相交线与平行线全章复习

合集下载

人教版七年级下数学第5章相交线与平行线复习巩固(含答案)

人教版七年级下数学第5章相交线与平行线复习巩固(含答案)

第五章相交线与平行线整章复习知识点1相交线1.下列图形中,∠1与∠2互为对顶角的是()A B C D2.如图,直线AB和CD相交所成的四个角中,∠1的邻补角是.3.如图,直线AB,CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.4.如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC 内,∠BOE=1∠EOC,∠DOE=72°,求∠AOF的度数.25.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.6.如图,我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对,….(1)10条直线交于一点,对顶角有对;(2)n(n≥2)条直线交于一点,对顶角有对.知识点2垂线1.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=150°,则∠3的度数为()A.30°B.40°C.50°D.60°2.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2和∠3的度数.3.如图,在△ABC中,过点C作CD⊥AB,垂足为D,则点C到直线AB 的距离是()A.线段CA的长B.线段CDC.线段AD的长D.线段CD的长4.如图是一条河,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.5.(1)如图①,过点P画AB的垂线;(2)如图②,过点P分别画OA,OB的垂线;(3)如图③,过点A画BC的垂线.知识点3同位角、内错角、同旁内角1.下列图形中,∠1和∠2不是同位角的是()A B C D2.如图,直线l1,l2被l3所截,则同位角共有()A.1对B.2对C.3对D.4对3.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角4.如图,直线DE与∠O的两边相交,则∠O的同位角是,∠8的同旁内角是.5.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?知识点4平行线1.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的有()A.1个B.2个C.3个D.4个2.下列说法中,正确的有(填序号).(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直. 3.四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为_________.4.如图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.5.如图,将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?知识点5平行线的判定1.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个2.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°3.如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB.(补全横线上及括号里的内容)证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°().又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB().(2)∵∠2+∠3=180°,∴∥( ).又∵EF∥AB(已证),∴∥().4.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.知识点6平行线的性质1.(2019新疆)如图,AB∥CD,∠A=50°,则∠1的度数是()A.40°B.50°C.130°D.150°2.(2019张家界)已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是.3.如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.4.如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?请说明理由.知识点7命题、定理、证明1.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.4.写出命题“平行于同一条直线的两条直线平行”的条件和结论.5.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.知识点8平移1.下面物体的运动情况可以看成平移的是()A.摆动的钟摆B.在笔直的公路上行驶的汽车C.随风摆动的旗帜D.汽车玻璃上雨刷的运动2.下列哪个图形是由左下图平移得到的()A B C D3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.124.如图,画出将△ABC向右平移6格得到的△A'B'C'.5.如图,△ABC沿BC方向平移到△DEF的位置,若EF=7 cm,CE=3 cm,求平移的距离.第五章 相交线与平行线知识点1 相交线 1.C 2.∠2和∠43.解:由对顶角相等得∠AOC=∠BOD=42°.∵OA 平分∠COE ,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°. 4.解:设∠BOE=x ,则∠AOF=∠EOC=2x.∵∠AOB 与∠BOC 互为邻补角,∴∠AOB=180°-3x. ∵OD 平分∠AOB ,∴∠DOB=12∠AOB=90°-32x. ∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°. ∴∠AOF=2x=72°.5.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.6.(1)90(2)n(n-1)知识点2垂线1.D2.解:由题意得∠3=∠1=30°(对顶角相等).∵AB⊥CD(已知),∴∠BOD=90°(垂直的定义),∴∠3+∠2=90°,即30°+∠2=90°,∴∠2=60°.3.D4.解:如图,沿CE铺设水管能让路线最短,因为垂线段最短.5.解:如图.知识点3同位角、内错角、同旁内角1.C2.D3.D4.∠5和∠2∠1和∠O5.解:∠1和∠2是直线EF,DC被直线AB所截形成的同位角,∠1和∠3是直线AB,CD被直线EF所截形成的同位角.知识点4平行线1.D2.(2)(4)3.a∥d4.解:(1)(2)如图.(3)l1与l2的夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.5.解:∵CD∥EF,EF∥AB,∴CD∥AB.知识点5平行线的判定1.C2.D3.(1)等式的性质等量代换内错角相等,两直线平行(2)CD EF同旁内角互补,两直线平行CD AB平行于同一条直线的两直线平行4.解:如图,过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.知识点6平行线的性质1.C2.48°3.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF.(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=1∠CDF=25°.2∵EF∥AB,∴∠DEF=∠CDE=25°.4.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.知识点7命题、定理、证明1.D2.D3.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是相等的角,那么它们的余角相等.4.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.5.解:(1)两条平行直线被第三条直线所截形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.知识点8平移1.B2.C3.C4.解:如图.5.解:观察图形可知,平移的距离可以看作线段CF的长.因为EF=7 cm,CE=3 cm,所以平移的距离CF=EF-EC=7-3=4(cm).。

新版七下数学第五章相交线与平行线复习题五套

新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。

初中数学相交线与平行线全章知识点归纳及典型题目练习(含答案)

初中数学相交线与平行线全章知识点归纳及典型题目练习(含答案)

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:____________________________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是____________,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆ABC ∆,AD BC ⊥AD BC ⊥于D ,E E 为AB AB 上一点,EF BC ⊥EF BC ⊥于F ,//DG BA //DG BA 交CA 于G .求证12∠=∠12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠=//EF AD ∴//EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

第五章相交线与平行线复习课件(共37张ppt)

第五章相交线与平行线复习课件(共37张ppt)

如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O' B 平行于а,则角
θ=__6_0__0度
分析 : 依题意有OA // ,O ' B // ,
а
B 且1 2,3 4,
O1 2
由OA // 得1 A 由O ' B //得4 ,5 2
2. 对顶角: (1)两条直线相交所构成的四个角中,
有公共顶点但没有公共边的两个角是对顶角。
如图(2). 1与2, 3与4是对顶角。
21
(1)
(2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。
3. 邻补角的性质: 同角的补角相等。
1与3互补,2与3互补
3 12
4
种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。 (2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。 它们与对顶角、邻补角一样,总是成对存在着的。
内错角相等,两直线平行。 同旁内角互补,两直线平行。 在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行;
• 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A
P.
A
D
.P

(完整版)相交线与平行线复习知识点总结

(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒D解析:D【分析】 如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】如图,过点C 作//CF AB ,//AB DE ,////AB DE CF ∴,,180BCF B DCF D ∴∠=∠∠+∠=︒,50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒,故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.在同一平面内,有3条直线a,b,c,其中直线a与直线b相交,直线a与直线c平行,那么b与c的位置关系是()A.平行B.相交C.平行或相交D.不能确定B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.8.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

新人教七年级数学下册_第五章_相交线与平行线_全章讲与练

新人教七年级数学下册_第五章_相交线与平行线_全章讲与练

第五章相交线与平行线第一节、知识梳理:相交线与平行线一、学习目标1.理解对顶角、邻补角的概念,掌握其性质,会用其性质进行有关推理和计算;2.掌握垂线、垂线段、点到直线的距离的概念;3.掌握“三线八角”的内容.二、学习重点与难点学习重点:1.邻补角、对顶角以及点到直线距离的概念;2.掌握两直线平行的三个判定方法.学习难点: 1.对顶角的性质、垂线性质;2.灵活运用平行线的判定方法来解题.三、知识概要1.要正确理解邻补角、对顶角的含义:(1)判断两个角是否是邻补角,关键要看这两个角的两边,其中一边是公共边,另外两边是互为反向延长线;(2)邻补角是成对的,是具有特殊位置关系的两个互补的角;(3)判断两个角是否是对顶角,看这两个角是不是有公共顶点且有相同的邻补角,只有符合这两个条件时,才能确定这两个角是对顶角.2.垂线、垂线段和点到直线的距离是三个不同的概念,不要混淆:(1)两条直线互相垂直是两条直线相交的特殊情况,特殊在交角都为直角,垂线是其中一条直线对另一条直线的称呼;(2)垂线是直线,垂线段是一条线段,是图形.(3)点到直线的距离是垂线段的长度,是一个数量,不能说成垂线段是距离.3.两条直线的位置关系,是在两条直线在“同一平面内”的前提下提出来的,它们的位置关系只有两种:一是相交(有一个公共点),二是平行(没有公共点):(1)识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;(2)判定两条直线平行时要正确判断出是什么角,什么关系,由此可以推出哪两条直线平行.四、知识链接1.本周相交线、平行线是以前学的直线的位置关系的延伸.2.通过内错角、同位角、同旁内角等角度的比较得到平行线.而由平行线又可得到下周的平行线性质.五、中考视点平行与相交线中的垂直是经常考的内容.一般考其基础知识,以填空选择为主.平行线的性质与平移一、学习目标1.掌握平行线的性质并会应用.2.理解命题并会判断.3.理解平移的定义并会应用平移的特征.二、知识概要1.平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2.两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.对于这个概念,应注意三点:(1)两条直线必须是平行的;(2)第三条直线同时垂直于它们;(3)距离是线段的长度,是个具体的数,而不是线段这个图形.3.关于命题判断一件事情的语句叫做命题.每个命题都是由条件和结论两部分组成的.4.平移的概念在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动就称做为平移. 5.平移的基本特征平移的基本特征是:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行且相等,对应角相等.三、重点难点学习重点:1.平行线的性质及其应用.2.平移的特征.学习难点:1.命题的判断.2.平移变换及其性质应用.四、知识链接平行线的性质与判定定理有互逆性,平移变换及性质是研究动态几何的基础内容之一.五、中考视点平行线的知识是每年必考的内容,在填空选择中经常直接考平行线的性质.在解答题中经常与其他知识联系,综合考查.平移知识也是考的比较多的内容,尤其是在做辅助线时经常用到.第二节、教材解读:理解“三线八角”当两条直线AB和CD被第三条直线EF所截(如图),可得到八个角.根据位置特征不同,把∠1和∠5、∠2和∠6、∠4和∠8、∠3和∠7这样的称作同位角;把∠4和∠6、∠3和∠5这样的称作内错角;把∠4和∠5、∠3和∠6这样的称作同旁内角.在数学中也常把与同位角、内错角、同旁内角相关的问题称作“三线八角”问题.1.所谓同位角也就是位置特征相同,如∠1和∠5同在“左上”(AB和CD左侧,EF上方);∠2和∠6同在“左下”(AB和CD左侧,EF下方);∠4和∠8同在“右上”(AB和CD右侧,EF上方);∠3和∠7同在“右下”(AB和CD右侧,EF下方).2.所谓内错角是指在两条被截直线之内,在第三条直线左右错开的位置的角,如∠4和∠6在AB和CD之内,而在EF左右两边错开的角;∠3和∠5在AB和CD之内,而在EF左右两边错开的角.3.所谓同旁内角是指在第三条直线同旁,而在两条被截直线之内的位置的角,如∠4和∠5同在EF 上边而在AB和CD之内;∠3和∠6同在EF 下边而在AB和CD之内.第三节、错解剖析【例1】填空:从直线外一点到这条直线的 ____,叫做点到直线的距离.错解:垂线段.【思考与分析】点到直线的距离是指垂线段的长度,它是一个数量而不是图形.错误的原因是概念不清.正解:垂线段的长度.【例2】判断正误:有公共端点且没有公共边的两个角是对顶角.错解:正确.【思考与分析】此题错在没有抓住对顶角概念的实质,出现了扩大概念实质和概念外延的错误,把一些不是对顶角的角看成了对顶角,如下图中∠1和∠2有公共顶点且没有公共边,但它们不是对顶角.错误的原因是概念不清.正解:如果一个角与另一个角有公共端点且两边分别是这个角的两边的反向延长线,那么这两个角叫对顶角.【例3】如图,若AB∥CD,CD∥EF,则AB∥EF.理由是什么?错解:等量代换.【思考与分析】上面的回答把相等和平行混为一谈,相等说的是两个量的大小关系,平行说的则是两条直线的位置关系,完全不是一码事,所以,平行线的传递性是不能用"等量代换"来表达的.错误的原因是位置关系和数量关系混淆正解:平行于同一条直线的两条直线平行.【例4】判断正误:同一平面内不相交的两条线是平行线.错解:正确.【思考与分析】平行线是讲同一平面内两条直线的位置关系.不相交的两条射线或线段有可能延长或反向延长后相交.错误的原因是没有分清“三线”的区别和联系.正解:同一平面内不相交的两条直线是平行线.【例5】判断正误:不相交的两条直线是平行线.错解:正确.【思考与分析】在同一平面内不相交的两条直线是平行线,但在空间里很容易找到不相交的两条直线,而且它们并不平行,错误的原因是思考不周.正解:在同一平面内不相交的两条直线是平行线.第四节、思维点拨【例1】已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,你能求出∠AOC的度数吗?【思考与分析】观察图形我们可知,∠AOE与∠BOE是邻补角,所以∠BOE的度数可求,又由OE是∠BOD的角平分线可求得∠BOD=2∠BOE,而∠AOC与∠BOD是对顶角,故∠AOC 可求.解:∵ AB是直线(已知),∴∠AOE与∠BOE 是邻补角(邻补角定义).∴∠AOE+∠BOE=180°(补角定义).又∠AOE=150°(已知),∴∠BOE=180°-∠AOE=180°-150°=30°(等式性质).∵ OE平分∠BOD(已知),∴∠BOD=2∠BOE(角平分线定义).即∠BOD=2×30°=60°.∵∠AOC与∠BOD是对顶角(由图可知),∴∠AOC=∠BOD(对顶角相等).∴∠AOC=60°.反思:在思考过程中抓住角平分线DE与各个角的关系是解题的关键.【例2】如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是().A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′思考与解: ∵OE⊥AB,∴∠AOE=90°.∵OF平分∠AOE,∵∠1与∠3是对顶角,∴∠1=∠3.∴B正确.∵∠AOD与∠1互为补角.∴C正确.∵∠1=15°30′,∴∠1的余角=90°-15°30′=74°30′.∴D不正确.故选D.【小结】我们在做这类选择题时,首先把题中条件与图形一一对应,然后看每个结论是否与条件冲突.【例3】已知,如图,直线AB、CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE的度数吗?【思考与分析】我们由AB⊥CD可知∠AOC=90°,因此,∠AOE与∠EOC 互余.又因为∠EOC与∠DOF是对顶角,于是∠EOC=32°,于是∠AOE可求.解法一:∵直线CD与EF交于O(已知),∴∠EOC=∠DOF (对顶角相等).∵∠DOF=32°(已知),∴∠EOC=32°(等量代换).∵AB、CD互相垂直(已知),∴∠AOC=90°(垂直定义).∴∠AOE+∠EOC=90°.∴∠AOE=90°-∠EOC=90°-32°=58°.解法二:∵直线AB、CD互相垂直(已知),∴∠BOD=90°(垂直定义).∴∠BOF+∠DOF=90°.∵∠DOF=32°(已知),∴∠BOF=90°-∠DOF=58°.∵直线AB与直线EF交于点O(已知),∴∠AOE=∠BOF(对顶角相等).∴∠AOE=58°.反思:第一种解法先用对顶角后用互余,第二种解法先用互余后用对顶角,我们在平时做题时也应该多想多做,多角度分析解决问题.【例4】如图3,直线AB与CD相交于点F,EF⊥CD,则∠AFE与∠DFB之间的关系是______.【思考与分析】我们由所给的条件EF⊥CD,得∠CFE=90°,也就是说∠AFE+∠AFC=90°,又根据对顶角相等,得∠AFC=∠DFB,所以∠AFE+∠DFB=90° .本题也可利用平角的定义来解,即由∠AFE+∠DFB+∠EFD=180°,又因为∠EFD=90°,所以∠AFE+∠DFB=90°.解:∠AFE与∠DFB互为余角(或∠AFE+∠DFB=90°).【小结】这类题目的特点是有条件而无结论,要从所给的条件出发,通过分析、比较、猜想,寻找多种解法和结论,再进行说理证明.这类题目具有较强的探索性,思维空间较大且灵活,突破了死记概念的传统模式.【例5】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例题】(1)如图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是°.(2)已知:如图2,直线AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE 的平分线相交于点P.你能说明∠P=90°吗?(3)如图3,已知AB∥CD,∠C=75°,∠A=25°,则∠E的度数为 .【思考与解】(1)解法一:由题意我们知BD∥AC.所以∠ABD+∠BAC=180°.所以∠CBD=180°-50°-90°=40°.解法二:由题意我们知∠C=90°-∠A=90°-50°=40°.又因为BD∥AC. 所以∠CBD=∠C=40°.(2)因为AB∥CD.所以根据平行线的性质得:∠BEF+∠EFD=180°.又因为EP、FP分别平分∠BEF和∠EFD.所以∠P=180°-(∠1+∠2)= 180°-90°=90°.(3)因为AB∥CD. 所以∠BFE=∠C=75°.所以∠AFE=180°-∠BFE= 180°-75°=105°.所以∠E=180°-∠A-∠AFE=180°-25°-105°=50°反思:我们在做这类题的时候,一定要想是不是这样做最简单,是不是只有这一种解法?【例6】如图1,如果∠B=∠1=∠2=50°,那么∠D= .【思考与分析】我们通过观察图形,由∠B=∠1=∠2=50°可得AB∥DC、AD∥BC,再利用其性质同旁内角互补可得∠D的度数.解:因为∠B=∠1,所以AB∥DC,所以∠B+∠BCD=180°,∠BCD=130°.又因为∠B=∠2,所以AD∥BC,所以∠BCD+∠D=180°,∠D=50°.反思:我们解题时用的是同旁内角互补.还可以利用∠D=∠1=∠B=50°.也可以利用∠D=∠2=∠B=50°.大家可以试一试.【例7】如图2,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3的余角与∠2互补,∠4=125°,则∠3= .思考与解:因为∠1与∠3互余,∠3的余角与∠2互补,所以∠1+∠2=180°.所以l1∥l2.所以∠3=∠5=180°-∠4=55°.反思:我们难以理解的是为什么∠1+∠2=180°?我们可由题意列式∠1+∠3=90°,90°-∠3+∠2=180°.两个式子相加可得∠1+∠2=180°.在解决有关平行问题的时候,有时需要添加必要的辅助线,而添加平行线作为辅助线,更是解决此类问题好的帮手.下面举几例说明.【例8】如图1所示,直线a∥b,∠ACF=50°,∠ABE=28°,求∠A的大小.【思考与分析】要求∠A的大小,关键是确定辅助线的位置.于是我们会想到过点A作AD∥b,这样利用平行线的知识即可求解.解:过点A作AD∥b,则∠DAC=∠ACF=50°.又因为a∥b,所以AD∥a.所以∠DAB=∠ABE=28°.所以∠BAC=∠DAC-∠DAB=50°-28°=22°,即∠A的大小是22°.反思:在解题时我们做AD∥b,那么是不是必须要做辅助线呢?我们继续思考:∠A在△ABG中,∠ABE也在△ABG中且等于28°,那么只要求出∠AGB的度数,就可求∠A的度数.【例9】如图2,AB∥CD,EO与FO相交于点O,试猜想∠AEO、∠EOF、∠CFO之间的关系,并说明理由.【思考与分析】由于∠BEO、∠EOF、∠DFO三个角的位置较散,设法通过辅助线使之相对集中,我们可以考虑AB∥CD,可以过点O作MN∥AB,这样即可找到三个角之间的关系了.由此猜想∠AEO+∠CFO+∠EOF=360°.解:过点O作MN∥AB.因为AB∥CD,所以CD∥MN.所以∠AEO+∠EOM=180°,∠MOF+∠CFO=180°.所以∠AEO+∠CFO+∠EOF=∠AEO+∠EOM+∠MOF+∠CFO=180°+180°=360°.反思:我们解这道题是用的两组同旁内角之和.其实我们还可以连结EF,正好把这三个角分成一组同旁内角和一个三角形的三个内角.由同旁内角和三角形内角和可得出同样的结论.【例10】如图3,已知AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.试探索β与2α的数量关系,并说明你的理由.【思考与分析】我们由已知条件AB∥ED可知α=∠A+∠E=180°,于是只需知道β=∠B+∠C+∠D的大小即可探索出β与2α的数量关系.此时可以过点C作CF∥AB,从而求出β=∠B+∠C+∠D=360°,即有β=2α.解:猜想β=2α.理由是:过C作CF∥AB,因为 AB∥ED,所以∠α=∠A+∠E=180°.又因为AB∥ED,所以CF∥DE,即(∠B+∠1)+(∠2+∠D)=360°.故β=2α.【小结】这道题的思路与我们做的上题是相同的,也可以连结BD来解.第五节、竞赛数学在竞赛试题中,平行和垂直是做为基础知识应用在一些综合性的题目之中,单独出题的情况很少,但当平行和垂直的性质与实际情况结合时,往往也会被做为新题型来考查.【例1】请说明在同一平面内三条直线的位置关系及交点个数.【思考与分析】本题有多种分类,如以两条直线的位置关系分类,再考虑第三条直线的位置;又如以三条直线交点的个数分类等.下面我们就第二种分类加以说明.解:(1)如图1,三条直线互相平行,此时交点个数为0;(2)如图2,三条直线相交于同一点,此时交点个数为1;(3)如图3,三条直线两两相交且不交于同一点,此时交点个数为3;(4)如图4,其中两条直线平行,都与第三条直线相交,此时交点个数为2.综上所述,平面内三条直线的交点个数为0或1或2或3个.(如果按第一种情况进行分类研究,又该如何呢?请大家思考一下.)反思:求解中(2)、(3)两种情况称为三条直线两两相交.当题目中图形不全或不确定时,我们一定要注意分类.【例2】(1)请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线相交,并简单说明画法.(2)能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交,如果能,请画出一例,如果不能,请简述理由.【思考与分析】“6条直线相交且任意3条都不共点”,要解决这个问题,我们可以首先画出两条相交直线,这样可以发现若不出现3条直线共点可以出现平行线.对于(2)中所求,可以根据(1)得到的结论先对其进行推理,不要盲目的画图.解:(1)在平面上任取一点A,过A作两直线m1与n1.在n1 上取两点B、C,在m1上取两点D、G.过B作m2∥m1,过C作m3∥m1,过D作n2∥n1,过G作n3∥n1,这时m2、m3、n2、n3交得E、F、H、I四点,如图所示.由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交.(2)在平面上不能画出没有3线共点的7条直线,使得其中每条直线都恰与另外3条直线相交.理由如下:假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又因没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点.根据直线去数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为因为这与交点个数应为整数矛盾.所以,满足题设条件的7条直线是画不出来的.反思:本题在说明理由时应用了假设法.利用假设推导出结果是否与题中条件冲突.这与我们以后要学的反证法相类似.【例3】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例4】有10条公路(假设公路是笔直的,并且可以无限延伸),无任何三条公路交于同一个岔口,现有31名交警,刚好满足每个岔口有且只有一名交警执勤,请你画出公路示意图.【思考与解】我们可以把公路想象成直线,岔口想象成交点,由警察的人数及题意可知,10条直线刚好有31个交点.根据前面所学知识,平面上的10条直线,若两两相交,最多出现45个交点,现在只要求出现31个交点,就要减去14个交点,这种情况下,通常采取两种办法:(1)多条直线共点;(2)出现平行线.根据题意,方法(1)不能实现,所以想到使用平行线.在某一方向上有5 条直线互相平行,则减少10个交点,若6条直线平行,则可减少15个交点,所以这个方向上最多可取5条平行线,这时还有4个点要去掉,换一个方向取3条平行线,即可再减少3个交点,这时还剩下2条直线与1个要减去的点,只须让其在第三个方向上互相平行即可,如图所示:【小结】本题考查我们对知识的综合应用能力,在做题时,要牢牢把握平行线的性质,与图形结合,从简单的图形推理找出问题的入手点.【例5】把正方形ABCD边AD平移得到EF,作出平移后的正方形能有几种作法?【思考与分析】据题意,平移是指正方形整体平移,只有一个.我们根据以前学过的作图方法和本周学的平移作图,作法有如下几个:作法1:过E作EF的垂线,截取EG=EF,过G点作EF的平行线,截取GH=EF(注意截取方向),连接FH就得到平移后的正方形.如图(1).作法2:过E、F分别作EF的垂线,截取EG=EF,FH=EF(注意截取方向),连接GH,就得到平移后的正方形.如图(1).作法3:过F作EF的垂线,截取FH=EF,过H点作EF的平行线,截取GH=EF(注意截取方向),连接EG就得到平移后的正方形.如图(1).作法4:过E作AC的平行线,过F作BD的平行线,截取EH=AC,FG=BD(注意截取方向).连接EG,GH,HF,就得到平移后的正方形.如图(2).作法5:连接EA,FD,过B点作EA的平行线,过C作FD的平行线.截取BG=EA,CH=FD (注意截取方向).如图(3).连接EG,GH,HF,就得到平移后的正方形.【小结】平移变换不改变图形的形状、大小和方向.连结对应点的线段平行且相等.要描述一个平移变换,必须指出平移的方向和移动的距离.【例6】电脑游戏上有一种俄罗斯方块的游戏,游戏规则:在所给各种各样的方块中,通过平移、旋转的方式,罗列方块使之排满每一横行,每排满一行,便消去一行,得100分,依次类推(本题特殊规定,只准平移),小方块在屏幕顶端居中出现(奇数列时居中偏左).现在电脑屏幕上显示(如图所示).(1)若按规定,想得分,甲方块需要怎样平移,才可能直接得分或为以后打下得分基础?乙方块呢?(2)若你把甲方块放到左侧,发现屏幕已暗示出丙方块为形状,在这种情况下,丙方块只需如何移动,便可得多少分?(注:屏幕上一共有10行10列)【思考与分析】第(1)题观察甲方块与底部方块的特点,我们可得出平移方式.第(2)题将丙方块通过平移嵌入空隙之中,即可得分.解:(1)甲方块可左移3个单位,下移7个单位放到屏幕左侧;乙方块需向右平移3个单位,下移8个单位,放到屏幕右侧.(可用其他平移方式)(2)丙方块下移7个单位,便可排满2行,得200分.【小结】解本题的关键是将各个方块通过平移嵌成一个长方形,需根据方块和现有图形选择合理的平移方式.【例7】如图1,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?【思考与分析】若P点在C、D之间运动时,我们只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C、D两点的外侧运动时(P点与点C、D不重合),则可以分为如图2和如图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD -∠PAC或∠APB=∠PAC-∠PBD.解:若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图1,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:(1)如图2,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.(2)如图3,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE,即∠APB =∠PAC-∠PBD.【小结】我们做这类题的时候可以发现:点的移动带动角的位置变化,角的位置变化决定了角之间的关系.因此我们可以利用分类思想来分析题意,解决多种情况的讨论.第六节、本章训练基础训练题一、选择题(每题5分,共35分)1.两条平行线被第三条直线所截,那么一组同位角的平分线的关系是().A.互相垂直B.互相平行C.相交但不垂直D.不能确定2.下列说法正确的是().A.相等的角是对顶角B.两直线平行,同位角相等C.同旁内角互补D.两直线平行,同位角互补3.如图1所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于().A.78°B.90°C.88°D.92°4.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④5.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是()A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°6.线段AB是由线段CD经过平移得到的,那么线段AC与BD的关系为().A.平行B.相交C.相等D.平行且相等7.如果两个角有一条边在同一条直线上,而另一条边互相平行,那么这两个角的关系是().A.相等B.互补C.相等或互补D.没有关系二、填空题(每题5分,共35分)8. a∥b,a∥c则_______∥_______,根据______.9.经过平移后的图形与原来图形的______.和______.分别相等,图形的______.和______.没有发生改变.10.在同一平面上,如果AB⊥EF,AC⊥EF,那么点C与直线AB的位置关系是______.11.把△ABC向右平移4cm得△A1B1C1,再把△A1B1C1向下平移3cm得△A2B2C2,若把△A2B2C2看成是由△ABC经一次平移得到的,请量一量,其平移的距离是______.cm.12.船的航向从正北方向依逆时针方向驶向西南方向,它转了_____度.13.已知梯形ABCD,AD∥BC,BC=6,AD=3,AB=4,CD=2,AB平移后到DE处,则△CDE的周长是_____14.如果△ABC经过平移后得到△DEF,若∠A=41°,∠C=32°,EF=3cm,则∠E=______,BC= ______ cm三、解答题(每题10分,共30分)15.如图,AC⊥AB,∠1=30°,∠B=60°,(1)你能确定AD与BC平行吗?(2)能确定AB平行于CD吗?16.如图,AD平分∠EAC,AD∥BC,你能确定∠B与∠C的数量关系吗?17.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.答案一、 1.B 2.B 3.C 4.A 5.D 6.D 7.C二、 8. b,c,平行于同一条直线的两条直线平行9. 对应角、对应边,形状、大小10. 在直线AB上11. 512. 13513. 914. 107°,3三、15.【思考与分析】通过观察图形并结合题中条件我们可以得到:∠ACB=180°-∠BAC -∠ABC=180°-90°-60°=30°.由此可得AD∥BC.但是由题中条件我们求不出∠D或者∠ACD,因此不能判定AB与CD是否平行.解:(1)因为∠BAC=90°,∠B=60°,且∠BAC+∠B+∠ACB=180°,所以∠ACB=180°-∠BAC-∠B=180°-90°-60°=30°.所以AD∥BC(内错角相等,两直线平行).(2)不能确定.因为求不出∠D或者∠ACD,找不到两直线平行的判定条件,所以AB与CD不一定平行.16.【解题思路】我们通过观察图形并结合题中条件可知,要想知道∠B与∠C的数量关系,就得利用AD∥BC,从而得到∠B=∠1,∠C=∠2.只要∠1=∠2,那么∠B=∠C.而题中给出了AD平分∠EAC,正好得到∠1=∠2!解:因为AD∥BC,所以∠B=∠1(两直线平行,同位角相等).所以∠C=∠2(两直线平行,内错角相等).又因为AD平分∠EAC,所以∠1=∠2.所以∠B=∠C.17.【思考与分析】经过仔细分析我们可知,题目要求∠A和∠D的度数,而条件只给出了∠A和∠C的关系.因此,分清∠A、∠C和∠D三者之间的关系是解题的关键.解:因为AB∥CD,所以∠A+∠D=180°.所以∠A=180°-∠D.因为AD∥BC,所以∠C+∠D=180°.所以∠C=180°-∠D.所以∠A=∠C.再由2∠A+3∠C=180°解得∠A=∠C=36°.所以∠D=144°.提高训练题一、填空题1. 直线l1,l2在同一平面内不相交,则它们的位置关系是.2. 若直线l1// l2,l2// l3,则 ____ // ____,其理由是.3. 若直线l1//l2,一条射线与l1有交点,那么这条射线与l2的位置关系是___________ .二、选择题1. 下列哪种情况,直线l1和l2不一定是平行线()A. l1和l2是不相交的两条直线B. l1和l2都平行于直线l3C. 在同一平面内l1和l2没有一个公共点D. 在同一平面内,l1⊥l3,l2⊥l32. 若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A. 40°B. 140°C. 40°或140°D. 不确定3. 下列说法正确的是()A.若两个角相等,则这两个角是对顶角B.若两个角是对顶角,则这两个角是相等C.若两个角不是对顶角,则这两个角不相等D.所有的对顶角相等三、解答题1. 如图,已知三角形ABC,分别过A,B,C三点作它们的对边BC,CA,AB的平行线.。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 掌握平行线的性质及判定方法。

3. 能够运用平行线的性质解决实际问题。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及判定方法。

4. 运用平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的特点。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用平行线的性质解决实际问题。

教学步骤:1. 引入相交线与平行线的概念,展示相关图片,让学生直观地感受。

3. 引导学生通过实际操作,发现并证明平行线的性质。

4. 讲解平行线的判定方法,让学生学会判断两条直线是否平行。

5. 利用例题,让学生运用平行线的性质解决实际问题。

教学评价:1. 课堂问答,检查学生对相交线与平行线概念的理解。

2. 课后作业,检验学生对平行线性质及判定方法的掌握。

第二章:相交线与平行线的性质探究教学目标:1. 掌握相交线与平行线的性质。

2. 学会运用相交线与平行线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 平行线的性质。

3. 运用相交线与平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的性质。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用相交线与平行线的性质解决实际问题。

教学步骤:1. 复习相交线与平行线的定义,引导学生回顾已学的性质。

2. 通过多媒体演示,让学生直观地感受相交线与平行线的性质。

4. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

5. 讲解运用相交线与平行线的性质解决实际问题的方法,引导学生学会运用。

教学评价:1. 课堂问答,检查学生对相交线与平行线性质的理解。

2. 课后作业,检验学生对相交线与平行线性质的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线全章复习 (答题时间:60分钟)一、选择题1. 如图所示,不能通过基本图形平移得到的是( )2. 如图所示,是同位角关系的是( ) A. ∠3和∠4 B. ∠1和∠4 C. ∠2和∠4 D. 不存在12343. 一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( ) A. 75° B. 105° C. 45° D. 135°4. 下列说法中,正确的是( ) A. 过点P 画线段AB 的垂线B. P 是直线AB 外一点,Q 是直线AB 上一点,连接PQ ,使PQ ⊥ABC. 过一点有且只有一条直线垂直于已知直线D. 过一点有且只有一条直线平行于已知直线5. 将已知点P 平移5cm 后得到点P’,满足条件的点P’构成的图形是( ) A. 一个点 B. 两个点 C. 一条5cm 长的线段 D. 一个半径为5cm 的圆6. 如图所示,∠AOB =180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠DOB =α,则与α的余角相等的角是( ) A. ∠COD B. ∠COE C. ∠DOA D. ∠COAABCDEα 7. 如图所示,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,则∠BCE 等于( ) A. 23°B. 16°C. 20°D. 26°ABC DEF 46°154°*8. 如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是( ) A. 两个点 B. 两个半径相等的圆 C. 两个点或两个半径相等的圆 D. 两个能够完全重合的多边形 *9. 有一条直的等宽纸带,按下图折叠时,纸带重叠部分中的∠α=( ) A. 60°B. 75°C. 50°D. 85°**10. 将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( ) A. 43°B. 47°C. 30°D. 60°二、填空题*11. 如图所示,把长方形纸条ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=__________。

AB CD**12. 如图所示,OE是∠BOC的一条三等分线,且∠BOE<∠COE,∠AOC=∠BOE+20°,则∠BOC=__________。

A BC E**13. 如图所示,直线AD、BE、CF相交于一点O,∠BOC的同位角有__________,∠OED的同旁内角有__________,∠ABO 的内错角有__________,由∠OED=∠BOC得_____∥_____,由∠OED=∠ABO得_____∥_____,由AB∥DE,CF∥DE可得AB_____CF。

A B CDEFO**14. 如图所示,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数是__________。

三、解答题15. 如图所示,甲、乙两只蚂蚁觅食后,都想早点回去向蚁王浦东汇报成绩,它们同时经过A处向洞口B处走,甲走的是红色路线,乙走的是蓝色路线,图中线段分别平行,如果它们爬行的速度相等,你能判断出甲、乙两只蚂蚁谁先回到洞中吗?AB16. 如图所示,∠1=∠2,∠D=90°,EF⊥CD.试说明∠3=∠B。

A BCD E F 123**17. 如图所示,(1)已知AB ∥CD ,BE ∥CF ,试说明∠1=∠2; (2)已知AB ∥CD ,∠1=∠2,试说明BE ∥CF ;(3)已知BE ∥CF ,∠1=12∠ABC ,∠2=12∠BCD ,试说明AB ∥CD 。

A BCD EF 1342**18. 如图所示,已知l 1∥l 2,MN 分别和直线l 1、l 2交于点A 、B ,ME 分别和直线l 1、l 2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合)。

(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系,请说明理由; (2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ之间有何数量关系(只须写出结论)。

l 1l 2A B CDENMPαβγ初一数学人教新课标版(2012教材)第五章全章复习同步练习参考答案1. D2. B 解析:同位角必须是在截线同旁,并且在两条被截直线的同一方向上,∠3和∠4在截线两旁,A 错误,∠2和∠4没有一条边在同一条直线上(无截线),所以不能为三种角中的一种,C 错误,∠1和∠4符合同位角的特征,故B 正确。

3. C 解析:根据两直线平行,内错角相等,A 点北偏东60°方向等于B 点南偏西60°方向,从B 点向南偏西15°方向到C 点,∠ABC 应等于这两个角的差,故C 正确。

4. C 解析:应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A 错误;P 是直线AB 外一点,Q 是直线AB 上一点,如果P 点不在过Q 点与AB 垂直的直线上,或Q 点不在过P 点与AB 垂直的直线上,连接PQ ,不可能有PQ ⊥AB ,故B 错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D 错误;只有C 是垂线的性质,故C 正确。

5. D 解析:此题并没有指明平移方向,故所构成的图形是一个半径为5cm 的圆。

6. B 解析:因为∠AOC +∠COB =180°,所以12∠AOC +12∠COB =90°,即∠COE +∠BOD =90°.所以∠COE =90°-∠BOD=90°-α. 7. C 解析:因为AB ∥CD ,∠ABC =46°,所以∠BCD =∠ABC =46°.因为EF ∥CD ,所以∠DCE +∠CEF =180°,所以∠DCE =180°-154°=26°,所以∠BCE =∠BCD -∠DCE =46°-26°=20°.8. C 解析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C .这里两个半径相等的圆,如果其中一个旋转了就不是平移,但仍能重合。

9. B 解析:由于纸带等宽,则AD ∥BC ,所以∠DAC =30°根据展开图可知∠DAC +2∠α=180°,所以∠α=75°.10. B 解析:过直角三角板的直角顶点作一条平行于直尺一边的平行线,根据对顶角相等和平行线的性质可得∠α+∠β=90°,所以∠β=90°-43°=47°. 11. 115° 解析:因为把长方形纸条ABCD 沿EF 对折后两部分重合,所以∠BFE =∠B’FE ,且∠BFE +∠B’FE +∠1=180°,所以∠BFE =12(180°-∠1)=12(180°-50°)=65°.又因为AD ∥BC ,所以∠AEF +∠BFE =180°,所以∠AEF =180°-∠BFE=180°-65°=115°.12. 120° 解析:因为∠AOC =∠BOE +20°,∠AOC +∠BOC =180°,所以∠BOE +20°=180°-∠BOC ,又因为∠BOE =13∠BOC ,所以13∠BOC +20°=180°-∠BOC ,解得∠BOC =120°。

13. ∠AFO 、∠OED ,∠EOD 、∠EOC 、∠OBC 、∠EDO 、∠EDC ,∠COB 、∠DEB 、∠DOB ,OC ,DE ,DE ,AB ,∥ 14. 20° 解析:过三角尺的∠1的顶点作直尺的一边的平行线,则∠5=180°-∠2=180°-50°=130°,∠4=∠3=180°-∠1-∠5=180°-30°-130°=20°。

15. 解:经过平移后,甲、乙两只蚂蚁所走的路程相同,而且它们爬行的速度相同,所以两只蚂蚁同时回到洞中。

16. 解:因为∠1=∠2,所以AD ∥BC (内错角相等,两直线平行)。

因为∠D =90°及EF ⊥CD ,所以AD ∥EF (同位角相等,两直线平行).所以BC ∥EF (平行公理),所以∠3=∠B (两直线平行,同位角相等)。

17. 解:(1)因为AB ∥CD (已知),所以∠ABC =∠BCD (两直线平行,内错角相等)。

即∠1+∠3=∠2+∠4.因为BE ∥CF (已知),所以∠3=∠4(两直线平行,内错角相等)。

所以∠1=∠2(等式的性质)。

(2)同(1)可得∠1+∠3=∠2+∠4,因为∠1=∠2(已知),所以∠3=∠4(等式的性质)。

所以BE ∥CF (内错角相等,两直线平行)。

(3)因为∠1=12∠ABC (已知),所以∠ABC =2∠1(等式的性质)。

又因为∠ABC =∠1+∠3,即2∠1=∠1+∠3,所以∠1=∠3(等式的性质),所以∠ABC =2∠3。

同理可得∠BCD =2∠4。

因为BE ∥CF (已知),所以∠3=∠4(两直线平行,内错角相等)。

所以∠ABC =∠BCD (等式的性质),所以AB ∥CD (内错角相等,两直线平行)。

18. 解:(1)如图1所示,过点P 作直线l 1的平行线,则它必与直线l 2平行,所以∠γ=∠α+∠β;(2)如图2所示,当点P 在射线AN 上时,∠γ=∠α-∠β;如图3所示,当点P 在线段BM 上时,∠γ=∠β-∠α;如图4所示,当点P 在线段BM 的延长线上时,∠γ=∠α-∠β。

l 1l 2A B CD ENMPαβγl 1l 2AB CDEN MPαβγ图1图2l 1l 2ABCDENMPαβγ图3l 1l 2AB CD ENMPαβγ图4。

相关文档
最新文档