净水厂设计计算说明书
某县净水厂给水处理设计计算书

某县净水厂给水处理设计计算书县净水厂给水处理设计计算书1.项目背景和目的县净水厂给水处理设计的目的是为了解决该县居民饮水问题。
该县面临着水资源短缺和水质污染的双重挑战。
通过建设一座净水厂,可以有效地提高水质,保障居民的健康饮水需求。
2.设计参数(1)城市规模:县人口约30万人,预测未来15年内增长10%。
(3)水质要求:根据国家标准,出水水质需要符合饮用水标准。
3.工艺流程根据给水处理的工艺要求,设计采用以下流程:原水进水池→格栅→调节池→自流式砂滤池→混凝沉淀池→滤水池→消毒池→供水。
其中,原水经过格栅、调节池预处理后,进入砂滤池进行过滤。
滤后水进入混凝沉淀池,经过混凝沉淀后再进入滤水池,最后经消毒处理后供水。
4.工艺参数计算(4)滤水池:滤水池的水层深度一般为1~2.5m,本设计采用1.5m。
(5)混凝剂投加量:根据原水悬浮物浓度和水质要求,确定混凝剂投加量。
一般情况下,混凝剂投加量为铝盐的0.8~1.0 mg/L。
本设计按照0.9 mg/L来计算。
5.工艺图纸根据上述设计参数和工艺流程,绘制出净水厂给水处理流程图纸。
6.总结和展望通过对县净水厂给水处理的设计计算,我们可以得出合理的设施规模和工艺参数。
通过提供高效的净水处理流程,该县居民可以获得更干净、更健康的饮用水。
然而,未来水资源短缺和水质污染问题仍然存在,需要进一步加强水资源保护和管理工作。
以上是县净水厂给水处理设计计算书,设计过程中考虑到了城市规模、水质要求等因素,为解决该县的饮水问题提供了有力的支持。
希望该设计能够对相关领域的学生和专业人士有所帮助。
净水厂设计说明书

净水厂设计说明书班级:给水排水级1班姓名:学号:……大学市政与环境工程系20 年1月目录第一章总论第二章工艺流程的确定及论证(评价)第三章混凝剂投配设备的设计第四章.水厂管线设计第五章絮凝池设计第六章沉淀池设计第七章过滤工艺设计第八章清水池设计第九章吸水井设计第十章二泵站设计第十一章净水厂总体布置设计依据净水厂设计说明书第一章总论1.1.设计题目某市净水厂设计1.2.设计时间第七学期第十七,十八两周(12.24-01.06)1.3.设计任务水厂平面布置及高程布置1.4.原始资料(1)设计供水量为5000+13*1000=6.3万m 3 /d.(2)水厂所在地:长春地区(3)设计地面标高:13.00(4)水源为河水,河水受到污染,水质分析报告如下:编号指标单位分析结果1 浊度 NTU 最大800,平均1102 色度度 133 水温℃最高22,最低14 PH - 7.0-8.55 总硬度 mg/L(以CaCO3计) 3806 总大肠菌群 CFU/L 6507 细菌总数 CFU/mg 15008 耗氧量 mg/L 79 BOD5 mg/L 410 氨氮 mg/L 0.911 COD mg/L 1112 氯仿 mg/L 0.08第二章.工艺流程的确定及论证(评价)2.1 设计方案方案一KMno4 PAM助凝 Cl2原水→静态混合器→机械絮凝池→平流沉淀池→V型滤池→清水池混凝剂粉炭城市管网二泵站方案二KMno4 PAM助凝 Cl2原水→静态混合器→网格絮凝池→斜板沉淀池→普通快滤池→清水池混凝剂粉炭城市管网二泵站2.2. 各构筑物凝聚剂消毒剂选择依据及优点2.2.1 方案技术比较2.2.1.1 消毒剂水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。
氯: 消毒灭细菌,病毒效果好,而且原水水质PH=7,消毒效果更理想,在配水管网中有剩余消毒作用, 应用广泛,适用于极大多数净水厂。
20万吨净水厂设计计算说明书

目录一、总论 (2)1.设计任务及要求 (2)2.设计原始资料 (2)二、总体设计概况 (3)1、水厂规模 (3)2、总体设计 (3)2.1确定给水处理厂工艺流程 (3)2.2水厂工艺方案确定及技术比较 (3)三、给水单体构筑物设计计算 (5)(一)、混凝剂配制和投加 (5)(1)、设计参数 (5)(2)、溶液池设计及计算 (5)(二)、混合设备的设计 (6)(三)、反应设备的设计 (6)1、回转式隔板絮凝池 (6)2、平流沉淀池 (9)3、滤池 (12)4、进出水系统 (20)四、消毒 (21)五、其他设计 (21)1、清水池 (21)2、吸水井的设计 (24)3、二级泵房的设计 (24)4、辅助建筑物面积设计 (24)5、水厂管线 (24)6、道路及其它 (24)六、水厂总体布置 (25)参考文献 (25)一、总论1.设计任务及要求给水处理课程设计的目的,一方面在于培养学生的工程思想,另一方面在于学习给水处理工艺设计的基本方法。
具体表现为巩固与运用所学的理论知识,熟悉设计步骤与内容,培养分析问题和解决问题的能力。
2.设计的原始资料该城镇地处北京东部,是北京的一座重要的卫星城市,现有一座地下水源水厂和相应配套的供水系统。
近年来,由于人口的增多及工业发展,城镇规模不断扩大,现有的城市基础设施,特别是城市供水系统难以满足供水要求。
目前生活供水严重不足,大部分地区采用定时供水措施勉强维持,楼房二层无水,一些平房在高峰用水时也常发生停水现象,严重影响了市民的正常生活和工业生产发展,急需开发新水源以解决供水不足的问题。
(1)地理条件:地形平坦,稍向西倾斜,地势平均标高为22米(河岸边建有防洪大堤)(2)厂位置占地面积:水厂位置距河岸200米,占地面积充分。
(3)水文资料:河流年径流量3.76――14.82亿立方米,河流主流量靠近西岸。
取水点附近水位:五十年一遇洪水位:21.84米;百年一遇洪水位:23.50米;河流平常水位:15.80米;河低标高:10米。
净水厂设计计算说明书

净水厂设计计算说明书一、引言净水厂是指将海水、淡水或含有杂质的水进行过滤、净化处理,以获得符合饮用水及工业用水标准的设施。
本设计计算说明书旨在提供一个完整的净水厂的设计计算方案,确保净水厂的正常运行和满足水质要求。
二、设计要求1.处理水质要求:根据当地的水质标准,确定净水厂需要处理水的主要指标,并确保出水质量符合国家及相关标准;2.处理能力要求:根据预计的供水量,确定净水厂的处理能力,确保满足市场需求;3.设计方案要求:考虑经济性、可行性和可持续发展,确定合适的净水厂设计方案。
三、设计计算内容1.进水水质分析及处理方案进水水质分析是净水厂设计的重要基础工作。
通过对原水水质的分析,确定需要去除的污染物种类及其浓度,以便选择合适的处理工艺和设备。
-对原水水质进行逐项分析,包括悬浮物、溶解物、微生物、有机物和无机物等;-根据原水水质分析结果,确定合适的处理工艺,如预处理、混凝、沉淀、过滤和消毒等;-计算所需处理量,确定处理设备的规格和数量。
2.设备选型与计算净水厂的设备选型与计算是确保设备运行正常并满足水质要求的重要环节。
对每个处理工艺的设备进行选型与计算,并设计出合理的设备配置方案。
-根据处理工艺,选取适合的设备,如加药装置、混凝剂投加设备、过滤设备和消毒设备等;-根据处理工艺参数和运行条件,计算设备的规格,如滤料的直径、厚度和过滤速度等;-确定设备配置方案,进行设备布置图的设计。
3.过程设计与计算过程设计与计算是净水厂设计的核心内容之一,包括净水厂的流程设计、设备布置和运行参数计算等。
-确定净水厂的处理流程,包括原水处理、混凝、沉淀、过滤和消毒等;-进行净水厂的流量和压力计算,确定管道和泵站的规格和数量;-进行各处理工艺设备的运行参数计算,如沉淀池的泥泵流量、混凝剂用量和消毒剂用量等。
4.安全与环保设计净水厂的安全与环保设计是确保净水厂运行安全和环保的重要环节。
针对净水厂可能面临的危险和环境污染问题,进行相应的设计和措施。
净水厂课程设计计算说明书

净⽔⼚课程设计计算说明书城固县给⽔⼯程设计摘要本设计为城固县给⽔⼯程设计,⼯程设计规模为76923 m3/d。
净⽔⼯程的设计主要包括配⽔⼚的设计计算和净⽔⼚的设计计算。
净⽔⼚的设计包括净⽔⼚的位置选择、⽔处理⼯艺流程的确定、处理构筑物的设计计算以及⽔⼚的平⾯和⾼程布置。
通过技术经济⽐较,确定净⽔⼚的⼯艺流程选⽤⽅案:原⽔—→静态混合器—→⽹格絮凝池—→斜管沉淀池—→V型滤池—→消毒—→清⽔池—→⼆级泵站—→城市管⽹关键词:给⽔⼯程设计、⽔⼚⼯艺、V型滤池、城市管⽹。
设计说明书⼀设计⽔量第⼀节最⾼⽇⽤⽔量⼀、各项⽤⽔量设计给⽔⼯程⾸先要确定设计⽔量。
通常将设计⽤⽔量作为设计⽔量。
设计⽤⽔量是根据设计年限内⽤⽔单位数,⽤⽔定额和⽤⽔变化情况所预测的⽤户⽤⽔总量。
设计⽤⽔量包括下列⽤⽔:1、综合⽣活⽤⽔量Q1,包括居民⽣活⽤⽔量和公共建筑及设施⽤⽔;2、⼯业企业⽣产⽤⽔量Q2;3、浇洒道路和绿地⽤⽔量Q3;4、⼯业企业⼯作⼈员⽣活⽤⽔量Q4;5、未预见⽔量及管⽹漏失⽔量Q5;6、消防⽤⽔量Qx;各⽤⽔量计算结果如下:Q 1=3×104(m3/d) Q2=3×104(m3/d) Q3=3000(m3/d) Q4=6930(m3/d)Q5=6993(m3/d)最⾼⽇⽤⽔量Qd =Q1+Q2+Q3+Q4+Q5=76923 m3/d三净⽔⼚第⼀节混合1.溶液池分成2格,每格的有效容积为3.7 m3。
有效⾼度为1.2m,超⾼0.2m,每格实际尺⼨为1.8×1.8×1.4m,置于室内地⾯上。
2.溶解池分成2格,每格的容积为1.1 m3,有效⾼度为0.8m,超⾼0.2m,每格实际尺⼨为1.2×1.2×1.0m。
池底坡度采⽤2.5%,池底设排渣管。
3.溶解池搅拌设备采⽤中⼼固定式平浆板式搅拌机。
浆板直径400mm,浆板深度为0.7mm,质量100kg. 溶解池置于地下,池顶⾼出室内地⾯0.5m。
净水厂计算书

滤池计算一、已知条件:(1)、设计水量规模:Q=100000万立方米/日(分两个系统)100000立方米/日考虑水厂自用水量,滤池为8% 1.08设计水量为:108000立方米/日Q= 1.25立方米/秒 1.25立方米/秒(2)、设计滤速7米/时7米/时(3)、采用气、水冲洗(反冲洗历时)12分钟表面扫洗强度 1.5升/秒*平方米第一阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时2分钟2分钟第二阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时4分钟4分钟水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时4分钟4分钟第三阶段水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时6分钟6分钟(4)、冲洗周期12小时12小时二、设计计算1、滤池工作时间:滤池24小时连续工作,其有效工作时间为:T=24-t*2/60=23.6小时23.5小时2、滤池面积滤池总面积F=Q/(V*T)=656.5349544平方米656.535平方米滤池采用10格对称布置,单格面积:8格f'=82.0668693平方米82.0669平方米3、单池平面尺寸:L=12米B=7米84平方米4、校核强制滤速:V实际= 6.869951413米/小时一格反冲洗时V强制=7.851373043米/小时一格检修,一格反冲洗时:V强制=9.159935217米/小时5、滤池高度底部反冲洗室高度为750毫米0.75米滤板厚100毫米(混凝土)0.1米承托层厚度0.1米粒径0.9~1.3毫米 1.3米砂层上水深1200毫米 1.2米超高400毫米0.8米进水渠到滤池内的水头损失取0.35米滤池底到水面的高度 3.45米滤池总高度H=4.6米 4.6米6、配水系统配水系统采用小阻力配水系统(滤头),每平方米滤板配滤头55个共计36960个冲洗水通过滤头水头损失为0.23米。
滤板平面尺寸:L=790B=790予埋d=25mm ABS管7、洗砂排水槽单槽排水量q0=546升/秒0.546米3/秒洗砂排水槽顶距滤料顶的距离定位0.5m。
(完整版)直饮水净化装置工艺设计说明计算书:自来水,24吨每天,反渗透膜

一、用水量计算用水定额取3L/人.d,总用水人数3000人,取时变化系数Kh=2.5,用水时间T=10小时。
最大日用水量为:Qdmax=3×3000=9000L/d=9m3/d最大时用水量为:Qhmax=2.5×9/10=2.25m3/h二、设备选型计算1、制水量Qh净水站设计制水能力按最高日平均时流量考虑。
因Qh=9/10 m3/h=0.9 m3/h,净水站制水能力按1.0 m3/h设计。
2、水处理流程自来水→原水箱→原水泵→砂滤罐→炭滤罐→软水器→精滤器→↑回水高压泵→一级反渗透→高压泵→二级反渗透→臭氧混合塔→成品水箱→供水泵→稳压罐→用户。
3、设备选型计算假设反渗透装置的水回收率为50%,则前处理阶段净水设备设计净水能力应为2.0 m3/h。
(1)原水箱取调节时间T=1.5h,则水箱容积V=2×1.5=3.0 m选用不锈钢水箱一个,水箱尺寸为φ1400×H2000mm。
(2)原水泵水量Q2.0 m3/h,扬程H按砂滤罐所需进水压力及管路水损考虑,选择丹麦格兰富不锈钢立式多级离心泵CR2-30型一台,流量Q2.0 m3/h,扬程H30m,功率P0.37KW。
(3)砂滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
砂滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(4)炭滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
炭滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(5)软水器由于没有详细的水质资料,无法进行计算,根据经验选择OSMONICS型软水器一台(带多路阀),外形尺寸为φ350×H1650mm。
5万立方米净水厂设计计算书

第一章:设计原始资料一、地理条件:地形平坦,稍向西倾斜,地势平均标高22m (河岸边建有防洪大堤)。
二、水厂位置占地面积:水厂位置距离河岸200m占地面积充分。
三、水文资料:河流年径流量3.76 - 14.82亿立方米,河流主流量靠近西岸。
取水点附近水位:五十年一遇洪水位:21.84m;百年一遇洪水位:23.50m;河流平常水位:15.80m;河底标咼:10m四、气象资料及厂区地址条件:全年盛行风向:西北;全年雨量:平均63mm 冰冻最大深度1m厂区地基:上层为中、轻砂质粘土,其下为粉细沙,再下为中砂。
地基允许承载力:10- 12t/m2。
厂区地下水位埋深:3- 4m地震烈度位8 度。
五、水质资料:浊度:年平均68NTU最高达3000NTU pH值:7.4 —6.8 ;水温:4.5 —21.5 C;色度:年平均为11 —13度;臭味:土腥味;总硬度:123.35mg/L CaCO 溶解氧:年平均10.81 mg/L; Fe:年平均0.435 mg/L,最大为0.68 mg/L;大肠菌群:最大723800个/mL,最小为24600个/ mL细菌总数:最大2800个/ mL,最小140 个/ mL。
六、水质、水量及其水压的要求:设计水量:根据资料统计,目前在原地下水源继续供水的情况下,每天还需万立方米。
满足现行生活饮用水水质标准。
二级泵站扬程按50米考虑。
第二章:用水量的计算设计给水工程首先耍确定设计水量,通常将设计用水量作为设计水量。
设计用水量是根据设计年限内用水单位数、用水定额和用水变化情况所预测的用户日用水总量。
设计用水量包括下列用水:综合生活用水量Q i,包括居民生活用水量和公共建筑及设施用水;工业用水量Q2 ;浇洒道路和绿地用水量Q3 ;未预见水量及管网漏失量Q4。
本设计为日供水量为50000 m3/d,城镇水厂自用水量一般采用供水量的5%-10%本设计取7%,时变化系数K h取1.5。
1、最咼日用水量:Q d =q (1 + 7%) 50000 X 1.07 呀=53500 呀2、最咼时用水量:Q h= %=5350%肩% = 222"力式中K h取1.5,即时变化系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质工程学课程设计专业给水排水2班姓名张宁学号 09007023811 COD Mg/L 1112 氯仿Mg/L 0.08二、设计计算2.1水厂规模:根据资料,水厂日处理水量8.8万m3/d,考虑到水厂自用水量,要乘以安全系数K=1.05。
则净水处理构筑物总设计流量:Q=1.05 8.8=9.24万m3/d=8750m3/h=2.43 m3/s2.2总体设计2.2.1确定给水处理厂工艺流程根据水源水质和《生活饮用水卫生标准》(GB5749-2006)及《生活饮用水卫生规范》,根据设计的相关原始资料如水厂所在地区的气候情况、设计水量规模、原水水质和水文条件等因素,通过调查研究,参考相似水厂的设计运行经验,经技术经济比较确定采用地表水净化工艺:2.2.2处理构筑物及设备型式选择2.2.2.1取水构筑物1.取水构筑物位置选择取水构筑物位置的选择,应符合城市总体规划要求,从水源水质考虑,水质应该良好,取水构筑物应选择在水质良好的河段,一般设在河流的上游,从河床考虑,取水构筑物应设在凹岸,位置可选在顶冲点的上游或稍下游15~20m主流深槽且不影响航运处。
故本水厂取水构筑物设在A点。
2.取水构筑物的形式与构造根据资料所提供的条件,应选择岸边式取水构筑物采用合建式,水泵采用离心泵。
构造为钢混结构,采用筑岛沉井方法施工。
3.外形岸边取水构筑物平面形状采用矩形。
4.平面构造与计算进水间由隔墙分成进水室和吸水室,两室之间设平板格网。
在进水室外壁上设进水孔,进水孔上装闸板和格栅。
进水孔也采用矩形。
(1)进水孔(格栅)面积计算0120QF k k v =1bk b S=+ 式中0F ——进水孔或格栅的面积,2m ;Q ——进水孔设计流量,3m s /;0v ——进水孔设计流速,m /s ,当江河有冰絮时,采用0.2~0.6m /s ;无冰絮时采用0.4~1.0m /s 。
当取水量较小、江河水流速度较小,泥砂和漂浮物较多时,可取较小值。
反之,可取较大值;1k ——栅条引起的面积减小系数;b ——为栅条净距,mm ,一般采用30~120mm ,常用30~50; S ——为栅条厚度或直径,mm ,一般采用10mm ; 2k ——格栅阻塞系数,一般采用0.75。
由于最高洪水位与枯水位高差为4米,进水孔分上、下两层,设计时,按河流最枯水位计算下层进水孔面积,上层面积与下层相同。
该水厂处于长春地区,江河冬季有冰絮,而取水量为8.8万吨每天,江河的最大流速为2.1m /s ,取水量大、江河水流速度较大,漂浮物较少,故设计中取进水孔设计流速0v 为0.4m /s ;栅条采用圆钢,其直径10mm S =;取栅条净距b=50mm ,取格栅阻塞系数2=0.75k1500.8335010k ==+2217.94.0*75.0*833.0*8640088000*05.1m v k k Q F o o ===进水孔设4个,进水孔与泵房水泵配合工作,进水孔也需三用一备,每个进水孔面积209.7= 3.20m 33F f ==进水孔尺寸采用112000mm 1500mm B H ⨯=⨯格栅尺寸选用2130mm 1630mm B H ⨯=⨯(标准尺寸)实际进水孔面积'20 2.0 1.539.0m F =⨯⨯=通过格栅的水头损失一般采用0.05m~0.1m ,设计取0.1m 。
(2)格网尺寸计算为了便于格网清洗,选择旋转格网。
旋转格网的有效过水面积(即水面以下的格网面积)可按下式计算:21232QF K K K v ε=式中2F ——旋转格网有效过水面积,2m ;2v ——过网流速,一般采用0.7~1.0m /s2K ——格网阻塞系数,采用0.75;3K ——由于框架引起的面积减少系数,采用0.75;旋转格网在水下的深度,当为网外或网内双面进水时,可按下式计算:22FH R B=-式中H ——格网在水下部分的深度,m ; B ——格网宽度,m ;2F ——旋转格网有效过水面积,2m ;R ——格网下部弯曲半径,目前使用的标准滤网R 值为0.7m 。
当为直流进水时,可用B 代替上式中的2B 来计算H 。
水流通过旋转格网的水头损失一般采用0.15~0.30m 。
过网流速采用20.8m/s v =,网眼尺寸采用5⨯5mm ,网丝直径1d =mm 。
格网面积减少系数为:2212250.69()(51)b K b d ===++ 格网阻塞系数采用20.75K =,水流收缩系数采用0.8ε=。
旋转格网的有效过水面积为:78.98.0*8.0*75.0*75.0*69.0*8640088000*05.123212===V K K K Q F设置4个格网,每个格网需要的面积为 2.452m 。
进水部分尺寸为1117001500mm B H ⨯=⨯,面积为2.552m 。
旋转格网尺寸选用21301630mm B H ⨯=⨯(标准尺寸)。
水流通过旋转格网的水头损失一般采用0.15~0.30m 。
(3)平面布置进水间用隔墙分成4格,平面布置示意图见总平面。
进水间进水窗口设上下2层,每层设4个窗口。
进水孔上设平板闸板和平板格栅,两者共槽。
吸水间下层设平板格网,每格一个。
5.高程布置与计算下层进水孔上缘标高设在最枯水位减去冰盖厚度再减去0.2m 水层厚度即75.00-0.2=74.80m 。
下层进水孔下缘距河床地面不小于0.5m ,设计取0.7m 。
上层进水孔上缘在最高洪水位以下1.0m 。
浪高按0.4m 计,超高取0.5m ,则取水构筑物高程布置见高程图 6.起吊设备、排泥与启闭设备 7.防冰措施8.取水泵房设计 2.2.2.2混凝1.混凝剂投配设备的设计水质的混凝处理,是向水中加入混凝剂(或絮凝剂),通过混凝剂水解产物压缩胶体颗粒的扩散层,达到胶粒脱稳而相互聚结;或者通过混凝剂的水解和缩聚反应而形成的高聚物的强烈吸附架桥作用,使胶粒被吸附粘结。
混凝剂的投加分为干投法和湿投法两种,干投法指混凝剂为粉末固体直接投加,湿投法是将混凝剂配制成一定浓度溶液投加。
我国多采用后者,采用湿投法时,混凝处理工艺流程如图2所示。
原水投加搅拌搅拌水药剂V 型滤池栅条絮凝池栅条絮凝池分式流混隔合板槽分式流混隔合板槽投药管投药管溶液池溶液池溶解池溶解池出水本设计根据原水水质分析资料,确定合理的混凝剂品种及投药量。
参考分析相似水源有关水厂的经验数据 2.混合方式本设计采用水利混合,采用管式静态混合器进行混合,其优点是构造简单,无活动部件,安装方便,混合快速而均匀。
其设计要点:A 、混合速度快,药剂应在水中流造句裂纹懂得条件下投入,一般混合时间为10~20S ;B 、本设计采用一点连续投药;C 、混合设备里后备处理构筑物越近越好,尽可能与构筑物相连接。
3.投加量确定理论上我们应根据原水水质分析资料,用不同的药剂作混凝试验,并根据货源供应等条件,确定合理的混凝剂品种及投药量。
而在现实生活当中由于缺少必要的条件,可参考相似水源有关水厂的药剂投加资料。
分混合,才能有效提高药剂使用率,从而节约用药量,降低运行成本。
本例采用分流隔板式混合槽。
①通道孔洞断面f:由于中部隔板通道分两侧开设,所以每侧通道孔洞断2④末端隔板通道的宽度:m h f b 3.337.022.1333≈==π 首端隔板:①首端隔板通道孔洞的断面:2122.10.122.1m v Q f c ===单 ②首端隔板后水深:120.520.130.76c h H h m =+=+⨯=③首端隔板通道孔洞的净高度1h π(通道孔洞的淹没水深深取0.16m )110.160.760.160.6h h m π=-=-=④首端隔板通道孔洞的宽度:m h f b 03.26.022.1111≈==π ⑤首端隔板前水深:010.760.130.89c h h h m =+=+= 隔板间距: m B l 8422=⨯==混合时间 : s B v L T 336.0456.05=⨯===池内水头损失:m n d Q h 21.034.122.11184.01184.04.424.42≈⨯⨯==单 (8)絮凝池的设计经综合比较,选用回转式隔板絮凝池较合适。
回转式隔板絮凝池计算: 1)设计进水量:32100008750/24Q m h == 2)絮凝池总容积:60QTW =设计中T=20min38750202916.760W m =⨯=。
取W=2920m 3 3)絮凝池分池容积因为总容积为29203m ,故设置4个絮凝池,每个池子的容积为7303m ,取7503m 。
3)絮凝池长度: L HBW=式中L ——絮凝池长度,(m ) H ——絮凝池水深,(m ) B ——絮凝池池宽,(m )W ——总容积,(m 3)设计中取H=2.5m,B=25m,则750L 122.525m ==⨯4)各挡隔板间距 :3600i i Qa nv H=i a ——隔板间距,mQ ——设计水量(3m /h )i v ——第i 档廊道内流速,分别取10.5m /s v =,20.4m /s v =,30.3m /s v =,20.2m /s v =则第一档隔板间距1187500.486m 3600360040.5 2.5Q a nv H ===⨯⨯⨯,取1a =0.5m同理可得20.6m a =,30.8m a =,4 1.2m a =将上述所得的隔板间距值代入原公式中可得'10.486m /s v =,'20.405m /s v =,'30.304m /s v =,'40.203m /s v =5)絮凝池总长度: 隔板厚度0.1m ,隔板总共19道,则长度:L=L'+190.1=12.0+190.1=13.9m ⨯⨯6)水头损失计算:112i i i a H R a H =+式中i R ——第i 段廊道水力半径 i a ——第i 段廊道间距,(m )1H ——水深(m )161i i C R n=式中i C ——第i 段廊道内流速系数n ——池壁粗糙系数 i R ——第i 段廊道水力半径it v =式中it v ——第i 段廊道内转弯处水流速度(m/s )i v ——第i 档廊道内水流速度(m/s ) i a ——第i 段廊道间距,(m )+1i a ——第+1i 段廊道间距,(m )絮凝池为钢混结构,水泥砂浆抹面,粗糙系数n=0.013。
段数i m i l i R it v i v i C 2i C i h1 10 62.3 0.23 0.311 0.486 60.2 3624.0 0.082 2 12 134.8 0.27 0.243 0.405 61.8 3819.2 0.072 3 11 141.0 0.34 0.169 0.304 64.3 4134.2 0.035 4 462.80.480.116 0.20368.2 4645.8 0.007合计0.1960.2i h h m ==≈∑距近端一股为0.55m 。