一类线性约束条件下目标函数最值的求法
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算工具,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab求解线性规划和整数规划问题,并提供相应的代码示例和结果分析。
一、线性规划问题的求解线性规划问题是一类常见的数学优化问题,其目标是在一组线性约束条件下,找到使目标函数最优化的变量值。
在Matlab中,可以使用线性规划函数“linprog”来求解线性规划问题。
下面以一个简单的线性规划问题为例进行说明。
假设有如下线性规划问题:目标函数:maximize 2x1 + 3x2约束条件:x1 + x2 ≤ 5x1 - x2 ≤ 2x1, x2 ≥ 0首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
在Matlab 中,可以使用矩阵来表示这些系数。
可以按照以下方式定义:c = [-2; -3]; % 目标函数的系数矩阵A = [1 1; 1 -1]; % 约束条件的系数矩阵b = [5; 2]; % 约束条件的右侧常数然后,我们可以使用“linprog”函数来求解线性规划问题。
代码如下:x = linprog(c, A, b); % 求解线性规划问题最后,我们可以输出求解结果,并进行结果分析。
代码如下:disp('最优解为:')disp(x)disp('目标函数的最优值为:')disp(-c'*x)运行以上代码,即可得到线性规划问题的最优解和目标函数的最优值。
在这个例子中,最优解为x1=2,x2=3,目标函数的最优值为-13。
二、整数规划问题的求解整数规划问题是线性规划问题的一种扩展,其变量需要取整数值。
在Matlab 中,可以使用整数规划函数“intlinprog”来求解整数规划问题。
下面以一个简单的整数规划问题为例进行说明。
假设有如下整数规划问题:目标函数:minimize 2x1 + 3x2约束条件:x1 + x2 ≥ 5x1 - x2 ≤ 2x1, x2 ≥ 0x1, x2为整数首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
线性规划求最值问题

x 0 1. x , y满足 x 2 y 3 2 x y 3
求z=x-y的最值
解:z x y化为y x z, 与直线y x平行,纵截距为-z
直线过点 A 时z值最大; 过点 B 时z值最小.
最优解
x-4y+3=0
A(5,2)
o
B(1,1) 3x+5y-25=0
1
x
目标函数的常见类型
A z 1.z=Ax+By(A,B为常数)可化为 y B x B 表示 A z y x 平行的一组平行线,其中 为截距。 与 B B
y y0 2. z 表示定点P(x0,y0) 与可行域内的动点M(x,y) x x0 连线的斜率
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
y
(1)若z=2x+y,求z的最值.
Zmax 2 5 2 12, Zmin 2 1 1 3.
5
C
x-4y+3=0
A B
O
1 x=1 5
3x+5y-25=0
2 2 2 2 z ( x x ) ( y y ) 或 z ( x x ) ( y y ) 0 0 0 0 3.
表示定点Q (x0,y0)到可行域内的动点N(x,y)的距离 或距离平方。
一、最值模型
A 1 z Ax By即y x z表示一组平行线, B B A 1 其中 为斜率, z为纵截距, B B 当B>0时, 当直线向上平移时,所对应的截距随之增大;z 增大. ---------向下----------------------------------减小. Z 减小 . 当B<0时, 当直线向上平移时,所对应的截距随之增大,但z 减小 . ---------向下----------------------------------减小,但z 增大.
目标函数的几种极值求解方法

目标函数的几种极值求解方法在数学和优化领域中,目标函数是一个描述优化问题的函数,其目标是将该函数的值最小化或最大化。
目标函数的极值求解方法主要有以下几种方法:1.数值方法:数值方法是通过计算目标函数在一组特定点上的近似值来确定极值。
其中最简单的方法是取目标函数的一些特定点,并计算这些点上的函数值。
然后根据计算结果确定极值。
这些特定点通常是目标函数的极值点的近似值。
例如,可以使用微分方法来估计目标函数的极值点。
2.数学分析方法:数学分析方法是通过对目标函数进行数学分析来确定极值。
其中最常用的方法是求解目标函数的导数或二阶导数,并设置导数等于零来求解函数的极值点。
这个方法适用于一些简单的函数,例如多项式函数。
它可以精确地确定函数的极值点。
3.迭代方法:迭代方法是通过不断迭代目标函数来逼近极值。
迭代方法通常需要一个初始点,然后在每一步中更新该点,直到满足一些停止条件。
最常用的迭代方法是梯度下降法和牛顿法。
梯度下降法通过不断沿着函数的梯度方向进行迭代来逐渐接近极小值。
牛顿法将函数近似为一个二次函数,并使用二次函数的极值点来逼近原函数的极值点。
4.线性规划方法:线性规划方法是对一类特殊的目标函数进行极值求解的方法。
线性规划问题是指包含一组线性不等式或等式约束条件的目标函数的最小化或最大化问题。
线性规划方法可以通过求解线性规划问题的对偶问题来确定原问题的极值。
这个方法对于一些特殊的线性规划问题非常高效。
5.元启发式方法:元启发式方法是一种基于经验和启发式规则来确定目标函数极值的方法。
这些方法通常使用一些随机算法和优化算法,例如遗传算法、粒子群算法等。
元启发式方法通过不断目标函数的解空间来逼近极值。
总之,目标函数的极值求解方法有多种选择,可以根据具体的问题和需求选择合适的方法。
不同的方法有不同的适用范围和计算复杂度,需要根据具体情况进行选择和调整。
求线性目标函数在线性约束条件下的最大值或最小值问题

的点(x,y)所形成区域的面积为( B. 2π D.π
)
A.4π C. 3π 2
共 57 页
10
解析:不等式 f(x)+ f(y)≤0 可转化为(x-1)2+ (y-1)2≤2,不 等式 f(x)- f(y)≥0 可转化为(x- y)(x+ y-2)≥0.于是点(x, y)所形成 1 的区域为两个 圆面,而圆面积是 2π. 4
共 57 页
13
解析:设对甲项目投资 x 万元,对乙项目投资 y 万元,获得 总利润为 z 万元,则 z= 0.4x+ 0.6y,且
x+ y≤60, x≥2y, 3 x≥5, y≥5,
作出不等式组表示的平面区域,
共 57 页
14
如图所示,作直线l0:0.4x+0.6y=0,并将l0向 上 平 移 , 过 点 时 z 取 得 最 大 值 , 即 zmax = 0.4×24+0.6×36=31.2(万元).故选B.
点评: (1)用图解法解决线性规划问题时,分析 题目的已知条件找出约束条件和目标函数是关 键,可先将题目中的量分类、列出表格,理清 头绪,然后列出不等式组(方程组)寻求约束条件, 并就题目所述找到目标函数. (2) 可行域可以是封闭的多边形,也可以是一侧 开放的无限大的平面区域. 如果可行域是一个多边形,那么一般在其顶点 处使目标函数取得最大值或最小值,最优解一 般就是多边形的某个顶点. 特别地,当表示线性目标函数的直线与可行域 5 共 57 页 的某条边平行时 (k = ki) ,其最优解可能有无数
共 57 页
15
答案:B
x+y≥0, 5. (全国卷Ⅰ) 若 x 、 y 满足约束条件x-y+3≥0, 0≤x≤3,
线性规划最值问题

线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。
在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。
线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。
求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。
2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。
3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。
4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。
线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。
- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。
- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。
总结线性规划最值问题是一种在实际应用中常见的问题求解方法。
通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。
该方法可以应用于多个领域,帮助优化决策和资源分配。
线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于解决一类特定的优化问题。
它的目标是在给定的约束条件下,找到使目标函数取得最大或最小值的变量值。
线性规划广泛应用于经济、工程、运输、资源分配等领域。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中c1,c2,...,cn为系数,x1,x2,...,xn为变量。
2. 约束条件:线性规划的变量需要满足一系列约束条件,通常是一组线性等式或不等式。
例如,Ax ≤ b,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的变量值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大或最小值的变量值称为最优解。
三、标准形式线性规划问题可以通过将其转化为标准形式来求解。
标准形式具有以下特点:1. 目标函数为最小化形式:minimize Z = c1x1 + c2x2 + ... + cnxn2. 约束条件为等式形式:Ax = b3. 变量的非负性约束:x ≥ 0四、求解方法线性规划问题可以使用多种方法求解,其中最常用的是单纯形法。
单纯形法的基本思想是通过迭代计算来逐步改进解的质量,直到找到最优解。
1. 初始化:选择一个初始可行解。
2. 进行迭代:根据当前解,确定一个非基变量进入基变量集合,并确定一个基变量离开基变量集合,以改进目标函数值。
3. 改进解:通过迭代计算,逐步改进解的质量,直到找到最优解。
4. 终止条件:当无法找到更优解时,算法终止。
五、应用案例线性规划在实际应用中有广泛的应用,以下是一些常见的应用案例:1. 生产计划:确定如何分配有限的资源以最大化产量。
2. 运输问题:确定如何分配货物以最小化运输成本。
3. 资源分配:确定如何分配有限的资源以最大化效益。
4. 投资组合:确定如何分配资金以最大化投资回报率。
5. 作业调度:确定如何安排作业以最小化总工时。
数学中的最优化问题

数学中的最优化问题数学中的最优化问题是一类重要的数学问题,其目标是寻找某个函数的最优解,即使得函数取得最大值或最小值的输入变量的取值。
最优化问题在数学、经济学、物理学等领域有广泛的应用,对于解决实际问题具有重要意义。
一、最优化问题的基本概念在介绍最优化问题之前,需要先了解几个基本的概念。
1. 目标函数:最优化问题中,我们定义一个目标函数,该函数是一个关于变量的函数,表示我们要优化的目标。
2. 约束条件:最优化问题中,往往存在一些限制条件,这些条件限制了变量的取值范围。
这些限制条件可以是等式约束或者不等式约束。
3. 最优解:最优解是指满足约束条件下使得目标函数取得最优值的变量取值。
最优解可能是唯一的,也可能存在多个。
二、最优化问题的求解方法在数学中,有多种方法可以求解最优化问题。
以下是几种常见的方法:1. 解析法:对于一些特殊的最优化问题,我们可以通过解析的方法求解。
这种方法通常需要对目标函数进行求导,并解方程得到极值点。
2. 迭代法:对于一些复杂的最优化问题,解析法并不适用,这时可以采用迭代法求解。
迭代法通过不断地逼近最优解,逐步优化目标函数的值。
3. 线性规划:线性规划是一种常见的最优化问题,它的约束条件和目标函数都是线性的。
线性规划可以利用线性代数的方法进行求解,有着广泛的应用。
4. 非线性规划:非线性规划是一类更一般的最优化问题,约束条件和目标函数都可以是非线性的。
非线性规划的求解比线性规划更为困难,需要采用一些数值方法进行逼近求解。
三、最优化问题的应用最优化问题在各个领域都有广泛的应用,下面以几个具体的例子来说明:1. 经济学中的最优化问题:经济学中的生产优化、消费优化等问题都可以抽象为最优化问题。
通过求解最优化问题,可以找到最有效的生产组合或最佳的消费策略。
2. 物理学中的最优化问题:在物理学中,最优化问题常常涉及到动力学、优化控制等方面。
例如,在机械设计中,可以通过最优化问题确定各部件的尺寸和形状,使得机械系统具有最佳的性能。
目标函数最值的求法

讲授新课
2. 欲求最大值或最小值的函数 欲求最大值或最小值的函数z=2x+3y 叫做目标函数 叫做目标函数. 目标函数
讲授新课
2. 欲求最大值或最小值的函数 欲求最大值或最小值的函数z=2x+3y 叫做目标函数 叫做目标函数. 目标函数 又是x、 的一次解析式 的一次解析式, 由于 z=2x+y又是 、y的一次解析式, 又是 所以又叫线性目标函数 所以又叫线性目标函数. 线性目标函数
探究问题(三)
设工厂获得的利润为z, 设工厂获得的利润为 ,则z = 2x + 3y, , ——求z的最大值。 求 的最大值 的最大值。
思考:1、如果将目标函数看成关于变量x,y的方程,它的 思考: 的方程, 几何意义是什么? 几何意义是什么? 2、z的几何意义又是什么? 的几何意义又是什么? 3、z的值因谁的变化而变化?你又能得到什么启 的值因谁的变化而变化? 示
2.【解析】 作出可行域如图阴影部分所示,由 【解析】 作出可行域如图阴影部分所示, 图可知z= - 经过点 经过点A时 有最小值 经过点B 有最小值, 图可知 =3x-4y经过点 时z有最小值,经过点 有最大值. 时z有最大值.易求 有最大值 易求A(3,5),B(5,3),∴z最大=3×5 , , × =-11. -4×3=3,z最小=3×3-4×5=- × = , × - × =-
O
x
将上述不等式组表示成平面上的区域, (3) 将上述不等式组表示成平面上的区域,图中的阴 影部分中的整点(坐标为整数)就代表所有可能的日生产 影部分中的整点(坐标为整数) 安排。 安排。
y
4 3
M
o
4
8
x
• 探究问题(二): 探究问题( 进一步,若生产一件甲产品获利2 进一步,若生产一件甲产品获利2 万元,生产一件乙产品获利3万元, 万元,生产一件乙产品获利3万元, 采用哪种生产安排利润最大? 采用哪种生产安排利润最大? 若设工厂获得的利润为z,则z = 的最大值。 2x + 3y,即求z的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
{
#* ’ !) ! &*, *)( , ! ( 解得 !*() "* - ) ) ( ! ( ! ( ) * *)( ! ( 所以 ( ( !&* !&") & "* - ) ( ( ! () ! ( + !& ") ! *和 *)( 的符号, ! ( 得! ( 视!*() ! ( "* - ) ) ( ! ( ! 与" ( 的范围。比如 & !& ") ") ! ( 1 !!& # 1 ") (# ( !,
! !!!" !!!!!"
中学数学教学
! $ $ "年第"期
解题 方法
一类线性约束条件下目标函数最值的求法
安徽六安卫校 尚 蕾 (邮编: ) ! " # $ $ %
(!) 能否同时分别取到 ’ 和 , 及同时分别取到 ! " ") 和" , 而这是毋庸置疑的, 因为 与 有交点 ( , ) , 即 !&" 与 " (!)") 在 ’ ’ ( "( ! ’ ( , ) 点分别取到’和, 。 ( " ( () (", , 即 !&" 与 " (!)") ’ ( 与’ " 有交点 ) ! ! () (", 分别取到!和" 。 在) ! ! 事实上, 只要判 ( 点坐标与) 点坐标无须解出, 断’ 与 及 与 有交点即可。 ’ ’ ’ ! ’ ( " 我们还可以将图中 (、 *、 )、 + 四点坐标均求出, 然后分别代入’ , 其中值最大者即为其上限, 值 !)! " 最小者即为其下限, 但计算量并未减少。 一般地, 我们有如下结论: ,# !& ., "# ( ( , 设 ($ !) /# !& "#0, ! (其中 ,、 求 ( !&* .、 /、 0、 (、 *、 " 的值。 (、 均为常数) !
( 2 !& # 2 ") (# ! !, " 进而可得 ( !&* " 的范围为 1 2 !&* 1 2 "# (& (#( !& !, 证明可仿照解法二: 因所以 ($ !, ( ) 与 ( ) !!& 1 !& 2 "* "* ( ! ! ! 有交点, "( ) 与 ( ) !!& 1 !& 2 "* "* ( ( ! ( 也有交点, "( 与" ( 同时分别取到最 所以! !&") !&") ( ! 大值1 和 及同时分别取到最小值 因此 2 1 ! ! ( 和2 (, 的最大值 和最小值 均可取到。 ( !&* 1 2 1 2 " !& ! (& ( (收稿日期 ! ) $ $ " ) $ " ) ( %
!!!!"
( 的可行区域。将#* ’ !) ! ! !) #。赋于 " 变形为"* ! 在平面上得一组平行线’ (虚线表示) , 每一 # 不同的值, (等值) 。从图中可看出: 条线上的 # 取值是不变的 ( 当’: "* ! !) # 过 ’ ’与’ !) "* !: !& ’: ! ( ( , ) 时, 从而 # !的交点 ( " ( ’ 的截距 ) # 最小, "* ! 最大, 即’ 其值为’ 。 !) ! + " ) ! + ( * ( $ " 最大, ( 当’: ! !) # 过 ’ (与’ "* "* ": !) (: !& ! () ( (", 时, 从而 !的交点 ) ’ 的截距) # 最大, "* ! ! ! " ( 即’ 其值为’ 。 # 最小, !) ! + ) ! + * % " 最小, ! ! 所以, 。 % # ’ !) ! ( $ "# 事实上, 利用不等式性质将约束条件变形并辅助 适当观察和讨论, 可得如下更简洁的解法。 (!& (!) 解法二 设 ’ !) ! ! & "* ") ") " ( ) ( ) , * !& " !& !) "" , , !& * ’ !* ( " 比较系数有 解得 , 。 !) *) ! * " " " 即 ’ (!& (!) , 但 !) ! & " "* ") ")
本文链接:/Periodical_zxsxjx200303018.aspx
{
令( ( ( !&* ! !& & !& "* ") ") ( ! " ( ( * !& !& !& ", ( ! ") ") 比较系数有 !& ( ! "*(,
{
{
{
一类线性约束条件下目标函数最值的求法
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 尚蕾 安徽六安卫校,237005 中学数学教学 HIGH SCHOOL MATHEMATICS TEACHING 2003(3)
!!!!"
常见教参资料用如下例题说明充要条件的正确应 用, 但事后未给出正确解法, 细究其原因, 原来解答需 用到所谓 “等值线法” 。 题 设 ! #!& ’ " "# ( !) ( #!) # ! # " 求 ’ !) ! " 的范围。 解法一 令 #* 建立直角坐标系 $ ’ !) ! % &, ", 分别作出直线 , ’ ! "* (: !& , ’ ’ "* !: !& , ’ ( "* ": !) : , ’ !) ! "* ’ 如图, 图中阴影 部分即为目标函数:
! #!& ’ % "# ( $) ( ) " # " !) , & "# (!& (!) , # & " # ( $ %&&得 % ") ") 即 % 。 # ’ !) ! ( $ "# 式和 ( $) 式是等价的。因为 !& 注意 ( !) "与 万方数据 (!) 不是两个独立的变量, 所以须考虑 !& " ") "与