图形相似复习课教案

合集下载

《相似三角形》复习课教案

《相似三角形》复习课教案

相似三角形复习课【教学目标】知识与技能:1、梳理相似三角形的定义、判定、性质,理解知识间的内在联系;2、使用相似三角形的相关知识解决问题。

过程与方法:1、经历使用相似三角形的基础知识解决问题的过程,提升综合使用知识的水平;2、在解决问题的过程中,引导学生准确找出判定三角形相似的条件,掌握用相似三角形知识解决问题的基本方法.情感态度与价值观:学会与同学交流合作,在交流中培养学生的语言表述水平,体验学习几何过程中成功的快乐,增强学习几何的信心与热情.【教学重点】相似三角形判定和性质的综合应用.【教学难点】相似三角形判定和性质的灵活应用以及解决相似问题时的转化思想。

【教学过程】一、复习巩固:定义:1、假如△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′ B.A′B′:ABC.∠B:∠B′ D.BC:B′C′2、△ABC∽△A′B′C′,假如BC=3, B′C′=2,那么△A′B′C′与△ABC 的相似比为 ________ .性质:1、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30 B.50° C.40° D.70°2、等腰△ABC∽△DEF,其相似比为3 :4,则它们底边上对应高线的比为()A、3 :4B、4 :3C、1 :2D、2 :13、两个相似三角形对应边的比为1:2,则周长比为,面积比为,相似比为:;对应角平分线比为:,对应中线比为:,对应高线比为:。

4、已知,△ABC∽△DEF,相似比为3,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.545、如图,已知△ADE ∽△ABC,AD=3cm,DB=3cm,BC=10cm,∠A=70°、∠B=50°. A求:(1)∠ADE的度数;(2)∠AED的度数; D E(3)DE的长.B C判定:1、(1)如图1,当时,△ABC∽△ADE.(2)如图2,当时,△ABC∽△AED. (3)如图3,当 ___时,△ABC∽△ACD.CCC(4)如图4,当AB∥CD时,则△∽△ __(5)如图5,当时,则△∽△。

《相似形》复习课教案

《相似形》复习课教案

《相似形》复习课教案一、教学目标1. 知识与技能:使学生掌握相似形的性质和判定方法,能够运用相似形解决实际问题。

2. 过程与方法:通过复习和练习,提高学生对相似形的理解和应用能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

二、教学内容1. 相似形的定义和性质2. 相似形的判定方法3. 相似形在实际问题中的应用三、教学重点与难点1. 教学重点:相似形的性质和判定方法。

2. 教学难点:相似形在实际问题中的应用。

四、教学方法与手段1. 教学方法:采用讲解、演示、练习、讨论、小组合作等方法。

2. 教学手段:利用多媒体课件、黑板、粉笔等辅助教学。

五、教学过程1. 导入新课:通过复习相关知识,引入相似形的概念。

2. 讲解与演示:讲解相似形的性质和判定方法,并进行演示。

3. 练习与讨论:布置练习题,让学生进行练习,并组织学生进行讨论。

4. 小组合作:让学生分组合作,解决实际问题。

5. 总结与反思:对所学内容进行总结,并让学生进行反思。

6. 课后作业:布置课后作业,巩固所学知识。

教学评价:通过课堂表现、练习题和课后作业,评价学生对相似形的理解和应用能力。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及合作表现,评估学生对相似形的理解和应用能力。

2. 练习题:设计一套练习题,包括选择题、填空题和解答题,评估学生对相似形性质和判定方法的掌握程度。

3. 课后作业:布置一道综合性的应用题,让学生回家完成,通过作业的完成情况评估学生对相似形在实际问题中的应用能力。

七、教学拓展1. 相似形的进一步研究:引导学生探索相似形的更多性质和应用,如相似形的面积比、角度关系等。

2. 实际问题解决:提供一些实际问题,让学生运用相似形知识解决,如建筑设计、图形放大缩小等。

八、教学资源1. 多媒体课件:制作精美的多媒体课件,展示相似形的性质和判定方法,增强学生的学习兴趣。

2. 黑板和粉笔:用于板书关键点和讲解过程中。

第1章图形的相似复习教案

第1章图形的相似复习教案

第一章图形的相似复习(1)教学设计【复习目标】1.了解相似图形的概念及性质,掌握平行线分线段成比例定理;2.了解相似三角形的概念,掌握相似三角形的性质并会应用;3.掌握相似三角形的判定方法,并能解决相关题目;4.掌握位似图形的概念及性质,并会应用位似图形将一个图形放大或缩小;5.培养观察、分析、探究、归纳等解决问题的能力.【复习重难点】重点:相似三角形的性质及其判定方法.难点:相似三角形的性质及判定方法的灵活应用.【课时安排】1课时【教学过程】一、导入环节(一)导入新课,板书课题导入语:前面我们已经学完了《图形的相似》一章,本节课我们复习相似图形概念和性质、相似三角形的判定、位似图形的相关知识.(二)出示复习目标课件展示学习目标,学生齐读学习目标.过渡语:让我们带着目标、带着问题进入自主学习环节.二、自主学习环节(一)出示复习指导过渡语:自主复习第一章1、2、4节的内容,记忆所学概念及定理,并完成下面的基础知识填空.1. 相似多边形的定义:两个边数相同的多边形,如果一个多边形的各个角与另一个多边形的各个角__________,各边_______ __,那么这两个多边形叫做相似多边形.用符号_______表示两个多边形相似.2. 相似三角形:对应角相等,对应边成比例的三角形叫做相似三角形.•对应边之比叫做________.当相似比为1时,两个三角形就称为_______.3. 平行线分线段成比例定理:两条直线被一组平行线所截,所得的_________成比例.4.推论:平行与三角形的一边,并且与其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的___________对应成比例.5.相似三角形的判定:(1)两组对应角分别__________的两个三角形相似;(2)两组对应边成比例,且_______相等的两个三角形相似;(3)三组对应边________的两个三角形相似;(二)复习自主检测过渡语:请同学们结合自主复习情况完成下面题目,做题要细心、规范.用时6分钟,完成的交给组长看一下,组长记录好本小组同学做题情况.1.已知=,则=;已知==,则=2. 已知:如图,DE //AC ,DF //AB ,则下列比例式中正确的是( )A .AE EB =BD DC B .DF AC =DC BC C .AE AB =AC FCD .BD DC =FC AF3.在图中,∠1=∠2,则与下列各式不能说明△ABC ∽△ADE 的是( ) A .∠D =∠B B .∠E =∠C C .AC AE AB AD = D .BCDE AB AD =4.如图:已知梯形ABCD 中,AD ∥BC ,对角线AC .BD 相交于O ,腰BA 、CD 的延长线相交于M ,图中相似三角形共有( ).A .1对B .2对C .3对D .4对生生合作,互相纠错组内交流:将自主复习和复习检测中疑难问题进行交流.时间:3分钟,组长掌握组内的情况,记录没能解决的问题.发言要求:大胆讨论、声音洪亮、言简意赅、明确清晰.三、合作探究环节下面进入我们的合作探究环节,老师为你们准备了两个探究题. 大屏幕放映学生展示分工和点评安排,以备学生按要求展开!探究一:如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.1.点A 的坐标为 ,点C 的坐标为 __________.2.将△ABC 向左平移7个单位,请画出平移后的△111C B A .若M 为△ABC 内的一点,其坐标为(a ,b ),则平移后点M 的对应点1M 的坐标为 .3.以原点O 为位似中心,将△ABC 缩小,使变换后得到的△222C B A 与△ABC 对应边的比为1:2.请在网格内画出△222C B A ,并写出点2A 的坐标:_____ _____.探究二:如图,Rt △ABC 中,DE 是斜边AB 上的中垂线,交BC 的延长线于E 。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

相似图形数学教案

相似图形数学教案

相似图形数学教案
标题:相似图形数学教案
一、教学目标
1. 让学生理解并掌握相似图形的基本概念和性质。

2. 培养学生的观察力和空间想象力,提高他们解决实际问题的能力。

3. 通过探究活动,培养学生的合作精神和创新意识。

二、教学内容
1. 相似图形的基本概念:定义、特征、分类。

2. 相似图形的性质:对应角相等、对应边成比例、周长比等于面积比的平方。

三、教学过程
1. 导入新课:利用生活中的实例引入相似图形的概念,激发学生的兴趣。

2. 新课讲解:通过示例、图解等方式详细解释相似图形的基本概念和性质。

3. 学生实践:设计一些与相似图形相关的练习题,让学生进行独立或小组完成。

4. 总结反馈:对学生的解答进行点评,并对学生的学习情况进行总结。

四、教学方法
1. 探究式学习:鼓励学生主动探索,发现相似图形的规律。

2. 合作学习:通过小组讨论,培养学生的团队协作能力。

3. 实践操作:通过绘制图形,加深学生对相似图形的理解。

五、教学评价
1. 过程评价:关注学生在课堂上的参与度,以及他们在解决问题过程中的思考和表现。

2. 结果评价:通过对学生作业的批改,了解他们对相似图形知识的掌握程度。

六、教学反思
教师应反思自己的教学方法是否有效,是否能激发学生的学习兴趣,是否能让学生真正理解和掌握相似图形的知识。

图形相似复习课教案

图形相似复习课教案

图形相似复习课教案一、教学目标1. 知识与技能:(1)理解相似图形的定义和性质;(2)掌握相似图形的判定方法;(3)能够运用相似图形解决实际问题。

2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力;(2)运用同一直角坐标系中点的坐标关系,推导相似比的性质;(3)利用相似图形解决实际问题,提高学生的解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、合作交流的精神;(3)培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 相似图形的定义和性质;2. 相似图形的判定方法;3. 相似比的性质;4. 利用相似图形解决实际问题。

三、教学重点与难点1. 教学重点:(1)相似图形的定义和性质;(2)相似图形的判定方法;(3)相似比的性质。

2. 教学难点:(1)相似图形的判定;(2)利用相似图形解决实际问题。

四、教学过程1. 复习导入:(1)回顾相似图形的定义和性质;(2)引导学生思考:如何判断两个图形是否相似?2. 知识讲解:(1)讲解相似图形的判定方法;(2)引导学生通过实际例子,理解相似比的性质;(3)讲解如何利用相似图形解决实际问题。

3. 课堂练习:(1)布置一些判断相似图形的练习题;(2)让学生运用相似比解决实际问题。

五、课后作业(1)两个正方形;(2)两个等边三角形;(3)一个矩形和一个正方形。

2. 利用相似图形解决实际问题:(1)一个长方形的长是10cm,宽是5cm,求与它相似的长方形的周长;(2)一个圆的半径是5cm,求与它相似的圆的面积。

注意事项:1. 教学中注重引导学生主动探索,培养学生的空间想象能力;2. 注重让学生通过实际例子,理解相似比的性质;3. 鼓励学生互相交流,培养学生的合作精神。

六、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,掌握相似图形的定义和性质;2. 利用数形结合的思想,让学生通过实际例子,理解相似比的性质;3. 注重培养学生的空间想象能力,提高学生解决问题的能力。

《图形的相似》复习课教案

《图形的相似》复习课教案

《图形的相似》小结与复习课型:复习课教学目标1、使学生对章知识有一个全面,系统的认识。

2、使学生巩固新知识并在平时所学知识的基础上有所提高。

3、培养学生归纳总结的能力。

教学重点:知识的归类整理教学难点:知识的记忆和应用方法。

教学方法:先学后教、合作讨论、讲授相结合教学过程:(一)在现本章主要知识要点:1、复习本章内容:比例线段、相似三角形2、主要概念:(1)线段的比:两条线段的长度比叫做这两条线段的比。

(2)比例线段:在同一单位下,四条线段长度为a、b、c、d,其关系为a:b=c:d,那么,这四条线段叫做成比例线段,简称比例线段。

(3)相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

(4)相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形。

(5)相似比:相似比又名相似系数,相似多边形对应边的比叫做相似比。

3、主要定理:(1)比例的基本性质:。

bd bc ad dc b a 内项之积等于外项之积:)0(≠=⇒= 合比性质:dd c b b a d c b a ±=±⇒= 等比性质:)0(≠+++=++++++⇒===n d b ba n db mc a n md c b a (2)平行线等分线段和平行线分线段成比例定理平行线等分线段定理:如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。

(3)三角形一边平行线的性质:平行于三角形一边的直线截其他两边所得的对应线段成比例(4)三角形相似的判定方法A 、基础定理:平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。

B 、判定1: 两角对应相等,两个三角形相似。

C 、判定2: 两边对应成比例且夹角相等,两个三角形相似。

D 、判定3: 三边对应成比例的两个三角形相似。

图形的相似 回顾与思考 优秀教案

图形的相似 回顾与思考 优秀教案

图形的相似回顾与思考【教学目标】1.知识技能(1)了解本章所学的主要内容,建立本章的知识体系。

(2)正确合理地选择适当的判定方法找到相似三角形;运用相似三角形解决数学问题。

2.数学思考(1)经历观察、实验、猜想、证明等“找相似”的过程,进一步发展几何直觉,发展合情推理能力和初步的演绎推理能力。

(2)能有条理地、清晰地阐述自己的学习体验和结果,发展表达能力。

3.问题解决(1)能与同学交流“找相似”的体验和结果,体验“交流”对自己的帮助。

(2)在“找相似”的过程中形成反思意识,获得“找相似”的基本经验。

4.情感态度(1)能积极参与到课堂学习活动中,对复习课有兴趣和热情。

(2)体验数学活动充满着探索与创造,感受数学的严谨性。

(3)形成实事求是的态度以及进行质疑和独立思考的习惯。

【教学重难点】1.正确选择适当的判定方法找到相似三角形,反思感悟“找相似”的一些基本策略。

2.从直观发现到自然说理的过渡。

【教学方法】在教师的组织和引导下,学生独立探索和小组合作探究相结合,小组交流和全班交流相结合的教学方式。

学法指导指导学生沿着“直观—验证”的方式进行,突破本节也是本章的难点。

【教学过程】(一)建立体系,回顾相似先给出本章的七个关键词,然后展示一组图片,请同学们说出每张图片分别对应着哪一个关键词?(共七张图片,它们对应的关键词分别是:线段的比,成比例线段,黄金分割,相似图1D A B C 图2E D A B C图形,相似多边形,相似三角形,位似图形)设计意图:1.通过形象直观的图片让学生迅速回顾本章的重要知识点。

2.让学生再次感受到数学知识与生活实际的紧密联系。

(二)循序渐进,三找相似1.一找相似例1.下面的6个三角形中,哪些三角形相似?你所用的判定方法是什么?设计意图:①网格中的三角形学生比较熟悉,让学生在熟悉的场景中找相似,主要是为达到复习三种判定方法的目的,因为知识点的复习在运用中会更显直观,它能调动起学生的多个感官。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形的相似》复习讲义
二、相似三角形的判定与性质 1、相似三角形的定义
三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2、相似三角形的判定方法
1. 若DE ∥BC (A 型和X 型)则______________.
E A D C
B
E
A
D
C
B
A D C
B
2. 两个角对应相等的两个三角形__________.
3. 两边对应成_________且夹角相等的两个三角形相似.
4. 三边对应成比例的两个三角形___________.
性质:⎪⎪⎩
⎪⎪⎨⎧比的平方、对应面积比等于相似比、对应周长比等于相似、对应边成比例、对应角相等4321判定:⎪⎪⎩⎪⎪
⎨⎧+两边对应成比例、直角三角形、三边对应成比例
夹角相等、两边对应成比例,且
、两角对应相等4321
(1)相似比:相似三角形对应边的比叫做相似比。

当相似比等于1时,这两个三角形不仅形状相同,
而且大小也相同,这样的三角形我们就称为全等三角形。

全等三角形是相似三角形的特例。

(2)相似三角形的判定:①两角对应相等,两三角形相似。

②两边对应成比例,且夹角相等,两三角形相似。

③三边对应成比例,两三角形相似。

④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边一条 直角边对应成比例,那么这两个三角形相似
(3)相似三角形的性质:①相似三角形的对就角相等。

②相似三角形的对应线段(边、高、中线、角平分线)成比例。

③相似三角形的周长比等于相似比,面积比等于相似比的平方。

课堂练习
1、已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )
A. 6个
B. 5个
C. 4 个
D. 3个
2、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )
3、如右图所示,D 是△ABC 的边AC 上的点,过D 作直线DE ,与AB 交于点E ,若△ADE•与△ABC 相似,则这样的直线DE 最多可作_______条.
F E D C B
A
4、如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF =∠A .
(1)求证:BC
AB
EF DE =
.(2)证明:BDE ∆与EFC ∆相似。

5、如图,已知△ABC 中CE ⊥AB 于E,BF ⊥AC 于F,求证:△AFE ∽△ABC
6、已知,如图,CD 是Rt ABC ∆斜边上的中线,DE AB ⊥交BC 于F ,交AC 的延长线于E ,
说明:⑴ ADE ∆∽FDB ∆; ⑵DF DE CD •=2

当堂作业
1、P 为正△ABC 的边CB 延长线上一点,Q 是BC 延长线上的点,∠PAQ=1200,求证:BC 2=PB ·CQ
2、已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F ,求证:EF GF CF ⋅=2。

A
B
C P
Q
A
C
F
E
B
A B
C
D
F G E
3、如图ΔABC 中,∠C=90°, BC = 8cm, AC = 6cm,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动.若P 、Q 分别同时从B 、C 出发,经过多少时间ΔCPQ 与ΔCBA 相似?
4、如图,△ABC 中D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD ,E 为垂足,连结AE.求证:(1) ED=DA ;(2)∠EBA =∠EAB ;(3) BE 2=AD ·AC
E
D
C
B
A。

相关文档
最新文档