线性规划求最值详细

合集下载

线性规划距离式斜率式求最值

线性规划距离式斜率式求最值

,若目标
【答案】A
函数 (其中 ) 【解析】解:如图所示,线性规划区域为三角形 ABC,而a目标函0数,的b斜率为0k 的a <最0, 大值为 3,则 b
a
0,b
( 0A,()1a
b2).
1 3
(1a3
b2)(a(B2b)) 13
(5. 2ba
12ab)(C
)
.2
1 (5 2 2a 2b) 3 3 ba
|PQ|有最小值为32. 答案:A
| x | | y | 2
1.(2011
杭西高
8
月高三数学试题)若平面区域
y
2
k
(x
1)
是一个三角形,
l2 y
则 k 的取值范围是
]
l1
O
l3
x
【答案】 ,2
0,
2 3
l4
A(-1,-2))
【解析】如图直线 y 2=k(x 1)恒过点 A(-1,-2),符合条件的
可行解
满足线性约束条件 x,y 的解(x,y)叫做 ________
可行域
所有可行解组成的集合叫做________
最优解 使目标函数达到最大值或最小值的可行解
求线性目标函数在线性约束条件下的最大值 线性规划问题
或最小值的问题
考点二 求线性目标函数的最值
【例 2】
(2010·福建)若 x,y∈R,且xx≥-坐标A(1,3)、 B(3,1)、C(7,9). (1) 易知可行域内各点均在直线x+2y-4=0的上方, (2) 故x+2y-4>0, 将C(7,9)代入z得最大值为21. (2)z=x2+(y-5)2表示可行域内任一点(x,y)到定点M(0,5)的距离的平方, 过M作直线AC的垂线,易知垂足N在线段AC上,故z的最小值为|MN|2=92. (3)z=2·xy----121 表示可行域内任一点(x,y)与定点Q -1,-12 连线的斜率

利用线性规划的思想求无理函数的最值

利用线性规划的思想求无理函数的最值
举例 说明. 、


令 一
由式 ①②知
●●●}●^ ,≥o● ● 1 ●C●● ● ●●,\ 一 ●为 ● ● ● 3 且z ● 工 一生: , ,●,、一● 则 :; , _ m●●●●2

兰 一

化 得 一 一 简卒 罕 1 .

m 2 L
例 例 1 求函数 - z 一、五= +、 z的值域. 厂 ) / 一2 / —2 的值域. ( 一 ̄3 / , + ̄3 / /
下 移 , — 一 的值越 大 , z 越往上 移 , 一 一 的 2 值越 小. 由于双 曲线 一 一1的渐近线 斜率
此 时 原 题 化 为 目 标 函 数 为 z= + , 行 域 为 = : 可
, 2 “


f ≥ 0, l
、 、








即 2 —. 警一 21


江苏
王 银 超
此时, 题 转化 为 目 问
函数贯 穿于 高 中数 学 的始 终 , 是高 考 数 学考 查 的
坍 2・
标 函数 是 : —m1 z 一m2 可 ,
行 域 是
≥ 0 ,
≥ 0 ,

热点 内容. 因其概 念性 较强 , 题方 法 灵 活等 特 点 , 解 所
解 令 ml / z 一 ̄3 一2, 则 1 , ≥O 且
z 丁 ̄r 一m Z2 - ; ①
此 问 题 转 化 为 目标 函 的 数为 一 一 , 行 域 线 可


令 优 一、 / ,
, 则 ≥0 且 ,

线性规划求最值

线性规划求最值

线性规划求最值线性规划(Linear Programming)是一种优化问题的数学方法,通过建立线性模型来求解最大或最小值。

线性规划的目标是在给定的限制条件下,找到一个最优解,使得目标函数取得最大(或最小)值。

线性规划的数学模型可以表示为:目标函数:max(min)Z = c₁x₁ + c₂x₂ + … + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙ其中x₁, x₂, …, xₙ为决策变量,c₁, c₂, …, cₙ为目标函数的系数,a₁₁, a₁₂, …, a₈ₙ为约束条件中的系数,b₁, b₂, …,bₙ为约束条件的常数。

解线性规划问题的过程可以分为以下几个步骤:1. 建立数学模型:根据实际问题,确定目标函数以及约束条件。

2. 线性规划的几何表示:将目标函数和约束条件用图形表示,目标函数是一个线性函数,而约束条件则是一组线性不等式。

3. 求解可行解:通过图形方法,找到目标函数与所有约束条件的交点,得到一组可行解。

4. 求解最优解:在可行解中,通过计算目标函数在每个可行解点的函数值,找到使目标函数取得最大(或最小)值的可行解,即为最优解。

5. 检验最优解的可行性:将最优解代入到原始线性规划问题中,检验是否满足所有约束条件。

如果不满足,则需要重新调整模型。

线性规划在实际应用中广泛使用,例如生产计划、资源分配、运输调度等领域。

通过线性规划,可以有效地进行决策,并找到最优解,提高效率,节约资源。

然而,线性规划也有一些局限性,如对问题的要求较高,不能解决非线性的问题等。

总之,线性规划是一种数学方法,通过建立线性模型,在给定的约束条件下求解最大或最小值,可以在各种实际问题中应用,并得到最优解。

通过线性规划,可以优化决策,提高效率,实现最大化利益。

线性规划求最大值或最小值

线性规划求最大值或最小值

线性规划求最大值或最小值linprog2011-09-03 18:43:17| 分类:Matlab | 标签:最优值最优解最大值最小值linprog 函数格|字号大中小订阅式: linprog (f,a,b,a1,b1,xstart,xend)f:求解最小函数的表达式系数矩阵是m*1的矩阵a: w不等式条件约束矩阵其均为形式b:a 对应不等式右边的常数项a1:=等式条件约束矩阵b1:a1 对应不等式右边的常数项xstart:x 的取值范围的最小值的系数矩阵为n*1 的矩阵xend:x 的取值范围的最大值的系数矩阵为n*1 的矩阵函数说明: 不存在的项填写[] 即可函数功能: 线性规划求最优值.例子1:求f=3*x1+6*x2+2*x3 的最大值满足的条件是3*x1+4*x2+x3 w 2x1+3*x2+2*x3 w 1且x1 、x2、x3 均大于等于0Matlab 求解如下a =[ 3 4 11 32 ]b =[ 21 ]f=[ -3 -6-2 ] %这里为什么会是负数, 因为Matlab 求的是f 的最小值, 要求最大值则取要求系数的相反数即可x=[ 0 00 ]linprog (f,a,b,[],[],x,[]) %执行的matlab 命令后输出的如下内容. 注意这里的[] 表示那一项不存在. 当然最后那一个[] 也可以不要即linprog(f,a,b,[],[],x)Optimization terminated.ans =0.40000.20000.000 0%即x1=0.4,x2=0.2,x3=0 为最优解. 带回原式我可以知道f 的最大值=3*0.4+6*0.2=2.4例子2:求f=-2*x1-3*x2-x3 的最小值满足的条件是x1+x2+x3W 3x1+4*x2+7*x3+x4=9且x1、x2、x3、x4均大于等于0Matlab 求解如下原题等价于求f=-2*x1-3*x2-x3+0*x4 的最小值其条件等价于x1+x2+x3+0*x4W3x1+4*x2+7*x3+x4=9则在Matlab 输入如下内容a=[1 1 1 0] b=[3] a1=[1 4 7 1] b1=[9]x=[ 00]f=[ -2-3-1 0]linprog (f,a,b,a1,b1,x) %执行命令或者输入linprog(f,a,b,a1,b1,x,[])Optimization terminated.ans =1.00002.00000.00000.0000 %说明x1=1,x2=2,x3=0,x4=0 取得最小值说明:任何线性规划问题都可以转化为上面的问题求解.细节问题请Google线性规划标准形式1、当目标函数求最大值时,例如求f=a1*x1+a2*x2+ ……+an*xn的最大值时这个时候等价于求f=-a1*x1-a2*x2- ......... -an*xn 的最小值2、当约束条件为a1*x1+a2*x2+ ....... +an*xn >b这种形式的时候其约束等价于a1*x1+a2*x2+ ...... +an*xn -xnn=b 即多了一个xnn(xnn > 0)变量3、当一个变量比如x1是无约束的变量时,其实等价于x1=x2-x3即把一个变量x1分解成2个变量x2与x3之差(x2、x3> 0)把是x1的地方替换为(x2-x3)即可求解线性规划问题:J TPmin f r smch t hnt Apq,jf - fw7b jr线性规划问题其中,f, x, b, beq, lb, ub为向量,A, Aeq为矩阵。

不等式简单的线性规划问题利用简单的线性规划求最值

不等式简单的线性规划问题利用简单的线性规划求最值

线性规划问题的应用
生产计划
如何安排各种资源(如人力、原材 料、设备等)以生产出最大利润或 最小成本的产品。
货物运输
如何安排车辆或船只运输货物,使 得运输成本最低或运输时间最短。
资源分配
如何将有限的资源分配给不同的项 目或任务,以获得最大的效益。
配料问题
如何在满足一定质量要求的条件下 ,使用最少的原料或以最小的成本 配制出所需的产品。
引入人工变量
对于不等式约束条件,可以引入人工变量来扩展变量的维度,将不等式约束条件 转换为等式约束条件。
不等式约束条件下线性规划问题的求解方法
将不等式约束条件加入目标函数中
将不等式约束条件加入目标函数中,并求解目标函数的最小值或最大值。
利用线性规划求解
对于不等式约束条件下线性规划问题,可以利用线性规划的求解方法,如单 纯形法、椭球法等来求解目标函数的最小值或最大值。
数据科学
1. 研究大数据分析中的优化问题;2. 探索高效的数据处理和特征提取方法;3. 提高数据 分析和处理的精度和效率。
THANKS
谢谢您的观看
迭代法
通过不断迭代,逼近最优解。
优化问题的实际应用
资源分配问题
如何分配有限资源,使得产出最大化或成本最小 化。
运输问题
如何制定最优运输计划,使得运输成本最低且满 足需求。
选址问题
如何在多个候选地点中选择最优地点,使得某项 业务运营成本最低或收益最大。
06
总结与展望
不等式简单的线性规问题求解方法的优缺点
05
利用简单的线性规划解决优化问题
优化问题的定义与分类
定义
优化问题是在一定约束条件下,寻求一个或多个自变量取何值时,使得目标 函数取得极值(极大值或极小值)。

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将介绍线性规划问题的解法和最优解分析。

一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。

线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。

二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。

1. 图形法图形法适用于二维或三维的线性规划问题。

它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。

首先,将约束条件转化为不等式,并将其绘制在坐标系上。

然后,确定目标函数的等高线或等高面,并绘制在坐标系上。

最后,通过观察等高线或等高面与约束条件的交点,找到最优解。

图形法简单直观,但只适用于低维的线性规划问题。

2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。

它通过在可行域内不断移动,直到找到最优解。

单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。

它通过选择一个基本变量和非基本变量,来构造一个新的可行解。

然后,通过计算目标函数的值来判断是否找到了最优解。

如果没有找到最优解,则继续迭代,直到找到最优解为止。

单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。

利用简单的线性规划求最值 课件

利用简单的线性规划求最值 课件

作出直线 y=34x,平移得最优解 M(3,5),N(5,3 x=5,y=3 时,zmax=3.
答案:A
[研一题]
[例 2]
x-y+2≥0, 已知x+y-4≥0,
2x-y-5≤0,
求:
(1)z=x2+y2-10y+25 的最小值;
(2)z=2xy++11的取值范围.
名称
意义
最优解
线性规划 问题
使目标函数取得 最大值或最的小可值行解
线性约束

条件下求线性目标函数的最大值或最小
值问题
[小问题·大思维] 1.在线性约束条件下,最优解唯一吗?
提示:最优解可能有无数多个,直线l0:ax+by=0与可 行域中的某条边界直线平行时求目标函数z=ax+by+c 的最值,最优解就可能有无数多个.
4.在线性目标函数z=x-y中,目标函数z的最大、最小 值与截距的对应关系又是怎样的? 提示:z的最大值对应截距的最小值,z的最小值对应 截距的最大值.
[研一题]
[例 1]
x≥-3, 设 x、y 满足约束条件-y≥4-x+4,3y≤12,
4x+3y≤36,
求目
标函数 z=2x+3y 的最小值与最大值.
[自主解答] 由约束条件画出可行域(如图所示)为矩 形ABCD(包括边界).
点C的坐标为(3,1),z最大即直线y=-ax+8在y轴上 的截距最大,
∴-a<kCD,即-a<-1. ∴a>1. 即a的取值范围为(1,+∞).
在例3的条件下,若目标函数z=ax+y(a>0)取得最大 值的点有无数个,求a的取值范围.
[自主解答] 作出可行域如图,并求 出顶点的坐标 A(1,3)、 B(3,1)、C(7,9). (1)z=x2+(y-5)2 表示可行域 内任一点(x,y)到定点 M(0,5)的距离的 平方,过 M 作直线 AC 的垂线,易知垂足 N 在线段 AC 上,故 z 的最小值|MN|2=92.

谈谈简单线性规划中最值的求法

谈谈简单线性规划中最值的求法
明不等式 的重要手段 。本文通过例题介绍 C uh 不等式在不等式证明中的应用 。 ac y
例 4 求 证 :_  ̄ ±: :± : ≤
不等式证 明是不等式教学 中的一个难
简解:。> , > , yl . x; ‘ 0y 0x = ’_ //≤ . x + . y
x+ y


.探 索 . 【 癌学莹新探】 教.
例谈柯西不等式在不等式证 明中的应用
浙江 摘 要: 本文 着重探讨 柯西不等式在 金华 ●陶立平 例 7 设 x , >0x y l 求(+ ) >0 y , = , x + 2(+ )的最小值 。 +y z




例 3 求 yaixb ox = s + cs 的极 值 。 n
= ) = (1) l ( } ≤ K2 K k} = ) =
k 1
例 2 求证 :
中 a b c∈R . ++
+ + Iab c 其 > ++ ,
c 即}s s Bs 1 。 f (2+2+ 2) s ) i i i n n n ≤
2 ‘In a+i2 s 2 ≤2 v . ,. i . 2 s p+i l 、 __ s n n ,
不 等式 证 明 中的 应 用 。 关 键 词 : 西 不 等 式 ; 明 ; 用 柯 证 应
简 解 : 由 C x a b)s Z cs )a b, ai + cs) n ≤( (ix o2 = 2 n+ x +
) a b, 一 r 2 即 、 2 + =
【 ( ̄ 嘉 ) ( v x】 T )( ‘ 1 【 -
≥ ( b 即 + a ) + , ≥(+) abz .
(}2 )小 为 x ) 值 等. + + 最 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.xx
y 3
5
0
z 2x 4y最小值 -6,求k
x
解:z
yk 0
2x 4y化为y
1
x
z
x y50
与y 1 x平行
22
当直线过 A2 点,z最小. 可求A(3,-3- k)
x
y
O
k
3
0
zmin 23 4(3 k) 6
A
k 0
4.z=mx+y(m>0)取得最大值的最优解有无数个,求m
2.
x,
y满足
y
0
求z=x-y的最值
(1)画区域 x y 1 (2)z x y化为y x z,斜率为1,
B
纵截距为-z的一组平行线 l
(3)平移直线y x
(4)直线过点A时纵截距-z最小,z最大; 过点B时纵截距-z最大,z最小.
交点A(1,0),B(0,1)
Zmax 1 0 1, Zmin 0 1 1.
(2)求z=x+2y的最值
(1)画区域
(2)z
2x
3 y化为y
O
2
x
4z
表示斜率为 2,纵截距为 z 的3一组平3 行线
(3)直线过点
A
3
3
时纵截距最大,此时z最大,过点
O
时z最小
(z4m)ax 解 2方程4 组 34x6x2141y6Z8m得in 点A0(4,2注) :倾斜斜率角越越大大,
x 0
OA
x y1
注意: 目标函数化为斜截式后, 分析斜率大小;z的系数符号。
x 0
1. x ,
y满足
x
2
y
3
2x y 3
求z=x-y的最值
(2)z x y化为y x z,
B
斜率为1,纵截距为-z的 一组平行线 l
A
(3)平移直线y x
O
(4)直线过点 A时z值最大;过点 B时z值最小.
---------向下----------------------------------减小. Z 减小.
当B<0时, 当直线向上平移时,所对应的截距随之增大,但z 减小. ---------向下----------------------------------减小,但z 增大.
注意:斜率大小及截距符号。
点坐标代入3x+y-a=0后,符号相反,
∴(-3+2+a)(9-3-a) <0, 得-1<a<6.
2.点(-1,2) 在5x+y-a<0表示的区域内,则a的范围 .
-5+2-a <0,得a>-3
x+2y≤8
例1. 4x≤16 求z=2x+3y的最值 4y≤12
B(2,3)
x≥0 ,y≥0
3
A
补(1)求z=x+4y的最值
特殊地P(x, y), O(0,0)
AB (x2 x1)2 ( y2 y1)2
k AB
y2 y1 x2 x1
OP x2 y2
kOP
y x
P(x0, y0 ), l : Ax By C 0 d Ax0 By0 C
k (x a)2 (y b)2 PA P(x, y), A(a,b)
解:z mx y化为y mx z
m 0
y C(1, 22)
直线y mx z与直线AC重合时 5
线段AC上的每一点都是最优解
斜率k m kAC
BA(1(1,,11))
k AC
3 22 5
5 1
7 20
0
m 7x 1 20
A(5,3)
x
A(x1, y1), B(x2 , y2 )
(x a)2 ( y b)2 PA2
A2 B2
yb xa
PA
x2 y2 OP
x2 y 2 OP 2
P(x, y),O(0,0)
y kOP
x
例2.
x,
y满足
解:z (x
x0 3x 4 y≥0
1) 2
y4
y2
求z x2 补:求z
1 PM 2
y2 x2
1
2x最小值 y 2最小值
x 0
1. x ,
y满足
x
2
y
3
求z=x-y的最值
2x y 3
解:z x y化为y x z,
与直线y x平行,纵截距为-z
B
直线过点 A时z值最大;
过点 B 时z值最小.
A
解方程组得点A(1,1),B(0,3) O
zmax 1 1 0, zmin 0 3 3 3 z 0
其中P(x, y), M (1,0)
由图知PM 2 1的最小值 AM 2 1
zmin 2 1 1
A P(x, y)
补:x2 y2 OP 2 其中P(x, y)
B
由图d知 O0 9P021的64最 小 54 (值 d(为x2dO到2 y直2线)mAMinB距O12离365)x 4 y 4
线性规划问题:
x=1 2x+y=z 可行域
线性目标函数在线性约 最优解 束条件下的最值 的问题
x-4y+3=0
A(5,2)
B(1,1)3x+5y-25=0
o1
x
理解记忆:三个转化
约束条件
转化
可行域
目标函数 Z=Ax+By
转化
一组平行线 yA x Z
ΒB
最优解 转化
四个步骤: 1.画:画可行域
寻找平行线的 最大(小) 纵截距
B (2)x,y满足xx
y 2
20 y40
解:
y x
y x
200yk3OP
0
求 y 最大值 x
C
其中P(x, y)
A
由图知kOA kOP kOC O
解2x
y3 2y
0 4
0得C
(1,
3) 2
(
y x
)
m
ax
kOC
3 2
小结:目标函数的常见类型
解方程组求交点A(1,1),B(0,3)
Zmax 1 1 0, Zmin 0 3 3
基本概念:
x 4 y 3
线性约束条件: 3x 5 y 25
x
1
目标函数,线性目标函数
z=2x+y
可行解: 满足约束条件的解(x,y) 即不等式组的解
可行域: 可行解组成的集合 (阴影部分)
最优解: 使目标函数取得最值y的可行解 A(5,2),B(1,1)
例:画出不等式组
y
x y 5 0 x y 0
x+y=0
x 3
5
表示的平面区域.
-5O
x
x-y+5=0 x=3
注:不等式组表示的平面区域是各不等式 所表示平面区域的公共部分。
1.点(-1,2)和(3,- 3)在直线3x+y-a=0两侧,则a的范围 . 解:点(-1,2)和(3,- 3)在直线3x+y-a=0的两侧,将这两
2.移:线性目标函数表示的一组平行线中,利用平移方
法找出与可行域公共点且纵截距最大或最小的直线
3. 求:求交点点的坐标,并求最优解
4.答:
一、目标函数
z Ax By即y A x 1 z表示一组平行线,
BB
其中 A 为斜率,1 z为纵截距,
B
B
当B>0时,
当直线向上平移时,所对应的截距随之增大;z 增大.
相关文档
最新文档