人教版七年级数学上册有理数教学参考资料
人教版七年级数学教案:1.5有理数的混合运算

(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数混合运算的基本概念、顺序法则和在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对有理数混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-运用运算律的灵活应用:学生难以在复杂运算中找到运用运算律简化的方法,导致计算过程繁琐。
例:讲解-1 + 2 × (-3) - 4 ÷ (-2)的计算过程,引导学生运用结合律和交换律简化计算。
-解决实际问题时,建立数学模型:学生在解决实际问题时,往往难以将问题转化为有理数混合运算的形式。
例:讲解温度变化、速度等实际问题,引导学生运用有理数混合运算进行建模和求解。
例:讲解3 + 4 × (-2) - 1 ÷ (-5)的计算过程,强调先乘除后加减的顺序,以及运用运算律简化计算。
2.教学难点
-有理数混合运算的符号处理:学生容易在运算过程中忽略正负号的处理,导致计算错误。
例:讲解(-3) × (-2) + 4 ÷ (-8)的计算过程,强调同号得正、异号得负的规律。
-合作学习中分工与协作:学生在小组合作学习时,如何合理分配任务、发挥各自优势,提高学习效率。
针对上述教学难点,教师应采取以下教学方法帮助学生突破:
-对于符号处理问题,设计符号判断练习,让学生多次练习,形成条件反射。
-对于运算律的灵活应用,通过典型例题和练习,引导学生发现运算规律,培养灵活运用能力。
-对于实际问题,引导学生通过画图、列表等方式,将问题转化为数学运算,提高建模能力。
人教版七年级数学上册《 第一章 有理数 》教学设计

人教版七年级数学上册《第一章有理数》教学设计一. 教材分析人教版七年级数学上册《第一章有理数》是学生在小学数学基础上,进一步深入学习数学的重要章节。
本章主要介绍有理数的概念、分类、运算及其性质。
内容主要包括:有理数的定义,有理数的分类,有理数的运算,有理数的性质,以及实数的概念。
这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念和运算有一定的认识。
但是,对于有理数的概念和性质,学生可能还比较陌生,需要通过实例和练习来加深理解。
此外,学生的学习习惯和思维方式也有所不同,需要教师进行针对性的引导和指导。
三. 教学目标1.理解有理数的定义,掌握有理数的分类,了解有理数的性质。
2.熟练掌握有理数的运算方法,能够进行简单的有理数计算。
3.培养学生的逻辑思维能力和数学素养,提高学生的数学学习兴趣。
四. 教学重难点1.有理数的定义和分类,有理数的性质。
2.有理数的运算方法,特别是乘除法和混合运算。
五. 教学方法1.采用问题导入法,通过实例引发学生的思考,引导学生自主探索和发现有理数的性质。
2.采用讲授法,教师讲解有理数的概念、分类和性质,引导学生理解和掌握。
3.采用练习法,通过大量的练习题,让学生熟悉和掌握有理数的运算方法。
4.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作意识和团队精神。
六. 教学准备1.教材和人教版七年级数学上册《第一章有理数》的教学PPT。
2.与本章内容相关的练习题和测试题。
3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过问题导入法,引导学生思考:“什么是数?我们学过的数有哪些?”然后给出有理数的定义,引导学生自主探索和发现有理数的性质。
2.呈现(10分钟)教师讲解有理数的概念、分类和性质,通过PPT展示相关的内容,让学生直观地理解和掌握。
3.操练(10分钟)让学生进行有理数的运算练习,包括加减乘除法和混合运算。
人教版七年级上册数学《有理数》说课教学复习课件(绝对值)

1.2 有理数 (1.2.4 绝对值)
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text
柳树: 3m 或 +3m ,
电线杆: - 4.8m 。
解: 据题意,不妨规定向东为正,汽车站牌位置为0m ,则树和电
线杆的方向和距离可用正数和负数进行如下表示:
杨树: 7.5m 或 + 7.5m ,
槐树: - 3m ,
柳树: 3m 或 +3m ,
电线杆: - 4.8m 。
回顾总结:
1. 正数和负数的概念。
5.32 , -0.5 , -5/2 , -2/3 , -1/7 , -150.25。
分析:分数都可以化为有限小数或无限循环小数的形式,同时
有限小数和无限循环小数又都可以化为分数。
解:
正整数: 1, 2, 3,
零: ቤተ መጻሕፍቲ ባይዱ ,
负整数: -1 , -2 , -3 ,
正分数: 1/2 , 2/3 , 15/7 , 0.1 , 5.32 ,
好了,同学们,今天经过学习,我们进一步认识了有理数,同时
初步感悟到了分类讨论的思想,并且也体会到有时合理借助图形可使
问题变得更直观。好吧,让我们日有所得,不断进步。
(5)如果数a的绝对值等于a,那么a一定为正数。( ×)
课堂测试
(6)符号相反且绝对值相等的数互为相反数。( √ )
(7)一个数的绝对值越大,表示它的点在数轴上越靠右。( × ) 或靠左
2024年人教版七年级上册教学设计第一章 有理数第一章 有理数

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.②借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览有理数课时划分内容本质与研究方法1.1正数和负数通过提出问题,根据问题归纳正数和负数的概念;培养学生观察、发现问题的能力,培养学生积极思考、合作交流的意识和能力续表有理数课时划分内容本质与研究方法1.2有理数及其大小比较1.2.1有理数的概念提出问题,根据问题归纳有理数的概念,并对有理数进行分类;培养学生观察、发现问题的能力,培养学生分类讨论的数学思想1.2.2数轴提出问题,根据问题归纳数轴的概念,让学生积极参与探究数轴的活动,并学会与他人交流合作;让学生感受在特定的条件下数与形是可有理数课时划分内容本质与研究方法以互相转化的,让学生体验生活中的数学1.2.3相反数通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;渗透数形结合思想,感受事物之间的对应统一的辩证思想1.2.4绝对值提出问题,通过探索求一个数绝对值的方法让学生通过观察,发现规律,总结方法;培养学生积极参与数学活动,在数学活动中体验成功的乐趣1.2.5有理数的大小比较经历用数轴比较有理数大小的方法和形成过程,体会负数的大小比较与自己原有认知体系的不同;经历形式多样的数学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版数学七年级上册1.2《有理数》教学设计

人教版数学七年级上册1.2《有理数》教学设计一. 教材分析人教版数学七年级上册1.2《有理数》是学生在初中阶段接触数学的基础概念之一。
本节内容主要介绍有理数的定义、分类、运算及其性质。
教材通过丰富的实例和生动的语言,让学生感受有理数在实际生活中的应用,培养学生对数学的兴趣和好奇心。
教材内容由浅入深,循序渐进,既注重知识传授,又注重能力培养,为学生进一步学习更高级的数学知识打下坚实基础。
二. 学情分析七年级的学生已具备一定的数学基础,但对有理数的概念、性质和运算可能还比较陌生。
因此,在教学过程中,教师要关注学生的认知水平,针对学生的特点进行引导和讲解。
同时,学生在这个年龄段具有较强的求知欲和好奇心,教师应充分利用这一点,通过丰富的教学手段激发学生的学习兴趣。
三. 教学目标1.让学生了解有理数的定义、分类和性质,理解有理数在实际生活中的应用。
2.培养学生掌握有理数的运算方法,提高学生的数学运算能力。
3.引导学生运用数形结合的思想方法,感受数学的趣味性和实用性。
4.培养学生的团队合作精神,提高学生的口头表达和交流能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算方法。
3.有理数的性质。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与实际的联系。
2.启发式教学法:引导学生主动思考、探究有理数的性质和运算方法。
3.小组合作学习:让学生在团队合作中交流想法,提高口头表达能力。
4.数形结合:利用图形辅助讲解,让学生更加直观地理解有理数的概念和性质。
六. 教学准备1.教学课件:制作富有生动形象的课件,辅助讲解和展示。
2.实例素材:准备一些与生活实际相关的问题,用于引入和巩固知识点。
3.练习题库:挑选一些有针对性的练习题,用于课堂练习和课后作业。
4.图形工具:准备一些图形工具,如数轴、坐标轴等,用于数形结合的讲解。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。
人教版数学七年级上册第一章有理数(1.11.2)复习优秀教学案例

一、案例背景
本节课为人教版数学七年级上册第一章有理数的复习课,主要内容包括有理数的定义、性质、运算及应用。在复习过程中,我以学生已有的知识为基础,通过设计丰富的教学活动,引导学生深入理解有理数的概念,提高运算能力,并培养学生的逻辑思维和数学素养。
(二)问题导向
1. 自主探究:引导学生自主探究有理数的定义、性质和运算方法,培养学生独立思考的能力。
2. 合作交流:组织学生进行小组讨论,分享学习心得,互相解答疑问,提高学生的合作能力和沟通能力。
3. 教师引导:在学生探究过程中,教师要充分发挥引导作用,及时给予学生提示和帮助,引导学生深入思考。
(三)小组合作
三、教学策略
(一)情景创设
1. 生活情境:以购物、计算面积等实际问题为背景,创设有趣的生活情境,让学生在解决问题的过程中自然地引入有理数的概念和运算。
2. 故事情境:通过讲述数学家的故事,激发学生的学习兴趣,使他们感受到数学的趣味性和重要性。
3. 问题情境:设计具有启发性的问题,引导学生思考,激发学生的求知欲,如:“为什么有理数可以表示为分数形式?”“有理数的运算律是如何得出的?”
在教学设计中,我充分考虑了学生的认知规律和兴趣,将教学内容与实际生活相结合,以激发学生的学习兴趣。在教学过程中,我注重启发式教学,引导学生主动探究、合作交流,从而提高学生的数学思维能力和解决问题的能力。同时,我还将情感教育融入教学中,关注学生的个体差异,鼓励学生积极面对困难,培养他们坚持不懈的品质。
2. 学生在小组内分享自己的观点和心得,互相解答疑问,培养学生的合作能力和沟通能力。
3. 教师巡回指导,给予学生提示和帮助,引导学生深入思考,提高学生的探究能力。
新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
人教版七年级数学上册第一章《有理数》教学设计

人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。
本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。
教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。
学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。
此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。
三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。
2.能够运用有理数的概念和运算方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算方法,特别是负数和分数的运算。
3.有理数在实际问题中的应用。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。
2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。
3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。
六. 教学准备1.教材和教辅资料。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。
3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。
4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。
5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。
7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册有理数教学参考资料
一、有理数的含义
整数和分数统称有理数,很多学生想知道“为什么将这些数取名‘有理数’” ?要回答这个问题并不难,只需要略微多了解一点数学的发展史就可以了.
“有理数”是一个外来词,是由英语rational number翻译而来的.rational number的准确含义是“能表示成两个整数的比的数”,即“凡是能表示成两个整数的比的数就是有理数”,或者说“凡能用分数的形式来表示的数就是有理数”,因此,rational number相对准确地翻译可以是“比数”,可惜的是我们的先辈并没有把rational number翻译为“比数”,而是按照rational一词的另一意思“有理的”,把rational number翻译成了“有理数”,而且这种称呼一直沿用到今.如果我们的老师能给学生一些类似的解释,相信学生不会再为这个名称而苦恼.
在小学的时候,我们的学生都能把“整数表示成分母是1的分数”,而且大多数学生也都能把有限小数和循环小数表示成分数的形式.这样,整数、分数、有限小数、循环小数都属于有理数.教科书中说“整数和分数统称有理数”,其中当然包括有限小数和无限循环小数.
例把3, 0.2, ,,,表示成分数.
思路分析:3=, 0.2=,=, =,=,
==.
特别提醒:把循环小数化成分数是有规律可循的.下面我们用方程的思想,借助具体的例子来总结这个规律:
设=x……………①,现将左右两端同时乘以1000得
231. =1000 x………②
于是,由②-①,得
231=1000 x- x
即999x=231
故x =,
约分,得x=.
可见转化成分数是.于是在此基础上给出纯循环小数化为分数的一般方法就不困难了.请老师引导学生,尽量让学生自已从中归纳得出相应的一般方法来.
设,则有
10y=2.……………①
1000y=231. ………②
由②-①得
1000y-10 y =231-2
即y=.
可见转化成分数是,在此基础上给出混循环小数化为分数的一般方法是不困难的.请老师们引导学生自己去归纳.
二、任意两个有理数之和、差、积、商仍为有理数
证明:因有理数都可以表示成两个整数的比的形式,故不妨设,,其中m,n,k,l均为整数,且(m,n)=1,(k,l)=1,于是.
由于m,n,k,l均为整数,因此nk+ml与mk均为整数,故必为有理数,故为有理数
对于两个有理数之差、积、商仍为有理数,可以用类似方法证明,这里从略.
三、任意两个有理数之间都存在着无穷多个有理数
证明:假设任意两个有理数a、b,设a<b,它们之间仅有有限个有理数,不妨设仅有n个有理数,这n个有理数按从小到大的顺序排列依次是a<c1<c2<c3<c4<…<c n<b.由于任意两个有理数之和与积仍是有理数,因此当c n是有理数,b是有理数时,也是有理数,而且a<c n<<b.
即在有理数a与b之间找到了另外一个不同于c1<c2<c3<c4<…<c n的第n+1个有理数,而这正好与假设矛盾.
因此,任意两个有理数之间都存在着无穷多个有理数.
四、按要求,数正方形
1.在图1中,所有正方形的个数是多少?
思路分析:要把图中的正方形数清楚,显然以边长的不同数值来分类进行统计要方便一些.
解:图1中,设边长最小的正方形的边长为1,则边长为1的正方形共有42=16个;边长为2的正方形共有32=9个;边长为3的正方形共有22=4个;边长为4的正方形仅有12=1个.于是图1中所有正方形,一共有12+22+32+42=30个.
2.在图2中,以图中各点为顶点一共能画出多少个正方形?
思路分析:本题与第1题相比,略有不同.在本题中,除了第1题所涉及到的正方形之外,还有边长为、、、2等几种新的情形.
解:由1可知,边长为1的正方形共有42=16个;边长为2的正方形共有32=9个;边长为3的正方形共有22=4个;边长为4的正方形有12=1个.
此外,还有边长为的正方形共有32=9个,如图3所示;边长为的正方形共有2×22=8个,
如图4所示;边长为的正方形共有2个,如图5所示;边长为2的正方形1个,如图6
所示.
故图2中所有满足条件的正方形一共有30+9+8+2+1=50个.
特别提醒:这里的两个问题从本质上说并不难,但是对初一的学生来说,要能够把其中所有的正方形都按要求一一数清楚,可不是一件容易的事.因此,老师需要引导学生按“类”去数每个图中可能有的正方形.这样做的目的在于逐渐渗透“分类讨论的数学思想”,为学生的后续学习作铺垫.至于问题讨论过程中可能涉及到的、、、2等数,可以根据学生的实际可能来处理,只要学生能认识它们是一些正方形的边长即可,不必在此向学生介绍这些无理数.
五、关于“负负得正”乘法运算法则
“为什么负负得正”要从初等数学的角度给学生讲清楚,是一件非常不容易的事情.可以参考《中学数学教学参考》2005年第3期P3-P4的《“负负得正”的乘法法则可以证明吗?》一文,文中最后指出:“综上所述,笔者认为,‘负负得正’的乘法法则是数学中的一种规定(定义),它不能通过逻辑证明得出.然而,对这个法则的规定既有客观世界中的实际背景,又有数学内部需要和谐发展的思想背景.教学中适当地介绍这些背景,可以帮助学生认识乘法法则的由来与合理性,但是不能将这样做认为是证明了这个法则.”此外,如果能够参阅浙江大学出版社出版、沈钢编著的《高观点下的初等数学概念》一书的第一章、第二章的相关内容,也许你还能获得一些新观点.我们认为这个问题对初一的学生来说,只要学生能够理解一些具体实例,并能认可“负负得正”即可,不必再做过多的讲解或过高的要求.下面引用一个有实际背景的例子,让学生体会一下“负负得正”的实际背景.
如果水位一直以每小时2cm的速度下降,现在的水位在水文标尺刻度的A处,试问3小时前水位在水文标尺刻度的什么位置?
为了区分水位变化的方向,我们可以规定水位上升为正,下降为负;为了区分时间,我们规定现在以后为正,现在以前为负.显然3小时以前水位在水文标尺刻度的A处上方6cm处,于是有(-2)×(-3)=+6.
这虽然是一个“有实际背景的原型”,的确有助于学生理解“负负得正”的乘法法则,但绝对不能就此认为这是对“负负得正”的证明.因为数学中的证明不是个例的验证,是需要依据已有的公理、定理、定义等进行合乎逻辑的推证的.
六、“科学记数法”课题引入的设计
(一)快速记忆游戏
目的:激发学生对数字或数据的兴趣.
下面有几组数据,你能过目不忘吗?一闪而过之后,你能记住多少,请大家一起来试一试,看谁记得多!
中国国土面积有9 600 000平方公里;
中国人口约有1 300 000 000人;
光的速度约为30 0000 000米/秒;
太阳的半径约为69 600 000 000米;
世界的总人口约有6 100 000 000人;
银河系的直径为925 000 000 000 000 000公里.
(二)讨论怎样有效地读出以上各个数据,顺势引出新课—科学记数法.。