求线性目标函数的取值范围或最值

合集下载

线性规划的常见题型

线性规划的常见题型

线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。

求线性目标函数在线性约束条件下的最大值或最小值问题

求线性目标函数在线性约束条件下的最大值或最小值问题
fx+fy≤0 fx-fy≥0
的点(x,y)所形成区域的面积为( B. 2π D.π
)
A.4π C. 3π 2
共 57 页
10
解析:不等式 f(x)+ f(y)≤0 可转化为(x-1)2+ (y-1)2≤2,不 等式 f(x)- f(y)≥0 可转化为(x- y)(x+ y-2)≥0.于是点(x, y)所形成 1 的区域为两个 圆面,而圆面积是 2π. 4
共 57 页
13
解析:设对甲项目投资 x 万元,对乙项目投资 y 万元,获得 总利润为 z 万元,则 z= 0.4x+ 0.6y,且
x+ y≤60, x≥2y, 3 x≥5, y≥5,
作出不等式组表示的平面区域,
共 57 页
14

如图所示,作直线l0:0.4x+0.6y=0,并将l0向 上 平 移 , 过 点 时 z 取 得 最 大 值 , 即 zmax = 0.4×24+0.6×36=31.2(万元).故选B.

点评: (1)用图解法解决线性规划问题时,分析 题目的已知条件找出约束条件和目标函数是关 键,可先将题目中的量分类、列出表格,理清 头绪,然后列出不等式组(方程组)寻求约束条件, 并就题目所述找到目标函数. (2) 可行域可以是封闭的多边形,也可以是一侧 开放的无限大的平面区域. 如果可行域是一个多边形,那么一般在其顶点 处使目标函数取得最大值或最小值,最优解一 般就是多边形的某个顶点. 特别地,当表示线性目标函数的直线与可行域 5 共 57 页 的某条边平行时 (k = ki) ,其最优解可能有无数
共 57 页
15

答案:B
x+y≥0, 5. (全国卷Ⅰ) 若 x 、 y 满足约束条件x-y+3≥0, 0≤x≤3,

灵活建构线性规划模型彰显数学思想方法魅力

灵活建构线性规划模型彰显数学思想方法魅力
C C
边 同除以 c 得5 — 3 ≤ ≤4 一a ,令 x = , y =
C C C C

数 y = 、 / r s i n ( e + } ) , r ∈ 【 、 / , m ] , 0 ∈ R 的 值
域和 区间[ 2 m 一 2 , 2 m 一 1 1 存在公共元素 。 解答时主要
‘ m
/ 2 m - 2  ̄ m
பைடு நூலகம்
- 2 4 - - < m -  ̄ 2 + V
的试题可 以促使 我们 在高三复习过程 中注重学生 对这些数学思想方法的体验和认识 , 培养学生在面
综上得 i n 的取值范围是 : 【 , 2 + 、 / 】 。
评析 : 首先要搞清楚当 i 1 3 取不同值时集合 A表
集合 A由 1 T I 取值不同表示不同的点集。 由 I n= m z 解
得m - 0 或 。
式 函数等知识综合 , 注重知识应用 的综合性 、 交汇 性、 灵活 陛和创造性 , 命制出了一些注重能力考查的 新颖题 目, 体现对数学能力不同层次的要求 , 有利于 “ 能力立意” 的命题指导思想 , 可 以引导我们 日常教 学, 促使我们搞好高中数学教学和备考复习。
条平行线之 间的带型区域 ,但其位置不定 ;集合 A
所构成区域是否存在、形状如何都与 I T I 取值有关 , 千丝万缕 的联系 、 不确定 因素之多致使 问题错综 复
杂 。考生要在紧张的高考中顺利完成本题 , 不仅要
{ ( r , 、 / ≤ r < - m } , A f q B #  ̄ C = > q r E 【 、 / , m ] , 0 ∈ R 使 得 2 m 一
L 二 J

线性目标函数的最值

线性目标函数的最值

线性目标函数的最值
在线性规划中,我们通常会遇到线性目标函数的最值问题。

线性目标函数是指由线性项组成的目标函数,其中每个变量的系数都是常数。

最值问题要求找出使目标函数取得最大值或最小值的变量取值。

在解决线性目标函数的最值问题时,我们可以使用多种方法。

其中一种常用的方法是图形法。

首先,我们将目标函数表示为一个以变量为自变量的直线方程。

然后,我们将所有约束条件表示为线性不等式,并将它们绘制在一个二维坐标系中。

通过观察约束条件和目标函数在图中的关系,我们可以确定目标函数取得最大值或最小值的范围。

另一种解决线性目标函数最值问题的常用方法是单纯形法。

这是一种基于可行解空间的迭代算法,通过不断迭代改善当前解的目标函数值,直到找到最优解。

单纯形法利用了线性规划解的几何特性,通过在可行解空间中移动,逐步接近最优解。

当线性目标函数的变量较多或约束条件较复杂时,我们还可以使用线性规划软件来求解最值问题。

这些软件能够自动解决包含数百个变量和约束条件的线性规划问题,并给出最优解。

线性目标函数的最值问题在实际中有着广泛的应用。

例如,在生产计划中,我们需要确定如何安排资源以最大化利润或最小化成本。

在运输领域,我们需要确定如何最优地分配货物以最小化运输成本。

在金融领域,我们需要确定如何最优地分配投资以最大化收益。

总之,线性目标函数的最值问题是线性规划中的核心问题之一。

通过图形法、单纯形法或线性规划软件,我们可以解决这类问题,并得出使目标函数取得最大值或最小值的变量取值。

这些方法在实际中有广泛的应用,能够帮助我们进行有效的决策和资源分配。

线性规划最值问题

线性规划最值问题

线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。

在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。

线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。

求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。

2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。

3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。

4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。

线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。

- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。

- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。

总结线性规划最值问题是一种在实际应用中常见的问题求解方法。

通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。

该方法可以应用于多个领域,帮助优化决策和资源分配。

高考文数一轮复习经典教案(带详解)第七章 第2节:线性规划

高考文数一轮复习经典教案(带详解)第七章 第2节:线性规划

第2节二元一次不等式(组)与简单的线性规划问题【最新考纲】 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【高考会这样考】 1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围);2.考查约束条件、目标函数中的参变量的取值范围;3.利用线性规划方法设计解决实际问题的最优方案.要点梳理1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.线性规划的有关概念[友情提示]1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是zb . 答案 (1)× (2)√ (3)√ (4)×2.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0)B .(-1,1)C .(-1,3)D .(2,-3)解析 把各点的坐标代入可得(-1,3)不适合,故选C. 答案 C3.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B. 答案 B4.设x ,y 满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析不等式组⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0表示的平面区域如图所示.由z =3x -2y 得y =32x -z 2,当直线y =32x -z2过图中点A 时,纵截距最大,此时z 取最小值.由⎩⎨⎧2x +y =-1,x +2y =1解得点A 坐标为(-1,1),此时z =3×(-1)-2×1=-5.答案 -55.若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x -2≤0,x +y -2≥0,则z =yx的最大值为________.解析 作出不等式组表示的平面区域,如图所示阴影部分,z =y x =y -0x -0,表示区域内的点与原点连线的斜率,易知z max =k OA ,由⎩⎨⎧x -y +1=0,x +y -2=0,得A ⎝⎛⎭⎫12,32,k OA =3212=3,∴z max =3.答案 3题型分类 考点突破考点一 二元一次不等式(组)表示的平面区域【例1】 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的()(2)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C.43D .3解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎨⎧x -2y +1≥0,x +y -3≤0或⎩⎨⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意.(2)如图,要使不等式组表示的平面区域为三角形,则-2m <2,则m >-1,由⎩⎨⎧x +y -2=0,x -y +2m =0,解得⎩⎨⎧x =1-m ,y =1+m ,即A (1-m ,1+m ). 由⎩⎨⎧x +2y -2=0,x -y +2m =0,解得⎩⎨⎧x =23-43m ,y =23+23m ,即B ⎝⎛⎭⎫23-43m ,23+23m ,所围成的区域为△ABC ,则S △ABC =S △ADC -S △BDC =12(2+2m )(1+m )-12(2+2m )·23(1+m )=13(1+m )2=43, 解得m =-3(舍去)或m =1.故选B. 答案 (1)C (2)B规律方法 1.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 2.求平面区域的面积:(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.【变式练习1】 若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎨⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.解析 作出不等式组与不等式表示的可行域如图阴影部分所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.答案 π24考点二 求目标函数的最值问题(多维探究) 命题角度1 求线性目标函数的最值【例2-1】设x ,y 满足约束条件⎩⎨⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为()A .0B .1C .2D .3解析 根据约束条件画出可行域,如图中阴影部分(含边界),则当目标函数z =x +y 经过A (3,0)时取得最大值,故z max =3+0=3,故选D.答案 D命题角度2 求非线性目标函数的最值【例2-2】 (1)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A .4B .9C .10D .12(2)已知实数x ,y 满足⎩⎨⎧y ≤x -1,x ≤3,x +5y ≥4,则xy 的最小值是________.解析 (1)作出不等式组所表示的平面区域,如图中阴影部分所示(包括边界),x 2+y 2表示平面区域内的点与原点的距离的平方.由图易知平面区域内的点A (3, -1)与原点的距离最大,所以x 2+y 2的最大值是10,故选C.(2)作出不等式组表示的平面区域,如图所示,又xy 表示平面区域内的点与原点连线所在直线的斜率的倒数.由图知,直线OA 的斜率最大,此时x y 取得最小值,所以⎝⎛⎭⎫x y min =1k OA =32.答案 (1)C (2)32命题角度3 求参数的值或范围【例2-3】 已知实数x ,y 满足:⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( ) A .1B .2C .4D .8解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,选B.答案 B规律方法 1.先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. 2.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.3.当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.【变式练习2】 (1)已知x ,y 满足约束条件⎩⎨⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x +2y 的最大值是()A .0B .2C .5D .6(2)若实数x ,y 满足⎩⎨⎧2x -y +2≥0,2x +y -6≤0,0≤y ≤3,且z =mx -y (m <2)的最小值为-52,则m 等于()A.54B .-56C .1D.13解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由⎩⎨⎧y =3,2x -y +2=0,解得A ⎝⎛⎭⎫12,3,∴-52=m2-3,解得m =1.答案 (1)C (2)C考点三 实际生活中的线性规划问题【例3】 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).答案 216 000规律方法 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.【变式练习3】 一个小型加工厂用一台机器生产甲、乙两种桶装饮料,生产一桶甲饮料需要白糖4千克,果汁18千克,用时3小时;生产一桶乙饮料需要白糖1千克,果汁15千克,用时1小时.现库存白糖10千克,果汁66千克,生产一桶甲饮料利润为200元,生产一桶乙饮料利润为100元,在使用该机器用时不超过9小时的条件下,生产甲、乙两种饮料利润之和的最大值为________.解析 设生产甲、乙两种饮料分别为x 桶、y 桶,利润为z 元,则得⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,3x +y ≤9,x ≥0,y ≥0.即⎩⎪⎨⎪⎧4x +y ≤10,6x +5y ≤22,3x +y ≤9,x ≥0,y ≥0.目标函数z =200x +100y .作出可行域(如图阴影部分所示),当直线z =200x +100y 经过可行域上点B 时,z 取得最大值,解方程组⎩⎨⎧4x +y =10,6x +5y =22,得点B 的坐标(2,2),故z max =200×2+100×2=600. 答案 600错误! 课后练习A 组 (时间:30分钟)一、选择题1.不等式组⎩⎨⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为()A .1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎨⎧y =-x +2,y =x -1,得y D=12,所以S △BCD =12×(x C -x B )×12=14.答案D2.若x ,y 满足⎩⎨⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为()A .1B .3C .5D .9解析 画出可行域,设z =x +2y ,则y =-12x +z 2,当直线y =-12x +z2过B (3,3)时,z 取得最大值9,故选D. 答案 D3.设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是()A .-15B .-9C .1D .9解析 作出不等式组表示的可行域,结合目标函数的几何意义可得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选A.答案 A4.设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是()A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析 画出不等式组表示的可行域(如图阴影部分所示),结合目标函数的几何意义可得函数在点A (0,3)处取得最小值z =0-3=-3,在点B (2,0)处取得最大值z =2-0=2.答案 B5.设变量x ,y 满足约束条件⎩⎨⎧x -y -1≤0,x +y ≥0,x +2y -4≥0,则z =x -2y 的最大值为()A .-12B .-1C .0D.32解析 作出可行域,如图阴影部分,作直线l 0:x -2y =0,平移直线l 0,可知经过点A 时,z =x -2y 取得最大值,由⎩⎨⎧x +2y -4=0,x -y -1=0,得A (2,1),所以z max =2-2×1=0, 故选C.答案 C6.若1≤log 2(x -y +1)≤2,|x -3|≤1,则x -2y 的最大值与最小值之和是( ) A .0B .-2C .2D .6解析 1≤log 2(x -y +1)≤2,|x -3|≤1即变量x ,y 满足约束条件⎩⎨⎧2≤x -y +1≤4,2≤x ≤4,即⎩⎨⎧x -y -3≤0,x -y -1≥0,2≤x ≤4,作出可行域(图略),可得x -2y 的最大值、最小值分别为4,-2,其和为2. 答案 C7.若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为()A.13B.23C .1D .2解析 若z =3x -y 的最大值为2,则此时目标函数为y =3x -2,直线y =3x -2与3x -2y +2=0和x +y =1分别交于A (2,4),B ⎝⎛⎭⎫34,14,mx -y =0经过其中一点,所以m =2或m =13,当m =13时,经检验不符合题意,故m =2,选D. 答案 D8.若变量x ,y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为()A.322B. 5C.92D .5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小.由⎩⎨⎧y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D. 答案 D 二、填空题9.若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析 画出可行域如图阴影部分所示. 由z =3x -4y ,得y =34x -z4,作出直线y =34x ,平移使之经过可行域,观察可知,当直线经过点A (1,1)处取最小值,故z min =3×1-4×1=-1.10.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x 上的一个动点,则OM →·ON →的最大值是________.解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A ⎝⎛⎭⎫12,12,B ⎝⎛⎭⎫12,32,C (1,1). 设z =OM →·ON →=2x +y ,当目标函数z =2x +y 过点C (1,1)时,z =2x +y 取得最大值3. 答案 311.(一题多解)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________(答案用区间表示).解析 法一 设2x -3y =a (x +y )+b (x -y ),则由待定系数法可得⎩⎨⎧a +b =2,a -b =-3,解得⎩⎨⎧a =-12,b =52,所以z =-12(x +y )+52(x -y ).又⎩⎨⎧-2<-12(x +y )<12,5<52(x -y )<152,所以两式相加可得z ∈(3,8). 法二 作出不等式组⎩⎨⎧-1<x +y <4,2<x -y <3表示的可行域,如图中阴影部分所示.平移直线2x -3y =0,当相应直线经过x -y =2与x +y =4的交点A (3,1)时,z取得最小值,z min =2×3-3×1=3;当相应直线经过x +y =-1与x -y =3的交点B (1,-2)时,z 取得最大值,z max =2×1+3×2=8.所以z ∈(3,8).12.x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 答案 2或-1B 组 (时间:15分钟)13.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元D .18万元解析 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎨⎧x +2y =8,3x +2y =12得A (2,3).则z max =3×2+4×3=18(万元). 答案 D14.已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是()A.⎣⎡⎦⎤53,5B .[0,5)C .[0,5]D.⎣⎡⎭⎫53,5解析 作出可行域如图所示:易求得A ⎝⎛⎭⎫2,32,B ⎝⎛⎭⎫13,23,C (2,-1),令u =2x -2y -1,则y =x -u +12,当直线y =x-u +12过点C (2,-1)时,u 有最大值5,过点B ⎝⎛⎭⎫13,23时,u 有最小值-53,因为可行域不包括x =2的边界,所以z =|2x -2y -1|的取值范围是[0,5).故选B. 答案 B15.已知变量x ,y 满足约束条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是________. 解析 画出x ,y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12. 答案 ⎝⎛⎭⎫12,+∞16.已知实数x ,y 满足⎩⎨⎧y ≤ln x ,x -2y -3≤0y +1≥0,,则z =y +1x 的取值范围为________.解析 作出不等式组对应的平面区域,如图阴影部分.z =y +1x 表示区域内的点(x ,y )与A (0,-1)连线的斜率k ,由图可知,k min =0,k max =k AP ,P 为切点,设P (x 0,ln x 0),k AP =1x 0,∴ln x 0+1x 0=1x 0,∴x 0=1,k AP =1,即z =y +1x 的取值范围为[0,1].答案 [0,1]。

线性规划求最值问题

线性规划求最值问题

(2)若z=2x-y,求z的最值.
Zmax 2 5 2 8,
x
Zmin 2 1 4.4 2.4.
y
(3)若z=x2+y2,求z的最值.
( x 2 y 2 )min 12 12 2, ( x y )max 52 22 29,
2 2
5
C
注意: 目标函数化为斜截式后, 分析斜率大小;z的系数符号。
x 0 1. x , y满足 x 2 y 3 2 x y 3
求z=x-y的最值
解:z x y化为y x z, 与直线y x平行,纵截距为-z
直线过点 A 时z值最大; 过点 B 时z值最小.
4 2 2 1 1 10
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1. y
C
x-4y+3=0
A B
1 x=1 5
3x+5y-25=0
O
x
x 4 y ≤ 3, 例1.已知x、y满足 3 x 5 y ≤ 25. x ≥ 1.
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

线性规划求最大值或最小值

线性规划求最大值或最小值

线性规划求最大值或最小值linprog2011-09-03 18:43:17| 分类:Matlab | 标签:最优值最优解最大值最小值linprog |字号大中小订阅函数格式:linprog(f,a,b,a1,b1,xstart,xend)f:求解最小函数的表达式系数矩阵是m*1的矩阵a:≤不等式条件约束矩阵其均为形式b:a对应不等式右边的常数项a1:=等式条件约束矩阵b1:a1对应不等式右边的常数项xstart:x的取值范围的最小值的系数矩阵为n*1的矩阵xend:x的取值范围的最大值的系数矩阵为n*1的矩阵函数说明:不存在的项填写[]即可函数功能:线性规划求最优值.例子1:求f=3*x1+6*x2+2*x3的最大值满足的条件是3*x1+4*x2+x3≤2x1+3*x2+2*x3≤1且x1、x2、x3均大于等于0Matlab求解如下a =[ 3 4 11 32 ]b =[ 21 ]f=[ -3-6-2 ]%这里为什么会是负数,因为Matlab求的是f的最小值,要求最大值则取要求系数的相反数即可. x=[ 00 ]linprog(f,a,b,[],[],x,[])%执行的matlab命令后输出的如下内容.注意这里的[]表示那一项不存在.当然最后那一个[]也可以不要即linprog(f,a,b,[],[],x)Optimization terminated.ans =0.40000.20000.0000%即x1=0.4,x2=0.2,x3=0为最优解.带回原式我可以知道f的最大值=3*0.4+6*0.2=2.4例子2:求f=-2*x1-3*x2-x3的最小值满足的条件是x1+x2+x3≤3x1+4*x2+7*x3+x4=9且x1、x2、x3、x4均大于等于0Matlab求解如下原题等价于求f=-2*x1-3*x2-x3+0*x4的最小值其条件等价于x1+x2+x3+0*x4≤3x1+4*x2+7*x3+x4=9则在Matlab输入如下内容a=[1 1 1 0]b=[3]a1=[1 4 7 1]b1=[9]x=[ 00]f=[ -2-3-10]linprog(f,a,b,a1,b1,x)%执行命令或者输入linprog(f,a,b,a1,b1,x,[])Optimization terminated.ans =1.00002.00000.00000.0000%说明x1=1,x2=2,x3=0,x4=0取得最小值说明:任何线性规划问题都可以转化为上面的问题求解.细节问题请Google线性规划标准形式1、当目标函数求最大值时,例如求f=a1*x1+a2*x2+……+an*xn的最大值时这个时候等价于求f=-a1*x1-a2*x2-……-an*xn的最小值2、当约束条件为a1*x1+a2*x2+……+an*xn≥b这种形式的时候其约束等价于a1*x1+a2*x2+……+an*xn-xnn=b即多了一个xnn(xnn≥0)变量3、当一个变量比如x1是无约束的变量时,其实等价于x1=x2-x3即把一个变量x1分解成2个变量x2与x3之差(x2、x3≥0)把是x1的地方替换为(x2-x3)即可求解线性规划问题:线性规划问题其中,f, x, b, beq, lb, ub为向量, A, Aeq为矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性(整数)规划问题
一.知识要点:
1.线性规划的基础概念
(1)线性约束条件
约束条件都是关于x, y的一次整式不等式.
(2)目标函数
待求最值(最大值或最小值)的函数.
(3)线性目标函数
目标函数是关于变量x, y的一次解析式(整式).
(4)线性规划
在线性约束条件下求线性目标函数的最大值或最小值的问题, 其中在限定变量为整数的时候, 对应的线性规划问题, 也称为整数规划问题.
(5)可行解
满足全部约束条件的解(x, y).
(6)可行域
全部可行解构成的集合称为线性规划问题的可行域.
(7)最优解
使目标函数取到最大值或最小值的可行解.
注意:
①线性约束条件即可用二元一次不等式表示, 也可以用二元一次方程表示.
②最优解如果存在(当然, 最优解有不存在的情况), 其个数并不一定是唯一的, 可能有多个最优解, 也可能存在无数个最优解.
③目标函数z ax by
=+取到最优解(最大或最小值)的点, 往往出现在可行域的顶点或边界上.
④对于整数规划问题(,
x y
ゥ), 最优解未必在边界或顶点处取
∈∈
得, 往往要在可行域的顶点或边界附近寻找.
⑤寻找最优解的前提是尽量准确画出可行域的草图, 从而有助于我们发现最优解.
二. 解题思路:
解决线性规划问题, 先要准确作出可行域, 且明白目标函数表示的几何意义, 通过数形结合找到目标函数取到最值时可行域的顶点(或边界上的点). 而对于整数规划问题, 则应该进一步验证解决, 边界点或顶点可能不在是最优点, 而是在它们的临近区域的整点.
三.求解步骤
①在平面直角坐标系中画出可行域(对于应用问题, 则要先正确写出
规划模型及满足的约束条件, 再画出可行域).
②结合目标函数的几何意义, 将目标函数变形写成直线的方程形式或写成一次函数的形式.
③确定最优点: 在可行域平行移动目标函数变形后的直线, 从而找到最优点.
④ 将最优点的坐标代入目标函数即可求出最大值或最小值.
四. 高考题演练
1. (新课标全国高考) 设x , y 满足约束条件1010,3x y x y x -+≥⎧⎪
+-≥⎨⎪≤⎩
则23z x y =-的
最小值是( ) 提示1 A. 7- B. 6- C. 5- D. 3-
2. (高考) 若变量x , y 满足约束条件210x y x y +≤⎧⎪
≥⎨⎪≥⎩
, 则2z x y =+的最大值和
最小值分别为( ). 提示2 A. 43和 B. 4和2 C. 3和2 D. 2和0 3. (高考) 某旅行社租用A 、B 两种型号的客车安排900名客人旅行, A 、
B 两种车辆的载客量分别为36人和60人, 租金分别为1600元/
辆和2400元/辆, 旅行社要求租车的总数不超过21辆, 且B 型车不多于A 型车7辆. 则租金最小为( ). 提示3 A. 31200元 B. 36000元 C. 36800元 D. 38400元 4. (高考) 若变量x , y
满足约束条件211y x
x y y ≤⎧⎪
+≤⎨⎪≥-⎩
, 则2x y +的最大值为
( ). 提示4 A. 52
- B. 0 C. 53
D.
52
5. (天津高考) 设变量,x y满足约束条件
360,
20,
30
x y
x y
y
+-≥


--≤

⎪-≤

则目标函数
2
z y x
=-的最小值为( ) 提示5
A. 7-
B. 4-
C.1
D. 2
6. (高考) 若点(x, y)位于曲线y x
=与2
y=所围成的封闭区域, 则2x y
-的最小值是( ). 提示6
A. 6-
B. 2-
C.0
D. 2
7. (高考) 若变量,x y满足约束条件
8,
24
,
x y
y x
x
y
+≤

⎪-≤




⎪≥

且目标函数5
z y x
=-的
最大值为a, 最小值为b, 则a b-的值是( ) 提示7
A. 48
B. 30
C.24
D. 16
参考答案:
提示1:不等式组表示的平面区域如图1中阴 影部分所示, 其顶点A , B , C 的面积可直接算 出, 待求面积为
1144
(4)1.2233
ABC S AC h =
⋅=⨯-⨯=V 图1
提示2:不等式组10,
10,10x y x ax y +-≥⎧⎪
-≤⎨⎪-+≥⎩
所围成的平面区域如图2中阴影部分所
示, 面积为2, 则12114352
AC AC a a or =⋅⇒=+=⇒=-其中-5舍
去.
图2 图3
提示3: 已知可求出,.3
OA OB π
〈〉=u u u r u u u r 可设(2,0),(1,3),(,),OA OB OP x y ===u u u r u u u r u u u r 则
1(22x x y λλμμ⎧=⎪+=⎧⎪⎪⇒⎨=⎪=⎪⎩
,
由12y y λμ+≤⇒-+≤ 可行域参考图3,
所求面积1
242
S =⨯⨯=
可行域由如下四个子区域拼接而成:

002y y
y y y y y ≥≥≥⇔≥⎨⎨⎪-+≤≤+⎩②
002y
y y y y y y ≥≥≤⇔≤⎨⎨⎪--≤⎪≥-⎪⎩

0233y
y y y y y y x ≤≤≥⇔≥⎨⎨⎪⎪++≤⎩⎪≤+⎪⎩

002y y y y y y y ≤≤≤⇔≤⎨⎨⎪⎪+-≤≥-⎩⎩
提示4:已知0,0,a b ≥≥且当0,
0,1x y x y ≥⎧⎪
≥⎨⎪+≤⎩
时, 恒有1ax by +≤⇒
当0110 1.x y by b b =⇒=⇒=≤⇒≤≤同理, 当0110 1.y x ax a a =⇒=⇒=≤⇒≤≤
不等式组
01
01
a
b
≤≤


≤≤

所围成的平面区域参考图4, 其面积为1.
图4 图5
提示5: 由不等式组直接作出平面区域见图5, 注意直线20
kx y
-+=过
定点(0, 2). 由平面区域面积为4, 可知122241 3.
2
k k or
⨯⨯+=⇒=-
其中-3舍去.
提示6:换元法
平面区域{}
(,)(,)
B x y x y x y A
=+-∈, 可令2,
2
m n
x
m x y
n x y m n
y
+

=

=+
⎧⎪

⎨⎨
=--
⎩⎪=
⎪⎩
再根据条件,
1
221
(,)00,
2
2
m n m n
m
m n
x y A m n
m n
m n
+-

+≤




+
⎪⎪
∈⇔≥⇔+≥
⎨⎨
⎪⎪-≥

-


⎪⎩
由此不等式组确定的平面区域即为{}
(,)(,)
B x y x y x y A
=+-∈确定的平面区域, 见图6, 其面积
为112 1.
2
⨯⨯=
图6 图7
提示7: 平面区域D见上图7阴影部分所示, 直线1
y kx
=+过定点(0, 1)根据平面几何知识可知, 若直线1
y kx
=+将区域D分成面积相等的两
部分, 则直线1
y kx
=+只需过AB的中点即可. 易求中点坐标
33 (,)
22
. 再
代入到直线1
y kx
=+, 可求
1
.
3 k=。

相关文档
最新文档