取大范围的水体信息,从而对水环境进行监测和评估。

另外,生物传感技术和生物芯片技术等新技术也正在逐渐应用于水环境监测领域,可以快速、高效地检测水体中的污染物。

总之,水环境监测方案是保护水资源、维护生态平衡的重要工具。

校园环境质量监测方案

校园环境质量监测方案

校园环境质量监测方案一、背景随着全球经济的迅速发展和城市化进程的加快,校园环境质量逐渐引起人们的关注。

校园环境质量不仅关系到学生的健康成长,也与教育教学质量密切相关。

因此,建立一套校园环境质量监测方案,成为了现阶段亟待解决的问题。

二、目的本方案旨在对校园环境质量进行全面、科学的监测与评估,为改善校园环境提供依据,确保师生的健康与安全。

三、监测内容1. 空气质量监测:包括监测二氧化碳、甲醛、颗粒物等有害气体和污染物的浓度。

2. 水质监测:监测校园内各类水体的水质情况,包括饮用水、游泳池水等。

3. 噪音监测:对校园内的主要噪音源进行监测和评估,包括交通噪音、机器设备噪声等。

4. 光照强度监测:测量校园内各区域的光照强度,确保学生的视力健康。

5. 温湿度监测:监测校园内各房间的温度和湿度,保障舒适的学习环境。

四、监测方法1. 空气质量监测:使用专业设备进行空气采样和分析,采集数据后进行定期评估。

2. 水质监测:对校园内各类水源进行定期采样分析,确保水质合格。

3. 噪音监测:采用声级计等设备对校园内相关区域进行实时监测,记录噪音水平。

4. 光照强度监测:使用光照计等设备对校园内不同区域进行定期测量,并记录数据。

5. 温湿度监测:利用温度计和湿度计等设备,对校园内不同房间的温湿度进行检测和记录。

五、监测频率1. 空气质量监测:每季度进行一次空气质量监测和评估。

2. 水质监测:每月对校园内水质进行一次采样和分析。

3. 噪音监测:每月对校园内重要噪音源进行一次监测,按需要随时调整。

4. 光照强度监测:每季度对校园内光照强度进行一次测量和记录。

5. 温湿度监测:每天早上和下午各进行一次温湿度测量。

六、数据处理与评估监测数据将通过专业的数据处理软件进行分析和统计,得出结果后进行评估。

评估结果将根据标准值进行对比,判断环境质量是否达标。

七、监测报告与应对措施1. 监测报告:根据监测结果,定期编制监测报告,向相关部门和师生公示监测结果,接受监督和建议。

实验 校园环境质量监测

实验 校园环境质量监测

1.使学生学会设计水质监测路线,确定水质监测项目,并对水质进行监测与评价。

2.使学生学会设计空气污染监测路线,确定空气监测项目,并对空气质量进行监测与评价。

3.使学生学会设计环境噪声监测路线,并对噪声进行监测与评价,绘制噪声污染图。

4.训练学生独立完成一项摹拟或者实际监测任务的能力、处理监测数据的能力以及综合分析和评价能力。

1.要求学生理论联系实际,实地调查,每一个学生都自己动手亲自制订方案,设计分析操作过程,处理实验数据,写出实验报告。

2 .实事求是地报出监测数据,实验结果准确可靠。

3.选择的项目要能够反映监测区水环境质量以及空气环境质量,选择的采样、分析监测方式要科学合理。

三.实验内容(一)校园水及污水监测1 .制订校园水及污水监测方案:对校园内污水及生活用水进行现场调查,对以下调查内容以表格或者其他能清晰表达的方式加以记录。

① 学生食堂用水包括哪几部份,各部份水中含的物质大致情况,每天用水量。

② 调查校医院污水去向,排水量。

③ 调查校园中各实验室的污水去向,排水量。

④调查生活污水(教工住宅区、学生宿舍)的排水量。

⑤调查校园内自来水用水量。

⑥校园内地表水情况等。

制订校园内水监测方案一览表,并确定监测项目。

2 .校园水、污水监测及结果分析:① 实施水及污水的监测具体安排:全班同学分成几组,每组负责几个项目的测定,拿到监测项目后,每组同学做好采样前准备工作(标准溶液及其他试剂配制;采样仪器、采样时的保存剂准备等)。

② 学生亲自动手进行水样采集、保存和预处理以及分析测试。

③ 水监测结果及分析:各项目分析监测及数据处理方法参看《水和污水监测分析方法》国家环保局编,也可参考《环境监测》(第三版)奚旦立主编或者本实验指导书的有关内容。

最后将结果汇总在表格中。

3 .对校园内水及污水水质进行简单评价:校园的水及污水水质与国家相应标准比较,并得出结论;分析校园水及污水水质现状;提出改善校园水及污水水质的建议及措施。

校园环境监测方案报告

校园环境监测方案报告

校园环境监测方案报告一、引言校园环境对学生的学习和健康发展起着重要的作用。

为了保障校园环境的卫生、安全与可持续性发展,我们制定了校园环境监测方案。

本报告旨在介绍该方案的目标、方法和实施计划。

二、目标校园环境监测方案的主要目标是确保学生在一个健康、安全以及适宜学习的环境中成长。

具体目标包括:1. 监测空气质量,保障学生呼吸健康的空气;2. 监测水质,确保提供安全的饮用水;3. 监测噪音水平,创造一个宁静的学习环境;4. 监测校园周围的环境因素,保护生态平衡。

三、方法为了实现上述目标,校园环境监测方案采取了以下方法:1. 空气质量监测:采用专业的空气质量监测仪器,对校园内各个区域进行定期监测。

监测内容包括空气中的PM2.5、PM10等颗粒物浓度,二氧化碳浓度,甲醛等有害气体浓度等。

根据监测结果,及时采取措施改善空气质量。

2. 水质监测:每个月对学校的自来水进行抽样测试,检测水中的重金属、有机污染物、微生物等指标。

同时,对饮水机、洗手间水龙头等设施进行定期检查,确保供水的安全性。

3. 噪音监测:设置噪音监测仪器,监测校园内各个区域的噪音水平。

根据监测结果,采取合理的隔音、消音措施,创造一个宁静的学习环境。

4. 环境因素监测:监测校园周围的环境因素,包括附近的交通状况、工厂排放和建筑工地等。

定期收集数据并进行分析,及时采取相应的措施,保护生态平衡。

四、实施计划校园环境监测方案将按以下计划实施:1. 建立监测团队:成立专门的监测团队,包括环境科学专家、仪器操作员和数据分析师等,确保监测工作的专业性和高效性。

2. 设立监测点位:根据校园的结构和特点,确定监测点位,包括室内和室外的多个区域。

监测点位应具有代表性和全面性,以便准确评估整体环境质量。

3. 确定监测频率:对于不同的监测参数和区域,确定合适的监测频率。

空气质量、水质等参数将进行月度监测,噪音和环境因素将定期进行监测。

4. 数据分析与报告:监测数据将由数据分析师进行整理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分校园水环境质量监测方案一、污染源的调查1、校园水污染源主要包括食堂水、实验室废水、生活污水等。

2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。

主要排入下水道和校园内小水沟。

3、实验室废水主要排入下水道,排水量不大。

生活污水的排水量占主要部分。

二、校园区域划分校园功能分区按宿舍区、教学楼区、行政区、生活区进行划分,校园空气质量执行GB3838-88三类区标准。

水样采样连续两天,对于校园内小沟直接在沟中心采样,取两个采样点(食堂小水沟,俊秀小水沟),每天每个采样点采集1次样。

三、监测项目及方法(一)氨氮的测定(纳氏试剂比色法)一、原理碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。

本法最低检出浓度为0.025mg /L(光度法),测定上限为2mg/L。

二、仪器1、具20mm比色皿。

2.50mL具塞比色管。

(7个)3.分光光度计。

4.氨氮蒸馏装置:由500mL凯式烧瓶、氮球、直形冷凝管和导管组成,冷凝管末端可连接一段适当长度的滴管,使出口尖端浸入吸收液液面下。

三、试剂配制试剂用水均应为无氨水。

1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。

2.25%氢氧化钠溶液和10%硫酸锌溶液。

3.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。

另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。

用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

4.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。

5.铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL 容量瓶中,稀释至标线。

此溶液每毫升含1.00mg氨氮。

6.铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线。

此溶液每毫升含0.010mg氨氮。

四、测定步骤1.水样预处理:无色澄清的水样可直接测定;色度、浑浊度较高和含干扰物质较多的水样,需经过蒸馏或混凝沉淀等预处理步骤。

2.标准曲线的绘制:吸取0 、0.50、1.00、3.00、5.00、7.00和10.0mL铵标准使用液于5 0mL比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。

加1.5mL纳氏试剂,混匀。

放置10min后,在波长420nm处,用光程10mm比色皿,以水为参比,测定吸光度。

由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。

3.水样的测定:分取适量的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加1.0mL酒石酸钾钠溶液(经蒸馏预处理过的水样,水样及标准管中均不加此试剂),混匀,加1.5mL的纳氏试剂,混匀,放置10min。

4.空白试验:以无氨水代替水样,作全程序空白测定。

五、计算由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮含量(mg)。

氨氮(N,mg/L)=m×1000/V式中:m——由校准曲线查得样品管的氨氮含量(mg);V——水样体积(mL)。

注意事项1、纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。

静置后生成的沉淀应除去。

2、滤纸中常含痕量铵盐,使用时注意用无氨水洗涤。

所用玻璃器皿应避免实验室空气中氨的沾污。

(二)化学需氧量的测定重铬酸钾法(CODcr)原理:在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。

仪器(1)250mL全玻璃回流装置。

如取水样在30mL以上,用500mL全玻璃回流装置。

加热装置(电炉)。

25mL或50mL酸式滴定管、锥形瓶、移液管、容量瓶等。

试剂重铬酸钾标准溶液(c 1/6K2Cr2O7=0.2500mol/L):称取预先在120℃烘干2h的基准或优质纯重铬酸钾12.258g溶于水中,移入1000mL容量瓶内,稀释至标线,摇匀。

试亚铁灵指示剂:称取0.472g邻菲罗啉(C12H8N2·H2O)、0.347g硫酸亚铁(FeSO4·7 H2O)溶于水中,稀释至50mL,贮于棕色瓶内。

硫酸亚铁铵标准溶液[c(NH4)2Fe(SO4)2·6H2O≈0.1mol/L]:称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,摇匀。

临用前,用重铬酸钾标准溶液标定。

①标定方法:准确吸取10.00mL重铬酸钾标准溶液于500mL锥形瓶中,加水稀释至110mL 左右,缓慢加入30mL浓硫酸,混匀。

冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。

②按下式计算硫酸亚铁铵溶液浓度:c=(0.2500*10.00)/(V)式中:c——硫酸亚铁铵标准溶液的浓度,mol/L;V——硫酸亚铁铵标准溶液的用量,mL。

硫酸-硫酸银溶液:于500mL浓硫酸中加入5g硫酸银。

放置1~2d,不时摇动使其溶解。

硫酸汞:结晶或粉末。

测定步骤取20.00mL混合均匀的水样(或适量水样稀释至20.00mL)置于250mL磨口的回流锥形瓶中,准确加入10.00mL重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口回流冷凝管,接通水后再加热。

从冷凝管上口慢慢加入30mL硫酸-硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2h(自开始沸腾时计时)。

对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15*15 0mm硬质玻璃试管中,摇匀,加热后观察是否变成绿色。

如溶液显绿色,再适当减少废水取样量,直至溶液不变绿色为止,从而确定废水样分析时应取用的体积。

稀释时,所取废水样量不得少于5mL,如果化学需氧量很高,则废水样应多次稀释。

废水中氯离子含量超过30 mg/L时,应先把0.4g硫酸汞加入回流锥形瓶中,再加20.00mL废水(或适量废水稀释至2 0.00mL),摇匀。

冷却后,用90mL水冲洗冷凝管壁,取下锥形瓶。

溶液总体积不得少于140mL,否则因酸度太大,滴定终点不明显。

溶液再度冷却后,加3滴试亚铁灵指示液,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。

测定水样的同时,取20.00mL重蒸馏水,按同样操作步骤作空白试验。

记录滴定空白时硫酸亚铁铵标准溶液的用量。

计算:CODcr(O2,mg/L)=((V0-V1)·c*8*1000)/(V)式中:c——硫酸亚铁铵标准溶液的浓度,mol/L;V0——滴定空白时硫酸亚铁铵标准溶液用量,mL;V1——滴定水样时用硫酸亚铁铵标准溶液的用量,mL;V——水样的体积,mL;8——氧(1/2 O)摩尔质量,g/mol。

注意事项使用0.4g硫酸汞络合氯离子的最高量可达40mg,如取用20.00mL水样,即最高络合2000 mg/L氯离子浓度的水样。

若氯离子的浓度较低,也可少加硫酸汞,使保持硫酸汞:氯离子= 10:1(W/W)。

若出现少量氯化汞沉淀,并不影响测定。

水样取用体积可在10.00~50.00mL范围内,但试剂用量及浓度需按下表进行相应调整,也可得到满意的结果。

水样取样量和试剂用量表对于化学需氧量小于50mg/L的水样,应改用0.0250mol/L重铬酸钾标准溶液。

回滴时用0. 01mol/L硫酸亚铁铵标准溶液。

水样加热回流后,溶液中重铬酸钾剩余量应为加入量的1/5~4/5为宜。

用领苯二甲酸氢钾标准溶液检查试剂的质量和操作技术时,由于每克领苯二甲酸氢钾的理论CODcr值为1.176g,所以溶解0.4251g领苯二甲酸氢钾(HOOCC6H4COOK)于重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODcr标准溶液。

用时新配。

CODcr的测定结果应保留三位有效数字。

每次实验时,应对硫酸亚铁铵滴定溶液进行标定,室温较高时尤其应注意其浓度的变化。

(三)碘量法测定溶解氧一、原理水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。

加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。

以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。

二、实验用品1、仪器:溶解氧瓶(250ml)、锥形瓶(250ml)、酸式滴定管(25ml)、移液管(50ml)、吸耳球、1000ml容量瓶、100ml容量瓶、棕色容量瓶、电子天平2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠三、试剂的配置1、硫酸锰溶液:称取48g分析纯硫酸锰(MnSO4•H2O)溶于蒸馏水,过滤后用水稀释至100mL于透明玻璃瓶中保存。

此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。

2、碱性碘化钾溶液:称取50g分析纯氢氧化钠溶解于30—40mL蒸馏水中;另称取15g 碘化钾溶于20mL蒸馏水中;待氢氧化钠溶液冷却后,将上述两溶液合并,混匀,加蒸馏水稀释至100mL。

如有沉淀(如氢氧化钠溶液表面吸收二氧化碳生成碳酸钠),则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。

此溶液酸化后,遇淀粉应不呈蓝色。

3、1+5硫酸溶液。

4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。

现用现配,或者冷却后加入0.1g水杨酸或0.4g氯化锌防腐。

5、0.0250mol/L(1/6K2Cr2O7)重铬酸钾标准溶液:称取于105—110℃烘干2h,并冷却的分析纯重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。

6、硫代硫酸钠标准溶液:称取6.2g分析纯硫代硫酸钠(Na2S2O3•5H2O)溶于水中,移入1000mL容量瓶中,用水稀释至标线,摇匀。

贮于棕色瓶中,使用前用0.0250mol/L重铬酸钾标准溶液标定。

7、硫酸,ρ=1.84。

(1+1硫酸)8、标定硫代硫酸钠(1)用0.0250mol/L重铬酸钾标准溶液标定硫代硫酸钠溶液;(2)在250ml锥形瓶中加入1g固体碘化钾及100ml蒸馏水;(3)用滴定管加入10ml0.0250mol/L重铬酸钾标准溶液,再加入5ml的1+5硫酸溶液;(4)在暗处静置5分钟后,由滴定管滴入硫代硫酸钠溶液至溶液呈浅黄色,加入1ml 淀粉溶液,继续滴定至蓝色刚退去为止。

相关文档
最新文档