抛物线平移、旋转、对称
抛物线平移、对称变换

抛物线平移、对称变换专题一:抛物线平移、对称变换学习目标: 1.抛物线平移顶点,与坐标系交点关系2. 利用对称性求点的坐标知识框架:【1】抛物线的平移变换只改变抛物线的顶点位置,而不改变抛物线的开口方向与开口大小。
【2】求抛物线2=++(0a≠)沿坐标轴平y ax bx c移后的解析式,一般可先将其配方成顶点式()2=-+(0a≠),然后利用抛物线平移变换的有y a x h k关规律将原顶点坐标改变成平移后的新顶点坐标即可。
抛物线平移变换的规律是:左加右减(在括号),上加下减(在末梢)。
【3】抛物线绕其顶点旋转180°只改变抛物线的开口方向,而不改变抛物线的开口大小及顶点位置。
【4】求抛物线2=++(0a≠)绕其顶点旋转y ax bx c180°后的解析式,同样可先将其配方成顶点式()2=-+(0a≠),然后将二次项系数直接改变成y a x h k其相反数即可。
【5】⑴抛物线沿y轴翻折只改变抛物线的顶点位置,而不改变抛物线的开口方向及开口大小。
⑵抛物线沿x轴翻折将同时改变抛物线的开口方向及顶点位置,但抛物线的开口大小不变。
【6】求抛物线2=++(0a≠)沿某条坐标轴y ax bx c翻折后的解析式,首先仍应将其配方成顶点式()2=-+(0a≠),然后再根据翻折的方向来确定y a x h k新抛物线的解析式——若是沿y轴翻折,则只需将其顶点坐标改变成翻折后的新顶点坐标即可;若是沿x轴翻折,则除了要将顶点坐标改变成翻折后的新顶点坐标外,还需将二次系数改变成其相反数。
真 题 汇 编:第一部分(选择题)(2013-2014海淀)二次函数22+1y x =-的图象如图所示,将其绕坐标原点O 旋转180,则旋转后的抛物线的解析式为( ) A .221y x =-- B .221y x =+ C .22y x = D .221y x =-【方法总结】(2015-2016北师大实验二龙路中学) 将抛物线22y x =向左平移1个单位长度,再向上平移3个单位长度得到的抛物线解 析式是( ).A .22(1)3y x =-- B .22(1)3y x =++C .22(1)3y x =-+ D .22(1)3y x =+-【方法总结】(2015-2016北京三中)将抛物线 224=+y x绕顶点旋转180°,则旋转后的抛物线的解析式为( ). A . 224=--y x B . 224=-+y xC .224=-y xD . 22=-y x【方法总结】(2015-2016北京市昌平第三中学)把抛物线y =2x 2-3沿x 轴翻折,所得的抛物线是( )A.y =-2x 2-3B. y =2x 2-3C. y =2x 2+3D. y =-2x 2+3【方法总结】(2015-2016北京三帆中学)二次函数23+1y x =-的图象如图所示, 将其沿x 轴翻折后得到的抛物线的解析式为 A .231y x=-- B .23y x =C .231y x=+ D .231y x=-【方法总结】丰台区2017-2018中,抛物线221x y =x x y 2212-=,的阴影部分的面积是( )A .2 B. 4 C. 8 D. 16【方法总结】第二部分(填空题)海淀区2017-201822y x =平移后经过点(0,3)A,(2,3)B ,求平移后的抛物线的表达式.【方法总结】(2013-2014海淀)已知点P(-1,m)在二次函数21y x=-的图象上,则m的值为;平移此二次函数的图象,使点P与坐标原点重合,则平移后的函数图象所对应的解析式为 .【方法总结】(2015-2016年北京市第三十一中学)抛物线图像22x=xx-y,平=经过平移得到抛物线图像5y-422--移方法是______【方法总结】朝阳区2015-2016如图,抛物线y=4-x2通过9平移得到抛物线m,抛物线m经过点B(6,0)和O (0,0),它的顶点为A ,以O 为圆心,OA 为半径作圆,在第四象限内与抛物线y=4-9x2交于点C ,连接AC ,则图中阴影部分的面积为 .【方法总结】丰台区2014-2015如图,⊙O 的半径为2, 1C 是函数的221x y =的图象,2C 是函数的221x y -=的图象,3C 是函数的x y =的图象,则阴影部分的面积是______【方法总结】第三部分(解答题)(2013-2014东城)二次函数2y axbx c=++的图象与x轴交于点A (-1, 0),与y 轴交于点C (0,-5),且经过点D (3,-8). (1)求此二次函数的解析式和顶点坐标; (2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.【方法总结】(2016-2017北京四十四中初三上期中)抛物线22y x =向上平移后经过点(0,3)A ,求平移后的抛物线的表达式.【方法总结】(2016-2017北京西城铁路第二中学初三上期中) 如图,一段抛物线:(2)y x x =-(0≤x ≤2),记为1C ,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2 ,交x 轴于点A 2 ;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;… ,如此进行下去,直至得C 10.(1)请写出抛物线C 2的解析式: ;(2)若P (19,a )在第10段抛物线C 10上,则a =_________.【方法总结】西城区2014-2015已知:抛物线1C :2y axbx c=++经过点()10A -,、()30B ,、()03C -,.⑴ 求抛物线1C 的解析式;⑵ 将抛物线1C 向左平移几个单位长度,可使所得的抛物线2C 经过坐标原点,并写出2C 的解析式;⑶ 把抛物线1C 绕点()10A -,旋转180︒,写出所得抛物线3C 顶点D 的坐标.【方法总结】【纠错回顾】。
抛物线

(二)抛物线在平面直角坐标系中的轴对称变换。抛物线在平面直角坐系中的轴对称变换主要有两种变换。即关于x轴对称的抛物线和关于y轴对称的抛物线变换。
其变换的一般规律是:抛物线y=ax2+bx+c关于x轴对称的抛物线解析式为y=-ax2-bx-c。变化的实质是:只改变抛物线的开口方向,对称轴保持不变。
一、抛物线在平面直角坐标系中的平移、旋转、轴对称、中心对称变换
(一)抛物线在平面直角坐标系中的平移。我们知道,抛物线y=ax2+bx+c的形状(包括开口方向与开口大小)是由其二次项系数决定的,具体来说,a的符号决定了其开口方向。a>0时,开口向上;a<0时,开口向下。|a|越大,抛物线开口越小;|a|越小,其开口越大。因此抛物线在平面直角坐标系中的平移,并不会改变抛物线的形状,即在平移过程中其开口方向与抛物线开口的大小保持不变。平移中改变的是抛物线在平面直角坐标系中的位置,即对称轴和顶点坐标的改变。其一般变化规律是:把抛物线y=ax2向左平移h个单位后其解析式为y=a(x+h)2,向右平移h个单位后其解析式为y=a(x-h)2,向上平移k个单位后其解析式是y=ax2+k,向下平移k个单位后其解析式是y=ax2-k。平移中解析式变化的实质是:左右平移时只要自变量x加减某个量即可,即抛物线上每个点的横坐标发生变化,纵坐标保持不变。上、下平移时抛物线上每个点的纵坐标发生改变,横坐标保持不变。
二、在知识探索中,认定归类整理的教学方法
由以上综述可知,抛物线在平面直角坐标系中的变换非常灵活。无论是抛物线在平面直角坐标系中的平移变换,轴对称变换,还是抛物线在平面直角坐标系中的旋转变换,中心对称变换,其形状和大小均保持不变。即归类整理就有头绪。只要我们在数学课堂教学中注意引导学生探索发现它们变化的一般规律,就能发现它们的奥妙所在,那么学生们在学习本单元内容时会充满兴趣。把本来比较枯燥难以理解掌握的抛物线在平面直角坐标系中的变换内容,变得生动有趣,使同学们对学好本单元内容充满自信,为我们提高数学课堂效率,大面积提为学生长远发展打好坚实基础。
二次函数--抛物线的平移、翻折、旋转

22.1.4(5)---抛物线的平移、翻折、旋转
一.【知识要点】
1.抛物线的平移、翻折、旋转:图像平移.口诀:左加右减,上加下减.
二.【经典例题】
1.①将抛物线223y x x =-+向左平移3个单位,再向下平移5个单位后所得抛物线的解析式为________.
三.【题库】
【A 】
1.抛物线y=﹣x 2向左平移1个单位长度得到抛物线的解析式为( )
A .y=﹣(x+1)2
B .y=﹣(x ﹣1)2
C .y=﹣x 2+1
D .y=﹣x 2﹣1
【B 】
【C 】
1.将抛物线y=(x ﹣1)2+3关于y 轴对称后所得抛物线的表达式为( )
A .y=-(x+1)2 +3
B .y=(x+1)2+3
C .y=-(x-1)2-3
D .y=(x+1)2-3
【D 】
1.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣2,0)和C,O 为坐标原点.
(1)求抛物线解析式;
(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围.。
高三抛物线知识点归类

高三抛物线知识点归类抛物线是数学中的一个重要概念,也是高中数学课程中的重点内容之一。
在高三阶段,学生需要全面掌握抛物线的相关知识,因此本文将对高三抛物线知识点进行归类,以帮助学生更好地理解和应用。
一、基本概念1. 定义:抛物线是平面上到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹。
2. 轴线:抛物线的对称轴,垂直于准线并通过焦点。
3. 焦点:与抛物线上的任意一点距离相等的定点。
4. 准线:与抛物线上的任意一点距离相等的定直线,其中准线和抛物线的焦点不重合。
二、方程与图像1. 一般形式方程:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
2. 顶点坐标:抛物线的最高(或最低)点,坐标为(h, k),其中h为顶点的横坐标,k为顶点的纵坐标。
3. 对称轴方程:x = h,是抛物线的对称轴,与抛物线相交于顶点。
4. 开口方向:由二次系数a决定,若a > 0,则抛物线开口朝上;若a < 0,则抛物线开口朝下。
5. 图像特征:抛物线关于对称轴对称,图像左右对称。
三、性质与特点1. 焦点与准线距离的关系:抛物线上任意一点P与焦点F的距离等于P到准线的距离。
2. 焦准焦定性质:过抛物线焦点F的直线与抛物线相交于对称点P',且P'也在这条直线上的垂线上,则P'为抛物线上该点P的对称点。
3. 切线与法线关系:抛物线上任意一点P处的切线与过该点的法线垂直。
4. 焦点坐标与相关系数的关系:焦点坐标为(-b/2a, 1-Δ/4a),其中Δ为方程的判别式。
5. 最值点:抛物线的最高(或最低)点即为顶点,最值点的纵坐标等于抛物线函数的值域的下(或上)界。
四、应用1. 抛物线的平移与旋转:通过对抛物线的平移和旋转操作,可以得到不同位置和形状的抛物线函数。
2. 抛物线的最优问题:在一定约束条件下,求解抛物线上的最值点,可以用于解决最小二乘法、优化问题等。
3. 物理应用:抛物线在物理学中有广泛的应用,如炮弹的抛物线轨迹、摆锤的运动、光的反射等。
高二抛物线必背知识点讲解

高二抛物线必背知识点讲解抛物线是高中数学中的一个重要概念,也是高二阶段的必备知识点之一。
掌握抛物线的性质和相关的公式是解决与之相关问题的基础。
本文将为你详细介绍高二抛物线的必背知识点,包括抛物线的定义、性质以及常用公式等。
1. 抛物线的定义抛物线是平面上一条特殊的曲线,其定义可由以下几个要素描述:- 定点(焦点)F,是抛物线上的一个确定点。
- 定直线(准线)L,是与抛物线相交于抛物线的两个分支的对称轴。
- 定义抛物线上的点P到焦点F的距离与点P到准线L的距离的比例保持不变。
2. 抛物线的性质抛物线具有以下几个重要性质:- 对称性:抛物线关于准线对称。
- 焦点性质:焦点是抛物线上所有点到准线距离与焦距的比例值保持不变的点。
- 直角性质:抛物线的准线与焦点连线之间的夹角是直角。
- 切线性质:过抛物线上一点的切线平行于准线,且焦点到切点的线段与准线垂直。
3. 抛物线的基本公式- 标准方程:y = ax^2 + bx + c(其中a、b、c为常数,并且a ≠ 0)。
标准方程可以用来描述抛物线的形状、位置和方向。
- 顶点坐标:抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为抛物线的方程。
- 对称轴方程:x = -b/2a。
对称轴是与抛物线两支对称的直线。
- 焦点坐标:抛物线的焦点坐标为(-b/2a,c - (b^2 - 1)/4a)。
- 焦距:抛物线的焦距为|4a|,用来确定焦点到准线的距离。
4. 抛物线的常见变形除了标准的抛物线方程之外,抛物线还有一些常见的变形形式:- 平移:将抛物线相对于坐标系的原点平移至任意位置。
- 平拉伸:通过调整a的值,控制抛物线在x轴和y轴方向上的缩放。
- 旋转:通过调整b的值,使抛物线绕着顶点旋转。
5. 抛物线的应用抛物线在现实生活中有许多应用,例如:- 炮弹的发射轨迹:抛物线方程可以用来描述炮弹在重力作用下的弹道轨迹。
- 卫星天线的调节:抛物线的反射性质可以用来调节卫星天线的接收角度。
二次函数图像变换

二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。
一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。
例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。
二次函数解析式及图形变换学而思培优

②顶点式: y = a (x - h )2 + k 或 y = a x +⎪ + ④对称点式:y =a(x -x 1)(x -x 2)+b (a ≠0) 其中 x 1,x 2 是两个对称点的横坐标,b 是对称第五讲二次函数解析式及图形变换一、二次函数解析式四种形式:①一般式: y = ax 2 + bx + c (a ≠ 0);⎛ ⎝b ⎫2 2a ⎭4ac - b 2 (a ≠ 0); 4a③交点式: y = a (x - x )(x - x ) (a ≠ 0) 其中 x ,x 是方程 ax 2 + b x + c = 0 的两个实根。
1 2 1 2, 点纵坐标。
二、抛物线的平移、对称与旋转①平移:“左加右减,上加下减”。
②对称:关于 x 轴对称: y = ax 2 + b x + c 的图象 x 轴对称后得到图象的解析式是y = -ax 2 - b x - c 。
关于 y 轴对称: y = ax 2 + b x + c 的图象 y 轴对称后得到图象的解析式是 y = ax 2 - b x + c 。
关于原点对称: y = ax 2 + b x + c 的图象原点对称后得到 图 象 的 解 析 式 是 y = -ax 2 + b x - c 。
1.求二次函数 y = ax 2 + b x + c 与直线 y = kx + m 的交点,联立方程组 ⎨ 求解。
2.求二次函数 y = a x 2+ b x + c 与 y = a x 2+ b x + c 的交点,联立方程组 ⎨ 求解。
⎧⎪ y = a x 2 + b x + c ⎪⎩ y = a x 2 + b x + c ⑶(2007 朝阳二模)已知抛物线 y = ax 2 + b x(a ≠ 0) 的顶点在直线 y = -x - 1 上,当且仅当 ⑵请探索:是否存在二次项系数的绝对值小于 的整点抛物线?若存在,请写出其中一条抛物线三、二次函数与一元二次方程⎧ y = ax 2 + bx + c ⎩ y = kx + m1 1 1 1 1 12 2 2 2 2 2板块一 二次函数解析式【例1】 ⑴ 下列说法不正确的是()A .抛物线 y = ax 2 + b x - 3 与 y 轴的交点为 (0 ,- 3)B .抛物线 y = ax 2 - 2ax + a 2 - 1 的对称轴为 x = 1C .抛物线 y = ax 2 - a (m + 1)x + ma 与 x 轴的交点为 (m ,0)和 (1,0)D .抛物线 y = a (x + π )2 - x 的顶点坐标为 (-π ,- x )⑵(2009 三帆单元测试)已知抛物线 y = ax 2 + bx + c 经过点 A (-1,0),且经过直线 y = x - 3 与x 轴的交点 B 及与 y 轴的交点 C ,则抛物线的解析式为。
抛物线的知识点高二

抛物线的知识点高二抛物线的知识点抛物线是一种经典的曲线形状,它在数学、物理和工程等领域都有广泛的应用。
本文将介绍抛物线的基本定义、性质和公式,以及一些与抛物线相关的重要知识点。
一、抛物线的定义抛物线是由一个定点(焦点)和一个定直线(准线)确定的曲线。
定义中的焦点和准线的位置关系决定了抛物线的形状。
当焦点位于准线之上时,抛物线开口朝上;当焦点位于准线之下时,抛物线开口朝下。
二、抛物线的性质1. 对称性:抛物线具有轴对称性,即关于准线对称。
2. 焦点和准线的距离相等性:抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。
3. 点的坐标:设焦点为F,准线为x轴,抛物线上任意一点P的坐标为(x,y),则有y² = 2px,其中p是焦距。
4. 切线与焦准关系:抛物线上任意一点P处的切线与焦准线之间的夹角等于切线和准线之间的夹角。
三、抛物线的公式1. 基本形式:对于抛物线的基本形式y²= 2px,焦点在原点处,准线为x轴。
2. 平移形式:对于平移后的抛物线,坐标平移量为(a, b),则公式变为(y - b)² = 2p(x - a)。
3. 顶点形式:对于抛物线的顶点形式,坐标顶点为(h, k),则公式变为(y - k)² = 2p(x - h)。
4. 标准方程与顶点形式的关系:标准方程y² = 2px可通过平移得到顶点形式(y - k)² = 2p(x - h)。
五、与抛物线相关的重要知识点1. 抛物线的焦距:焦距p是决定抛物线形状的重要参数,它决定了抛物线的开口大小。
2. 抛物线的参数方程:抛物线的参数方程是用参数t表示抛物线上的点坐标,参数方程为x = 2at,y = at²。
3. 抛物线的平移与旋转:抛物线可以通过平移和旋转的方式进行变换,改变其位置和方向。
4. 抛物线的应用:抛物线在物理学中有广泛应用,例如在抛物运动、射击问题和天体运动等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.[解析] (1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.如图,在直角坐标系内,已知等腰梯形ABCD,AD∥BC∥x轴,AB=CD,AD=2,BC=8,AB=5,B点的坐标是(-1,5).(1)直接写出下列各点坐标.A(,)C(,)D(,);(2)等腰梯形ABCD绕直线BC旋转一周形成的几何体的表面积(保留π);(3)直接写出抛物线y=x2左右平移后,经过点A的函数关系式;(4)若抛物线y=x2可以上下左右平移后,能否使得A,B,C,D四点都在抛物线上?若能,请说理由;若不能,将“抛物线y=x2”改为“抛物线y=mx2”,试确定m的值,使得抛物线y=mx2经过上下左右平移后能同时经过A,B,C,D四点.【解析】(1)易得点C的纵坐标和点B的纵坐标相等,横坐标比点B的横坐标小8,过A 作AE⊥BC于点E,那么BE=3,利用勾股定理可得AE=4,那么点A的横坐标比点B的横坐标小3,纵坐标比点B纵坐标小4,点D的纵坐标和点A的纵坐标相等,横坐标比点A 的横坐标小2;(2)绕直线BC旋转一周形成的几何体的表面积为两个底面半径为4,母线长为5的圆锥的侧面积和一个半径长为4,母线长为2的圆柱的侧面的和,把相关数值代入即可求解;(3)设新函数解析式为y=(x-h)2,把(-4,1)代入即可求解;(4)可把等腰梯形以y轴为对称轴放在平面直角坐标系中,确定一点,看其余点是否在y=x2上;进而设函数的解析式为y=mx2,A,B中的2点代入即可求解.如图,已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;(3)试求出菱形AA′B′B的对称中心点M的坐标.【解析】(1)本题需先根据题意把 A (-2,4)和点B (1,0)代入抛物线y=mx2+2mx+n中,解出m、n的值即可.(2)本题需先根据四边形AA′B′B为菱形得出y的解析式,再把解析式向右平移5个单位即可得到平移后抛物线的表达式.(3)本题需根据平移与菱形的性质,得到A′、B′的坐标,再过点A′作A′H⊥x轴,得出BH和A′H的值,再设菱形AA′B′B的中心点M,作MG⊥x轴,根据中位线性质得到MG、BG的值,最后求出点M的坐标.矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,如图所示.(1)求点D关于y轴的对称点D′的坐标及a、b的值;(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.【解析】(1)由矩形的性质可知B点的坐标,因为点D是BC边上的中点,所以可求出点D关于y轴对称点D′的坐标,把A点和D点的坐标代入抛物线y=ax2+bx可求出a,c的值;(2)先设直线AD′的解析式为y=kx+n,有已知条件可求出k和n的值,再求出直线和y 轴的交点坐标即可;(3)设抛物线向下平移了m个单位,表示出点A1,点D1的点坐标,又O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,所以可求出此抛物线的解析式.如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.(1)求a的值;(2)求图2中矩形EFGH的面积;(3)求图3中正方形PQRS的面积.【解析】(1)根据题意可得点D的坐标,将点D的坐标代入二次函数解析式即可求得a的值;(2)根据图形分析得:正方形IJKL沿射线JU方向平行移动15个单位长度与正方形MNUT 重合,由平行移动的性质可知EH=15,同理可得EF=10,可得矩形的面积;(3)建立直角坐标系,设的点的坐标,根据抛物线与正方形的对称性列方程求得即可.把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a 角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.【解析】(1)依题意得点E在射线CB上,横坐标为4,纵坐标根据勾股定理可得点E.(2)已知∠BCD=60°,∠BCF=30°,然后可得∠α=60°.(3)设CG=x,则EG=x,FG=6-x,根据勾股定理求出CG的值.(4)设以C为顶点的抛物线的解析式为y=a(x-4)2,把点A的坐标代入求出a值.当x=7时代入函数解析式可得解.如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.【解析】(1)根据四边形OABC是矩形,A(3,0),C(0,1)求出B′的坐标,设直线BB′的解析式为y=mx+n,利用待定系数法即可求出此直线的解析式,进而可得出M、N 两点的坐标,设二次函数解析式为y=ax2+bx+c,把CMN三点的坐标代入此解析式即可求出二次函数的解析式;(2)设P点坐标为(x,y),连接OP,PM,由对称的性质可得出OP⊥MN,OE=PE,PM=OM=5,再由勾股定理求出MN的长,由三角形的面积公式得出OE的长,利用两点间的距离公式求出x、y的值,把x的值代入二次函数关系式看是否适合即可;(3)由于抛物线移动的方向不能确定,故应分三种情况进行讨论.【解答】(3)①在上下方向上平移时,根据开口大小不变,对称轴不变,所以,二次项系数和一次项系数不变,根据它过原点,把(0,0)这个点代入得常数项为0,新解析式就为:y=-12x2+2x;②在左右方向平移时,开口大小不变,二次项系数不变,为-12,这时根据已经求出的C′(-1,0),M(5,0),可知它与X轴的两个交点的距离还是为6,所以有两种情况,向左移5个单位,此时M与原点重合,另一点经过(-6,0),代入解出解析式为y=-12x2-3x;③当它向右移时要移一个单位C′与原点重合,此时另一点过(6,0),所以解出解析式为y=-12x2+3x.在平面直角坐标系中点A(0,2)C(4,0),AB∥x轴,△ABC是直角三角形,∠ACB=90°.(1)求出点B的坐标,并求出过A,B,C三点的抛物线的函数解析式;(2)将△ABC直线AB翻折,得到△ABC1,再将△ABC1绕点A逆时针旋转90度,得到△AB1C2.请求出点C2的坐标,并判断点C2是否在题(1)所求的抛物线的图象上;(3)将题(1)中的抛物线平移得到新的抛物线的函数解析式为y=ax2-mx+2m,并使抛物线的顶点落在△ABC的内部或者边上,请求出此时m的取值范围.【解析】(1)过C作CD⊥AB于D,根据A、C的坐标,易求得AD、CD的长,在Rt△ACB中,CD⊥AB,利用射影定理可求得BD的长(也可利用相似三角形得到),由此求得点B的坐标,进而可利用待定系数法求得抛物线的解析式;(2)根据△ABC的两次旋转变化可知AB1落在y轴上,可过C2作C2D1⊥AB1,根据△ACD≌△AC2D1得AD1、CD1的长,从而求出点C2的坐标,然后将其代入抛物线的解析式中进行验证即可;(3)在(1)题中求得了抛物线的二次项系数,即可用m表示出平移后的抛物线顶点坐标,得(m,4m-m22),由于此顶点在△ACB的边上或内部,因此顶点横坐标必在0≤m≤5的范围内,然后分三种情况考虑:①顶点纵坐标应小于或等于A、B的纵坐标.②求出直线AC和直线x=m的交点纵坐标,那么顶点纵坐标应该大于等于此交点纵坐标.③求出直线BC和直线x=m的交点纵坐标,方法同②.结合上面四个不等关系式,即可得到m的取值范围.如图抛物线y=ax2+ax+c(a≠0)与x轴的交点为A、B(A在B的左边)且AB=3,与y轴交于C,若抛物线过点E(-1,2).(1)求抛物线的解析式;(2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;(3)若D为原点关于A点的对称点,F点坐标为(0,1.5),将△CEF绕点C旋转,在旋转过程中,线段DE与BF是否存在某种关系(数量、位置)?请指出并证明你的结论.【解析】(1)抛物线y=ax2+ax+c(a≠0)的对称轴是x=-a2a=-12,又因与x轴的交点为A、B(A在B的左边)且AB=3,求出A、B点的坐标,解决第一问;(2)因为S△ABC=3,△PBC的面积是3,说明P点一定在过A点平行于BC的直线上,且一定是与抛物线的交点,因此求出过A点的直线,与抛物线联立进一步求得答案;(3)连接DC、BC,证明三角形相似,利用旋转的性质解决问题.如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.【解析】(1)根据旋转的性质知△COD≌△AOB,则OC=OA、OD=OB,由此可求出C、D 的坐标,进而用待定系数法即可求出抛物线的解析式;(2)将(1)题所得的抛物线解析式化为顶点式,然后根据“左加右减,上加下减”的平移规律得出平移后的抛物线解析式;联立两个函数的解析式即可得到F点的坐标;取E点关于平移后抛物线对称轴的对称点E′,那么直线E′F与此对称轴的交点即为所求的P点,可先求出直线E′F的解析式,联立这条对称轴的解析式即可得到P点的坐标;(3)可根据对称轴方程设出P点坐标,分别表示出PE、PF、EF的长;由于△PEF的直角顶点没有确定,因此要分成三种情况考虑:①∠EPF=90°,②∠PEF=90°,③∠PFE=90°;可根据上述三种情况中不同的直角边和斜边,利用勾股定理列出关于P点纵坐标的方程,求出P点的坐标.如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B 的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.【解析】(1)由抛物线C1:y=a(x+2)2-5得顶点P的为(-2,-5),把点B(1,0)代入抛物线解析式,解得,a=59;(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据点P、M关于点B成中心对称,证明△PBH≌△MBG,所以MG=PH=5,BG=BH=3,即顶点M的坐标为(4,5),根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,所以抛物线C3的表达式为y=-59(x-4)2+5;(3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得点N的纵坐标为5,设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求得EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5),根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34.分三种情况讨论,利用勾股定理列方程求解即可.①当2∠PNF=90°时,PN2+NF2=PF2,解得m=443,即Q点坐标为(193,0);②当∠PFN=90°时,PF2+NF2=PN2,解得m=103,∴Q点坐标为(23,0),③PN>NK=10>NF,所以∠NPF≠90°综上所得,当Q点坐标为(193,0)或(23,0)时,以点P、N、F为顶点的三角形是直角三角形.在平面直角坐标系xOy中,把矩形AOCB绕点A逆时针旋转α角,得到矩形ADEF,设AD与BC相交于点G,且A(-9,0),C(0,6),如图甲.(1)当α=60°时,请猜测△ABF的形状,并对你的猜测加以证明.(2)当GA=GC时,求直线AD的解析式.(3)当α=90°时,如图乙.请探究:经过点F,且以点B为顶点的抛物线,是否经过矩形ADEF的对称中心H,并说明理由.【解析】(1)根据旋转的知识可得AB=AF,根据∠BAF=60°可得∴△ABF为等边三角形;(2)利用△AGB为直角三角形,根据勾股定理可得CG的长,也求得了G的坐标,利用点A、G的坐标可得所求的直线解析式;(3)易得F坐标,利用顶点式可得经过点F,且以点B为顶点的抛物线,易得H的坐标,把横坐标代入所得函数解析式,看是否等于纵坐标即可.在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).(1)若抛物线y=-x2+bx+c经过点B和F,求此抛物线的解析式;(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S1,△AQF的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt △PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).【解析】(1)首先确定点B、F的坐标,将点的坐标代入函数解析式,解方程组即可求得;(2)①首先求得对称轴,根据题意用t表示出S1、S2的值即可求得.②利用相似三角形的性质即可求得:过点F作FP⊥FB,FP交x同于点P,延长FE交AB 于点M,要使Rt△PFB∽Rt△AOC,只要FB:FP=2:1即可,而Rt△BMF∽Rt△PGF,所以根据FBFP=FMFG只须FMFG=21,列出方程解答即可求出此时点P的坐标.。