蔗糖水解教案邱金恒

蔗糖水解教案邱金恒
蔗糖水解教案邱金恒

实验十三蔗糖水解速率常数的测定

一.实验目的及要求

1.了解旋光仪的简单结构原理和测定旋光物质旋光度的原理,正确掌握旋光仪的使用

方法。

2.利用旋光仪测定蔗糖水解作用的速率常数。

二.教学提问

1.预习提问

a.蔗糖水解反应是什么类型的?一级反应有什么特点?

b.为什么要以旋光度的测量来求解蔗糖水解反应速率方程式?

c.旋光仪的测量原理是什么?

2.实验中间启发性提问

a.在旋光度的测量中,为什么要对零点校正?为什么要用蒸馏水校正?不校正会影响实

验结果吗?

b.记录开始反应时间晚一些,是否影响速率常数的测定?

c.如何判断某一物质是左旋还是右旋?

d.配制蔗糖溶液时测量不够准确或实验所用蔗糖不纯时对实验有影响吗?

三.实验原理

1.蔗糖水解反应类型

如下所示: 设反应进行到t时刻,生成物的浓度为x.

C12H22O11 + H2O →C6H12O6 + C6H12O6

蔗糖果糖葡萄糖

t=0 a b 0 0

t=t a-x b-x x x

则有: dx/dt=k(a-x)(b-x) ……………(1) k---水解反应速率常数

K与反应温度以及作为催化剂的酸的种类和氢离子浓度有关。水在这里作为溶剂,其量远大于蔗糖,可看作常数(对100g,,20%的蔗糖水溶液而言,,含蔗糖为20/342=0.06mol/l,含水为80/18=4.4mol/l,由上式反应知道,当0.06mol/l的蔗糖全部水解后,水的含量仍有4.34mol/l,所以相对而言,水的量可看作不变).

故(1) 式可化为: dx/dt=k'(a-x) …………… (2) k'=k(b-x)

对(2)式进行积分可得: k' =2.303/t 2lg(a/a-x) (3)

因此,蔗糖水解反应属于一级反应,根据(3)式可知,如果能准确测得任意t时刻的生成物的浓度x,就可以求出水解速率常数k',但用化学方法很难准确测定x.

2.蔗糖水解速率常数k'与旋光度α的关系

蔗糖具有右旋光性,水解生成的葡萄糖为右旋性物质,果糖为左旋性物质,且它们的旋光能力各不相同,所以可以反应体系过程中旋光度的变化来度量反应的进程.

用旋光仪测得旋光度的大小与溶液中被测物质的旋光性质、溶液的浓度、溶剂性质以及光源波长、光源所经过的溶液厚度、测定时温度等因素有关,当除溶液的浓度以外的条件固定时,旋光度α与被测溶液的浓度呈直线关系:

α0=A反a(t=0蔗糖未转化时的旋光度)

α∞=A生a(t=∞蔗糖全部转化时的旋光度)

αt=A反(a-x)+ A生x(任意t 时刻蔗糖浓度为(a-x)时的旋光度)

整理以上的三式得:a/a-x=α

0-α

t

(4)

将(4)代入(3)式得: k' =2.303/t 2lg(α

0-α

t

)

即: lg(α

t -α

)=- k'2t/2.303 + lg(α

)

所以只要测定蔗糖水解反应过程中不同时间的旋光度α

t 以及水解反应完成后的α

,以

lg(α

t -α

) 对t 作图,,由直线斜率得到k'.如果在两个不同的温度T

1

、T

2

下测定,就可得

到对应的k1'、k2并进一步利用Arrhenius公式求出反应温度范围的平均活化能:

lnk

1/k

2

=△E/R(1/T

2

–1/T

1

)

由于任意t时刻的旋光度α可以由旋光仪快速(30s)读出,与化学方法相比,旋光法具有快速、准确的特点。

3.旋光仪的测量原理

(1)旋光仪的光学系统

123

S———光源, 实验所用的光源为钠黄光;

N1———起偏镜,将自然光变成具有一定方向性的光源;

N2———石英片,具有旋光性,用来形成三分视野;

P———旋光管,用来装待测溶液;

N3———检偏镜,上面附有刻度盘,只有当其透射面与N1的透射面平行,透过N1的光线才能完全透过N3

A———目镜

(2)旋光仪的测量原理

普通光源发出的光称为自然光,其光波在垂直于传播方向的一切方向上振动,如果我们借助于某种方法,从这种自然聚集体中挑选出只在平面内的方向上振动的光线,这种光线乘为偏振光,尼柯尔棱镜就是根据这种原理设计成的。

旋光仪的主体是两块尼柯尔棱镜,尼柯尔棱镜是将方解石晶体沿一对角面剖成两块直角棱镜,再用加拿大树脂沿剖面粘合起来,如下图所示:

当光线进入棱镜后,分解为两束相互垂直的平面偏振光,一束折射率为1.658的寻常光,一束折射率为1.468的非寻常光,这两束光线到达方解石与加拿大树脂粘合面上时,折射率为1.658的一束光线就被全反射到棱镜的底面上(因加拿大树脂的折射率为1.550)。若底面是黑色涂层,则折射率为1.658的寻常光将被吸收,折射率为1.486的非寻常光则通过树脂而不产生全反射现象,就获得了一束单一的平面偏振光。用于产生平面偏振光的棱镜称为起偏镜,从起偏镜出来的偏振光仅限于在一个平面上振动。假如再有另一个尼柯尔棱镜,其透射

面与起偏镜的透视面平行,则起偏镜出来的一束光线也必能通过第二个棱镜,第二个棱镜称为检偏镜。若起偏镜与检偏镜的透射面相互垂直,则由起偏镜出来的光线完全不能通过检偏镜。如果起偏镜和检偏镜的两个透射面的夹角(θ角)在0°~90°之间,则由起偏镜出来的光线部分透过检偏镜,如下图所示:

C

B 偏镜

E·s inθ

检偏镜

一束振幅为E的OA方向的平面偏振光,可以分解为互相垂直的两个分量,其振幅分别为Ecosθ和Esinθ,但只有与OB重合的具有振幅为Ecosθ的偏振光才能透过检偏镜,透过检偏镜的振幅为OB=Ecosθ,由于光的强度I正比于光的振幅的平方,因此: I=OB2=E2cosθ2=I

cosθ 2

式中I 为透过检偏镜的光强度;I0为透过起偏镜的光强度。当θ=0°时, Ecosθ=E,此时透过检偏镜的光最强。当θ=90°时,Ecosθ=0,此时没有光透过检偏镜,光最弱。旋光仪就是利用透光的强弱来测定旋光物质的旋光度的。

四.实验部分

1.实验所用仪器及药品

旋光仪及其附件一套,叉形反应管2只,恒温水槽及其附件一套, 100ml容量瓶1只,移液管25ml1只,烧杯100ml1只,洗耳球1只。

蔗糖(CR),盐酸1.8mol/l。

2.实验步骤

(1)实验准备工作

a. 打开电源,开启三个恒温水槽,分别设定为25℃,35℃和50℃,并开启搅

拌;

b.打开旋光仪,预热。

c.清洗叉形管和和烧杯,在烘箱里干燥。

d.称取20g蔗糖,配成100ml 20%的蔗糖水溶液。

(2)旋光仪的零点校正

在干净的旋光管里装入蒸馏水,测定其旋光度。

(3)待测物质旋光度的测定

a.用移液管吸取20%的蔗糖溶液25ml放入叉形管一侧,再用另一支移液管

吸取25ml1.8mol/l的HCl溶液放入叉形管的另一侧,将叉形管置于25℃恒

温水槽中恒温约10min后,摇动叉形管使溶液混合并即开始计时。

b.迅速用混合均匀的溶液荡洗旋光管2~3次后装满旋光管即将旋光管置于

恒温水槽中。剩余在叉形管里的溶液塞上塞子,放入50℃水浴中恒温。旋

光管在25℃恒温10min左右,迅速将其取出擦干并测定反应15min时的旋

光度,测后速将旋光管放回恒温水槽恒温。此后分别在相隔30、45、60、

90、120、150、180min测定。

c.改变测定温度为35℃,用同b的方法测定。测定时间间隔为5min,至旋

光度变为负值为止。

d.将在50℃水浴中恒温约2小时的混合液取出装管,分别在25℃、35℃下

恒温后测定其旋光度。

五.实验注意事项

1.熟练掌握旋光仪的读数方法,能快速准确的读数是本次实验的关键之一.教会学生读

数后,让他们练习一下,测定物质旋光度的第一个数据要检查,保证实验的顺利进行。

2.速率常数对温度的敏感性很大,一般温度每升高10℃速率常数就要增大到原来的4

倍,因此在实验中读数一定要迅速,控制读数时间在30s内。

3.本实验中蔗糖水解反应速率常数K与反应温度以及作为催化剂的酸的种类和氢离

子浓度有关,因此盐酸的浓度和体积一定要准。

4.正确使用叉形管很重要,实验中叉形管中的蔗糖和盐酸溶液一定要恒温到测定温度

下才能混合,因此应该避免提前混合。

5.往旋光管装入反应溶液要尽量装满,测定前除了擦干水还须赶气泡。(提问:为什

么?)

6.旋光管盖只要旋至不漏水即可,旋的过紧会挤压玻片,造成假旋光。

7.实验结束时应将旋光管洗干净,充上蒸馏水,以防酸对旋光管的腐蚀。

六.数据处理、图解以及结果要求

1.数据处理及图解要求

a.将时间t、旋光度[αt-α∞]、 lg(αt-α∞)数据列表。

b.以时间t为横坐标, lg(αt-α∞)为纵坐标作图,从斜率分别求出两温度时的k(T1)

和k(T

2),并求出两温度下的反应半衰期,以及由图外推求出t=0时的两个α,即α

c.将k(T1)、k(T2)和T1、T2代入Arrhenius公式求反应的平均活化能。

2.结果要求

a.[α]

D

298.2K=66.0±1°。

b.lg(α

t -α

)~t 图形线型关系良好。

c.k(298.2K)=(11±1)310-3min-1,k(308.2K)=(47±1)310-3min-1,E=108KJ/mol。

七. 实验数据处理,图解结果以及结论

1.原始数据记录

旋光管长l=20cm,旋光仪系统误差为0.6°.

a.T=298.8.2K

b.

2. 数据处理

依据实验数据作图如下:

l g (α0-α∞)

图1 25℃下lg(α0-α∞)~t 图

0.2

0.30.40.50.60.70.80.91.01.1l g (α0-α∞)

图2 35℃下lg(α0-α∞)~t 图

a. T 1=298.5K

取点(55,0.94),(65,0.89)得到: 0.94=55B+b

0.89=65B+b

由上两式得B =-0.005=-k 1/2.303 k 1=0.01152min -1 由图外推求得: lg(α0-α∞)=1.205 α0==11.58°; b. T 2=308.2K

取点(25,0.73),(36,0.49)得到:

0.73=25B +b

0.49=36B +b

由上两式得B =-0.0218=-k 2/2.303 k 2=0.05025min -1 由图外推求得: lg(α0-α∞)=1.265 α0=14.75°.

d. 298.2K 和308.2K 范围内的平均活化能

由 ln(0.01152/0.05025)=△E/8.31 2 (1/308.2 -1/298.2) 得 △E =113 kJ/mol

3. 实验结论

由所求得的不同温度下的蔗糖水解速率常数的值可以知道,在其他条件不变的情况下,温度对速率常数的影响很大,一般温度升高10℃,速率常数大约变为原来的4倍。

八. 思考题

1. 蔗糖水解速率常数与哪些因素有关?

答:蔗糖水解反应速率方程式是

dx/dt=k [C 12H 22O 11][H 2O][H +]n

= k ′[C 12H 22O 11]

当[H 2O]视为常数且酸的种类及浓度选定时,可视其为准一级反应。

故k ′与反应温度和酸催化剂的种类和浓度有关。

2. 在测量蔗糖水解反应速率常数时,选用长的旋光管好还是短的旋光管好? 答: 旋光度与比旋光度的转化关系如下:

α=[α]D t

2L 2C

实验中测定的旋光度的相对误差为 Δα/α,在其它条件不变的情况下,选用长的

旋光管,可以减小相对误差,所以用长的旋光管较好。 3. 如何根据蔗糖,葡萄糖和果糖的比旋光度数据计算α∞?

答: 根据反应: +

H 2O C 6H 12O 6

C 6H 12O 6

+

C 12H 22O 11

设[蔗糖]=C 0,则[果糖]=[葡萄糖]=C 0*180/342,即有

α∞=[α葡萄糖]D 202L 2[葡萄糖]+[α果糖]D 20

2L 2[果糖]

对于20%的蔗糖溶液,将L=20cm=2dm,[α葡萄糖]D 20=52.7°, [α果糖]D 20=-92°代入

上式可得: α∞=4.14°。

4. 试估计本实验的误差,怎样减少实验误差?

答: a. 盐酸作为催化剂,其浓度的大小会影响反应进行的速度.实验时准确量取

25ml,1.8mol/l 盐酸,在叉形管中尽量将蔗糖溶液与盐酸混合均匀,以减少

误差;

b. 反应温度对蔗糖水解速率有很大影响,测定旋光度时速度要快。

c. 测定α∞时引入误差。首先是难以确保反应真正进行完全,其次是在50℃水

浴中,可能有付反应发生或者产物变质。最后就是应将混合物冷却并在测

量温度下恒温后测定α∞。

d. 旋光仪长时间开启使用可能会引起光电系统的疲劳,引入系统误差。应避

免这种情况,在长时间的间隔中关掉。 e. 可以增加旋光管的长度,减小实验的相对误差。 f. 取点要合理,不能取时间太短或太长的点。

九. 教学讨论

1.蔗糖水解反应速率常数的测定实验是一个经典的物化实验,除了练习学生的基本实验技能,掌握旋光仪的正确使用方法以外,更要让他们学会一种科学实验的思维和实践方法。在物理化学实验中,测量与浓度相关的某个物理量以替代对浓度的测定,既准确又快速简便,这是物化实验的灵魂。

2.该实验时间较长,因此在讲解实验步骤和注意事项后,先安排同学进行实验,然后在恒温过程中讲解实验原理等内容。这样,老师和同学的时间都得到了充分利用,实验基本上可以在五小时左右完成。

3.如果在几个不同温度下测定,求出相应的k

Ti ,以lnk

Ti

~1/Ti作图,从斜率求出

的Ea会更加准确。这可作为提问和讨论的问题。

4.实验过程中,可让同学提出一些实验改进建议。如

a.可以考虑对旋光仪进行改装,装上恒温水浴,这样就大大减少测量误差了;

b.为了提高实验效率,可以考虑为每位同学准备两根旋光管。

蔗糖水解反应实验报告

浙江万里学院生物与环境学院 化学工程实验技术实验报告实验名称:蔗糖水解反应速率常数的测定

实验预习(30分) (1) 实验目的 1 ?根据物质的光学性质研究蔗糖水解反应,测定其反应率度常数 2?了解自动旋光仪的基本原理、掌握使用方法。 (2) 实验原理 蔗糖在水中水解成葡萄糖与果糖的反应为: C 12H2Q 1 + H 2O a C 6H12C 6 +C6H2Q 葡萄糖 果糖 为使水解反应加速,反应常常以 HO 为催化剂,故在酸性介质中进行。水解 反应中,水是大量的,反应达终点时,虽有部分水分子参加反应,但与溶质浓度 相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为: de kc dt (1) (2) 当c 2c 0时,t 可用切2平表示,即为反应的半衰期 上式说明一级反应的半衰期只决定于反应速度常数 k ,而与起始浓度无关,这是 一级反应的一个特点。 蔗糖及其水解产物均为旋光物质,当反应进行时,如以一束偏振光通过溶液, 则可观察到偏振面的转移。蔗糖是右旋的,水解的混合物中有左旋的,所以偏振 面将由右边旋向左边。偏振面的转移角度称之为旋光度,以 表示。因此可利用 体系在反应过程中旋光度的改变来量度反应的进程。溶液的旋光度与溶液中所含 旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。 为了比较各种物质的旋光能力。引入比旋光度 [] 这一概念,并以下式表 示: 蔗糖 式中:c 0为反应开始时蔗糖的浓度; c 为时间t 时蔗糖的浓度

[D ]=r^ (3) 式中:t 为实验时的温度;D 为所用光源的波长; 为旋光度;I 为液层厚度 (常以10cm 为单位); (3)式可写成: c 为浓度(常用100 mL 溶液中溶有m 克物质来表示), t a [a] D l m 100 ( 4) 或 a [a]D l c 由(5)式可以看出,当其他条件不变时,旋光度 即 a K 'c 式中:K '是与物质的旋光能力、溶液层厚度、溶剂性质、光源的波长、反 应时的温度等有关的常数。 20 0 蔗糖是右旋性物质(比旋光度[a] D 66.6 ),产物中葡萄糖也是右旋性物 20 0 20 0 质(比旋光度[a] D 52.5 ),果糖是左旋性物质(比旋光度 [a]D 91 .9) 因此当水解反应进行时, 右旋角不断减小,当反应终了时体系将经过零变成左旋。 因为上述蔗糖水解反应中,反应物与生成物都具有旋光性。旋光度与浓度成 正比,且溶液的旋光度为各组成旋光度之和(加和性)。若反应时间为 0、t 、 时溶液的旋光度为 a 0 、a t 、a 则由(6)式即可导出: C o K (a ° a ) (7) c K (a t a ) ( 8) 将(7)、( 7)式代入(2)式中可得: 将上式改写成: 由(10)式可以看出,如以 lg (a 。a )对t 作图可得一直线,由直线 的斜率即可求得反应速度常数 k 。 本实验就是用旋光仪测定 a t 、a 值,通过作图由截距可得到 a 。。 (5) a 与反应物浓度成正 比, 2.303 a 0 a lg - a t a (9) lg(a ° k 2.303 t lg(a ° a ) (10)

蔗糖水解反应 实验报告

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.测定蔗糖水解反应的速率常数和半衰期。 2.了解该反应的反应物浓度与旋光度之间的关系。 3.了解旋光仪的基本原理,幷掌握其正确的操作技术。 (2)实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应方程式为 C12H22O11 + H2O === C6H12O6 + C6H12O6 为使水解反应加速,反应常常以H+为催化剂,故在酸性介质中进行。由于在较稀的蔗糖溶液中,水是大量的,反应达到终点时,虽有部分水分子参加反应,但可认为其没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所有本反应可视为一级反应。该反应的速度方程为: -dt/dc=KC 积分后: ln(C0/C)=Kt 或㏑C=-k t+㏑C。式中,C。为反应开始时蔗糖的浓度;C为时间t时的蔗糖浓度,K为水

解反应的速率常数。

从上式中可以看出,在不同的时间测定反应物的浓度,并以㏑Ct对t作图,可得一条直线,由直线斜率即可求出反应速率常数K。然而反应是不断进行的,要快速分析出某一时刻反应物的浓度比较困难。但根据反应物蔗糖及生成物都具有旋光性,且他们的旋光性不同,可利用体系在反应过程中旋光度的改变来量度反应的进程。 旋光度与浓度呈正比,且溶液的旋光度为各组分的旋光度之和(加和性)。若以α0,αt,α∞分别为时间0,t,∞时溶液的旋光度,则可导出:C0∝(α0-α∞),Ct∝(αt-α∞) 所以可以得出: ㏑(α0-α∞)/(αt-α∞)=k t 即:㏑(αt-α∞)=-k t﹢㏑(α0-α∞) 上式中㏑(αt-α∞)对t作图,从所得直线的斜率即可求得反应速度常数K。 一级反应的半衰期则用下式求取: 2/1t=㏑2/k=0.693/k (3)简述实验所需测定参数及其测定方法: 1、温度设定与准备 (1)将旋光仪电源开启预热10min。 (2)将超级恒温槽的温度调节到25℃。 2、溶液配制与恒温 称取10g蔗糖于烧杯中,加蒸馏水溶解,移至50mL容量瓶定容至刻度,用移液管吸取25mL蔗糖溶液注入一锥形瓶中,将两个锥形瓶用

旋光法测定蔗糖转化反应的速率常数实验报告

旋光法测定蔗糖转化反应的速率常数 实验报告 院(系) 生化系 年级 10级 专业 化工 姓名 学号 课程名称 物化实验 实验日期 2012 年 9 月 9 日 实验地点 3栋 指导老师 一、实验目的: 1·测定蔗糖转化放映的速率常数k ,半衰期t1/2,和活化能Ea 。 2·了解反应的反应物溶度与旋光度之间的关系。 3·了解旋光仪的基本原理,掌握旋光仪的正确使用方法。 二、实验原理: 1、 蔗糖在水中转化成葡萄糖和果糖,器反应为: C 12H 22011+H 2O C 6H 12O 6+C 6H 12O 6 (蔗糖) (葡萄糖) (果糖) 这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反 应,速率方程式可表示为: ,积分后可得: 由此可知:在不同时间测定反应物的相对浓度,并以㏑c 对t 作图,可得一直线,由直线斜率即可求得反应速率常数 k 。 当c=时 T1/2=ln2/K 2、本实验中的反应物及产物均有旋光性,且旋光能力不同,在溶剂性质、溶液浓度、样品管长度及温度等条件均固定时,旋光度与反应物浓度呈线性关系,即: kc dt dc =-kt c c -=0 ln

。 反应时间 t=0,蔗糖尚未转化: ; 反应时间为 t ,蔗糖部分转化: ; 反应时间 t=∞,蔗糖全部转化: , 联立上述三式并代入积分式可得: 对t作图可得一直线,从直线斜率可得反应速率常数k 。 三、仪器与试剂: WZZ-2B 型旋光仪 1台 501超级恒温水浴 1台 烧杯100ml 2个 移液管(25ml ) 2只 蔗糖溶液 (分析纯)(100ml) Hcl 溶液(分析纯)(dm -3) 四、实验步骤: ①恒温准备: 1) 2 c βα=00c 反βα=)(生反c t -+=0c c ββα0c 生βα=∞) ln()ln(0∞∞-+-=-ααααkt t )ln(∞-ααt 以

蔗糖水解反应速率常数的测定实验报告记录

蔗糖水解反应速率常数的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

序号: 6 物理化学实验报告 姓名:××× 院系:化学化工学院 班级:××× 学号:××××××× 指导老师:××× 同组者:×××××××××××

实验项目名称:蔗糖水解反应速率常数的测定 一、实验目的 (1)根据物质的旋光性质研究蔗糖水解反应,测定其反应的速率常数和半衰期; (2)了解旋光仪的基本原理,掌握其使用方法。 二、实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应方程式为 C 12H 22O 11 + H 2O === C 6H 12O 6 + C 6H 12O 6 为使水解反应加速,反应常常以H+为催化剂,故在酸性介质中进行。由于在较稀的蔗糖溶液中,水是大量的,反应达到终点时,虽有部分水分子参加反应,但可认为其没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所有本反应可视为一级反应。该反应的速度方程为: -dt dc =KC 积分后: ln C C O =Kt 或 ㏑C=-k t+㏑C 。 式中,C 。为反应开始时蔗糖的浓度;C 为时间t 时的蔗糖浓度,K 为水解反应的速率常数。 从上式中可以看出,在不同的时间测定反应物的浓度,并以㏑C t 对t 作图,可得一条直线,由直线斜率即可求出反应速率常数K 。然而反应是不断进行的,要快速分析出某一时刻反应物的浓度比较困

难。但根据反应物蔗糖及生成物都具有旋光性,且他们的旋光性不同,可利用体系在反应过程中旋光度的改变来量度反应的进程。 旋光度与浓度呈正比,且溶液的旋光度为各组分的旋光度之和(加和性)。若以α0,αt,α∞分别为时间0,t,∞时溶液的旋光度,则可导出: C0∝(α0-α∞),C t∝(αt-α∞) 所以可以得出: ㏑(α0-α∞)/(αt-α∞)=k t 即:㏑(αt-α∞)=-k t﹢㏑(α0-α∞) 上式中㏑(αt-α∞)对t作图,从所得直线的斜率即可求得反应速度常数K。 一级反应的半衰期则用下式求取: t=㏑2/k=0.693/k 2/1 三、仪器和试剂 仪器:自动指示旋光仪一台;移液管(25 mL)2支;超级恒温槽1台;烧杯(150 mL)2个;恒温水浴锅1台;吸耳球1个;秒表1块;容量瓶(50mL)1个;锥形瓶(100 mL)2个; 试剂:蔗糖(AR);2 mol/L的盐酸溶液。 四、实验操作 1、温度设定与准备

蔗糖水解反应实验报告

蔗糖水解反应实验报告 一、实验目的 1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。 2、测定蔗糖水解反应的速率常数和半衰期。 3、了解旋光仪的基本原理,并掌握其正确的操作技术。 二、实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应为: C12H22O11 + H2OC6H12O6 + C6H12O6 (蔗糖) (葡萄糖) (果糖) 它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。因此蔗糖转化反应可看作为一级反应。 一级反应的速率方程可由下式表示: — 式中c为时间t时的反应物浓度,k为反应速率常数。 积分可得: Inc=-kt + Inc0 c0为反应开始时反应物浓度。 一级反应的半衰期为: t1/2= 从上式中我们不难看出,在不同时间测定反应物的相应浓度,是可以求出反应速率常数k的。然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。但是,蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。 测量物质旋光度所用的仪器称为旋光仪。溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。当其它条件均固定时,旋光度α与反应物浓度c呈线性关系,即 α=Kc 式中比例常数K与物质旋光能力,溶剂性质,样品管长度,温度等有关。

物质的旋光能力用比旋光度来度量,比旋光度用下式表示: 式中“20”表示实验时温度为20℃,D是指用纳灯光源D线的波长(即589毫微米),α为测得的旋光度,l为样品管长度(dm),c A为浓度(g/100mL)。 作为反应物的蔗糖是右旋性物质,其比旋光度=66.6°;生成物中葡萄糖也是右旋性物质,其比旋光度=52.5°,但果糖是左旋性物质,其比旋光度=-91.9°。由于生成物中果糖的左旋性比葡萄糖右旋性大,所以生成物呈左旋性质。因此随着反应的进行,体系的右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值α∞。 设最初系统的旋光度为 α0=K反c A,0(t=0,蔗糖尚未水 解)(1) 最终系统的旋光度为 α∞=K生c A,0(t=∞,蔗糖已完全水 解)(2) 当时间为t时,蔗糖浓度为c A,此时旋光度为αt αt= K反c A+ K生(c A,0-c A) (3) 联立(1)、(2)、(3)式可得: c A,0==K′(α0-α∞) (4) c A== K′(αt-α∞) (5) 将(4)、(5)两式代入速率方程即得: ln(αt-α∞)=-kt+ln(α0-α∞)我们以In(αt-α∞)对t作图可得一直线,从直线的斜率可求得反应速率常数k,进一步也可求算出t1/2。 三、仪器与试剂 1、仪器:旋光仪、秒表、恒温水浴一套、移液管(50ml)、磨口锥形瓶(100ml)、烧杯(100ml)、台秤、洗耳球。 2、药品:蔗糖(AR)、盐酸(3mol/L,AR)。 四、旋光仪原理 光路:起偏镜——石英条——样品管——检偏镜——刻度盘——望

蔗糖转化实验

实验2.7 蔗糖的转化 一级反应 一、实验目的 1.测定蔗糖在酸催化作用下水解反应速率常数、半衰期和活化能。 2.掌握旋光仪的基本原理和使用方法。 3.掌握一级反应的动力学特征。 二、基本原理 蔗糖在水中转化为葡萄糖与果糖,其反应方程式为: C12H22O11(蔗糖)+H2O = C6H12O6(葡萄糖)+ C6H12O6(果糖) 此反应是二级反应,在纯水中反应速率极慢,为使蔗糖水解反应加速,常以酸为催化剂。由于反应中水是大量的,可以近似认为整个反应过程中水的浓度是恒定的;而H+作为催化剂,其浓度也是固定的。因此,此反应可视为准一级反应,反应速率只与蔗糖浓度成正比。 根据反应动力学特征可知,测定反应的速率常数关键是在反应不同时间测定反应物的相应浓度。然而反应是在不断进行的,要快速分析出反应物的浓度是较困难的。但蔗糖及水解产物葡萄糖和果糖均为旋光性物质,而且它们的旋光能力不同,因此可以利用体系在反应过程中旋光度的变化来衡量反应的进程。溶液的旋光度与溶液中所含旋光物质的种类、浓度、样品管长度、光源波长及温度等因素有关。在其它条件固定时,旋光度α与反应物浓度有直线关系,即: α = KC(2.7-1) 式中的比例常数K与物质的旋光能力、溶液性质、溶液浓度、样品管长度和温度等均有关。 物质的旋光能力用比旋光度来表示。在蔗糖的水解反应中,反应物蔗糖和产物中的葡萄糖都是右旋性物质,其比旋光度分别为66.6°和52.5°,但产物中的果糖是左旋性物质,其比旋光度为-91.9°。由于溶液的旋光度为各组成的旋光度之和,因此随着水解反应的进行,反应体系的右旋角度不断减小,最后经过零点变成左旋。当反应开始时(t=0)、经过一段时间t,以及蔗糖水解完全时(t→∞)溶液的旋光度分别用α0,αt,α∞表示。则:

关于旋光法测定蔗糖转化反应的实验报告

关于旋光法测定蔗糖转化反应的实验报告 篇一:旋光法测定蔗糖转化反应的速率常数实验报告 旋光法测定蔗糖转化反应的速率常数实验报告 一、实验名称:旋光法测定蔗糖转化反应的速率常数二、实验目的 1、了解旋光仪的基本原理,掌握旋光仪的正确使用方法; 2、了解反应的反应物浓度与旋光度之间的关系; 3、测定蔗糖转化反应的速率常数。 三、实验原理 蔗糖在水中水解成葡萄糖的反应为: C12H22O11+H20→ C6H12O6+C6H12O6 蔗糖葡萄糖果糖 为使水解反应加速,反应常以H3O+为催化剂,故在酸性介质中进行水解反应中。在水大量存在的条件下,反应达终点时,虽有部分水分子参加反应,但与溶质浓度相比认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为: lnC=-kt+lnC0(1) 式中:C0为反应开始时蔗糖的浓度;C为t时间时的蔗糖的浓度。当C=0.5C0时,t可用t1/2表示,即为反应的半衰期。 t1/2=ln2/k

上式说明一级反应的半衰期只决定于反应速率常数k,而与起始无关,这是一级反应的一个特点。 本实验利用该反应不同物质蔗比旋光度不同,通过跟踪体系旋光度变化来指示lnC与t的关系。在蔗糖水解反应中设β1、 β2、β3分别为蔗糖、葡萄糖和果糖的旋光度与浓度的比例常数C12H22O11(蔗糖)+H20→ C6H12O6 (葡萄糖)+C6H12O6 (果糖) t=0C0β1 0 0 α= C0β1 t=t Cβ1 ( C -C0)β2 ( C -C0)β3αt=Cβ1+( C -C0)β2+ ( C -C0)β3 t=∞0β2C0 β2C0 α∞=β2C0+β2C0 由以上三式得: ln(αt-α∞)=-kt+ln(α0-α∞) 由上式可以看出,以ln(αt-α∞) 对t 作图可得一直线,由直线斜率即可求得反应速度常数k 。四、实验数据及处理: 1. 蔗糖浓度:0.3817 mol/L HCl浓度:2mol/L 2. 完成下表:=-1.913 表1 蔗糖转化反应旋光度的测定结果 五、作lnt~ t图,求出反应速率常数k及半衰期t1/2 求算过程: 由计算机作图可得斜率=-0.02 既测得反应速率常数k=0.02 t1/2 =ln2/k=34.66min 六、讨论思考: 1.在测量蔗糖转化速率常数的,选用长的旋光管好?还是短的旋光管好?答:选用较长的旋光管好。根据公式〔α〕=

蔗糖水解

lnC 0/C t =Kt ,该反应的半 四:实验步骤:1 2 3 4 5 6 蔗糖水解反应常数的测定实验 :实验目的:1 :了解旋光仪的基本原理,掌握其使用方法。 2 :根据物质的光学性质研究蔗糖水解反应,测定其反应速度常数。 :实验仪器:自动指示旋光仪 1台,25ml 移液管2只,超级恒温槽1台,150ml 烧杯2 个,恒温水浴1台,洗耳球1个,秒表1块,50ml 容量瓶1个,100ml 容量 瓶2个,蔗糖 AR 2mol/LHCI 溶液。 :实验原理:蔗糖在水中水解成葡萄糖和果糖的速率方程积分的 衰期与K 的关系为t 1/2= In2/K ,在其他条件不变时,旋光度与反应物的浓度 C 成正比即a =K C,经数学得 Cb= (a 0- a g ) /[K 蔗糖-(K 葡-K 果)],G = (a t - a g ) /[K 蔗糖-(K 葡-K 果)],将这两个式子代入 ln C °/C t =Kt 得ln (a 0- a t ) =-Kt+ln (a 0- a g ),以ln (a t - a g )对t 作图,可得一直线,由直线的斜 率可求得速 度常数 Ko 温度设定与准备。 溶液配制与恒温。 仪器零点校正。 a t 的测定。 a g 的测定。 其他温度下水解反应速率常数的测定。 五:思考题: 1:庶糖水解反应常数与那些因素有关? 答:对指定的反应,速率常数和温度和催化剂有关。 2 :为什么可以用蒸馏水来校正旋光仪的零点? 答:主要是因为蔗糖溶液以蒸馏水作溶剂, 这样就消除了溶剂对实验结果的影 响,且蒸馏水没有旋光性,其旋光度为零。 六:数据记录与处理: 通过外推法将和a t 时间t 求出a 0 X : t/min

蔗糖水解实验报告

蔗糖水解 一、实验目的 1、用旋光法测定蔗糖在酸存在下的水解速率常数。 2、掌握旋光仪的原理与使用方法。 二、实验原理 蔗糖水溶液在有氢离子存在时将发生水解反应: C12H22O11 (蔗糖)+H2O→C6H12O6 (葡萄糖)+ C6H12O6 (果糖) 蔗糖、葡萄糖、果糖都是旋光性物质,它们的比旋光度为: [α蔗]D=, [α葡]D=, [α果]D= 式中:表示在20℃用钠黄光作光源测得的比旋光度。正值表示右旋,负值表示左旋。由于蔗糖的水解是能进行到底的,并且果糖的左旋远大于葡萄糖的右旋性,因此在反应进程中,将逐渐从右旋变为左旋。当氢离子浓度一定,蔗糖溶液较稀时,蔗糖水解为假一级反应,其速率方程式可写成: (1) 式中:CA0——蔗糖初浓度;CA——反应t时刻蔗糖浓度。 当某物理量与反应物和产物浓度成正比,则可导出用物理量代替浓度的速率方程。 对本实验而言,以旋光度代入(1)式,得一级反应速度方程式:

(2) 以ln(α-α∞)/对t作图,直线斜率即为-k。 通常有两种方法测定α∞。一是将反应液放置48小时以上,让其反应完全后测;一是将反应液在50—60℃水浴中加热半小时以上再冷到实验温度测。前一种方法时间太长,而后一种方法容易产生副反应,使溶液颜色变黄。本实验采用Guggenheim法处理数据,可以不必测α∞。 把在t和t+△(△代表一定的时间间隔)测得的分别用αt 和αt+△表示,则有 (3) (4) (3)式—(4)式: 取对数: (5) 从(5)式可看出,只要△保持不变,右端第一项为常数,从ln(αt-αt+△) 对t作图所得直线的斜率即可求得k。△可选为半衰期的2-3倍,或反应接近完成的时间之半。本实验可取△=30min,每隔5min取一次读数。 仪器与试剂旋光仪全套;25ml容量瓶1个;25ml移液管1支;

物理化学实验报告:旋光法测定蔗糖转化反应的速率常数实验报告.docx

旋光法测定蔗糖转化反应的速率常数 一、目的要求 1、了解旋光仪的基本原理,掌握旋光仪的正确使用方法; 2、了解反应的反应物浓度与旋光度之间的关系; 3、测定蔗糖转化反应的速率常数和半衰期。 二、基本原理 蔗糖在水中水解成葡萄糖的反应为: C12H22O11(蔗糖)+H2O C6H12O6(葡萄糖)+C6H12O6(果糖) 这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反应,速率方程式可表示为: 式中C为时间t时的反应物浓度,k为反应速率常数。上式积分可得: C0为反应开始时反应物浓度。 当C=0.5C0时,可用t1/2表示,既为反应半衰期: t1/2 =ln2/k = 0.693/k 从可看出,在不同时间测定反应物的相应浓度,并以ln对t作图,可得一直线,由直线斜率既可得反应速率常数k。然而反应是在不断进行的,要快速分析出反应物的浓度的困难的。但蔗糖及其转化物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应的进程。 测量物质旋光度的仪器称为旋光仪。溶液的旋光度与溶液中所含物质的旋光

能力、溶液性质、溶液浓度、样品管长度及温度等均有关系。当其它条件固定时,旋光度α与反应物浓度C呈线形关系,即α = βC。 式中比例常数β与物质旋光能力、溶液性质、溶液浓度、样品管长度、温度等有关。 物质的旋光能力用比旋光度来度量,比旋光度用下式表示: [α] D 20=α×100 / l×C A (16—5) 式中[α] D 20右上角的“20”表示实验时温度为20℃,D是指用钠灯光源D线的波 长(即589nm),α为测得的旋光度( o),l为样品管长度(dm),C A为浓度( g/100mL )。 作为反应物的蔗糖是右旋性物质,其比旋光度[α] D 20= 66.6o;生成物中葡萄 糖也是右旋性物质,其比旋光度[α] D 20 = 52.5o,但果糖是左旋性物质,其比旋 光度[α] D 20= -91.9o。由于生成物中果糖的左旋性比葡萄糖右旋性大,所以生成物呈现左旋性质。因此随着反应进行,体系的右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值α∞。 设体系最初的旋光度为α0=β反C0 ( t=0,蔗糖尚未转化 ) 体系最终的旋光度为α∞=β生C0 ( t=∞,蔗糖已完全转化 ) 以上两式中β 反和β 生 分别为反应物与生成物的比例常数。 当时间为t时,蔗糖浓度为C,此时旋光度为αt,即 αt=β 反C + β 生 (C0– C) 由以上三式联立可解得: C0=(α0-α∞)/(β反-β生) = β′(α0-α∞) C=(αt-α∞)/( β反-β生) = β′(αt-α∞) 将以上两式代入即得: ln(αt-α∞)=-kt+ln(α0-α∞) 显然,以ln(α0-α∞)对t作图可得一直线,从直线斜率既可求得反应速率常数k。 三、仪器试剂 旋光仪移液管(25mL) 2支

关于旋光法测定蔗糖转化反应的实验报告

关于旋光法测定蔗糖转化反应的实验报告 蔗糖浓度:0.3817 完成下表:=-1.913 表1 蔗糖转化反应旋光度的测定结果 五、作lnt~ t图,求出反应速率常数k及半衰期t1/2 求算过程: 由计算机作图可得斜率=-0.02 既测得反应速率常数k=0.02 t1/2 =ln2/k=34.66min 六、讨论思考: 1.在测量蔗糖转化速率常数的,选用长的旋光管好?还是短的旋光管好?答:选用较长的旋光管好。根据公式〔α〕=α×1000/Lc,在其它条件不变情况下,L越长,α越大,则α的相对测量误差越小。 2.如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用

钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为 旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃ L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=骸2×10/100×=-3.94° 3.在旋光度的测量中,为什么要对零点进行校正可否用蒸馏水来进行 校正在本实验中若不进行校正,对结果是否有影响 答:若需要精确测量α的绝对值,则需要对仪器零点进行校正,因为仪器本身有一系统误差;水本身没有旋光性,故可用来校正仪器零点。本实验测定k不需要对α进行零点校正,因为αt,α∞是在同一台仪器上测量,而结果是以ln(αt-α∞)对t作图求得的。 4.记录反应开始的时间晚了一些,是否影响k值的测定为什么答:不会影响;因为蔗糖转化反应对蔗糖为一级反应,本实验是以ln(αt-α∞)对t作图求k,不需要α0的数值。 5.如何判断某一旋光物质是左旋还是右旋

蔗糖水解反应实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:蔗糖水解反应速率常数的测定

一、 实验预习(30分) (1) 实验目的 1.根据物质的光学性质研究蔗糖水解反应,测定其反应率度常数。 2.了解自动旋光仪的基本原理、掌握使用方法。 (2) 实验原理 蔗糖在水中水解成葡萄糖与果糖的反应为: C 12H 22O 11 + H 2O H C 6H 12O 6 +C 6H 12O 6 蔗糖 葡萄糖 果糖 为使水解反应加速,反应常常以H 3O +为催化剂,故在酸性介质中进行。水解反应中,水是大量的,反应达终点时,虽有部分水分子参加反应,但与溶质浓度相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为: kc dt dc =- (1) 或 c c t k 0lg 303.2= (2) 式中: c 0 为反应开始时蔗糖的浓度; c 为时间t 时蔗糖的浓度。 当021c c =时,t 可用k t 2ln 2/1=表示,即为反应的半衰期。 上式说明一级反应的半衰期只决定于反应速度常数 k ,而与起始浓度无关,这是一级反应的一个特点。 蔗糖及其水解产物均为旋光物质,当反应进行时,如以一束偏振光通过溶液,则可观察到偏振面的转移。蔗糖是右旋的,水解的混合物中有左旋的,所以偏振面将由右边旋向左边。偏振面的转移角度称之为旋光度,以α表示。因此可利用体系在反应过程中旋光度的改变来量度反应的进程。溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。 为了比较各种物质的旋光能力。引入比旋光度 ][α 这一概念,并以下式表示: ][t D ?=c l ?α (3) 式中:t 为实验时的温度;D 为所用光源的波长;α为旋光度;l 为液层厚度(常以10cm 为单位);c 为浓度(常用100 mL 溶液中溶有m 克物质来表示),

旋光法测定蔗糖转化反应的速率常数实验报告记录

旋光法测定蔗糖转化反应的速率常数实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

旋光法测定蔗糖转化反应的速率常数 实验报告 院(系) 生化系 年级 10级 专业 化工 姓名 学号 课程名称 物化实验 实验日期 2012 年 9 月 9 日 实验地点 3栋 指导老师 一、实验目的: 1·测定蔗糖转化放映的速率常数k ,半衰期t1/2,和活化能Ea 。 2·了解反应的反应物溶度与旋光度之间的关系。 3·了解旋光仪的基本原理,掌握旋光仪的正确使用方法。 二、实验原理: 1、 蔗糖在水中转化成葡萄糖和果糖,器反应为: C 12H 22011+H 2O C 6H 12O 6+C 6H 12O 6 (蔗糖) (葡萄糖) (果糖) 这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反应, 速率方程式可表示为: ,积分后可得: 由此可知:在不同时间测定反应物的相对浓度,并以㏑c 对t 作图,可得一直线,由直线斜率即可求得反应速率常数 k 。 当c=0.5c 0时 T1/2=ln2/K 2、本实验中的反应物及产物均有旋光性,且旋光能力不同,在溶剂性质、溶液浓度、样品管长度及温度等条件均固定时,旋光度与反应物浓度呈线性关系,即: kc dt dc =-kt c c -=0 ln

。 反应时间 t=0,蔗糖尚未转化: ; 反应时间为 t ,蔗糖部分转化: ; 反应时间 t=∞,蔗糖全部转化: , 联立上述三式并代入积分式可得: 对t作图可得一直线,从直线斜率可得反应速率常数k 。 三、仪器与试剂: WZZ-2B 型旋光仪 1台 501超级恒温水浴 1台 烧杯100ml 2个 移液管(25ml ) 2只 蔗糖溶液 (分析纯)(20.0g/100ml) Hcl 溶液(分析纯)(4.00mol/dm -3) 四、实验步骤: ①恒温准备: ②旋光仪调零: 1)、 2)、 5分钟稳定后 将4mol/L Hcl 和 蔗糖50ml 分别 调恒温水浴至45o c 开启旋调开关至 c βα=00c 反βα=)(生反c t -+=0c c ββα0c 生βα=∞) ln()ln(0∞∞-+-=-ααααkt t )ln(∞-ααt 以洗净 向管内装满蒸 用滤纸擦干打开光源,调节目镜聚焦,使视野清晰 再旋转检偏镜至能观察到三分视野均匀但较暗为止 记下检偏镜的旋光度,重复测量数次, 取其平均值即为零点 洗净样向管内装满蒸馏水,盖

蔗糖水解反应实验报告

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:蔗糖水解反应速率常数的测定

指导教师签字 批改日期 年 月 日 一、 实验预习(30分) (1) 实验目的 1.根据物质的光学性质研究蔗糖水解反应,测定其反应率度常数。 2.了解自动旋光仪的基本原理、掌握使用方法。 (2) 实验原理 蔗糖在水中水解成葡萄糖与果糖的反应为: C 12H 22O 11 + H 2O H C 6H 12O 6 +C 6H 12O 6 蔗糖 葡萄糖 果糖 为使水解反应加速,反应常常以H 3O +为催化剂,故在酸性介质中进行。水解反应中,水是大量的,反应达终点时,虽有部分水分子参加反应,但与溶质浓度相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为: kc dt dc =- (1) 或 c c t k 0 lg 303.2= (2) 式中: c 0 为反应开始时蔗糖的浓度; c 为时间t 时蔗糖的浓度。 当021c c =时,t 可用k t 2ln 2/1=表示,即为反应的半衰期。 上式说明一级反应的半衰期只决定于反应速度常数 k ,而与起始浓度无关,这是一级反应的一个特点。

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 蔗糖及其水解产物均为旋光物质,当反应进行时,如以一束偏振光通过溶液,则可观察到偏振面的转移。蔗糖是右旋的,水解的混合物中有左旋的,所以偏振面将由右边旋向左边。偏振面的转移角度称之为旋光度,以α表示。因此可利用体系在反应过程中旋光度的改变来量度反应的进程。溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。 为了比较各种物质的旋光能力。引入比旋光度 ][α 这一概念,并以下式表示: ][t D ?=c l ?α (3) 式中:t 为实验时的温度;D 为所用光源的波长;α为旋光度;l 为液层厚度(常以10cm 为单位);c 为浓度(常用100 mL 溶液中溶有m 克物质来表示),(3)式可写成: 100][m l a a t D ?= (4) 或 c l a a t D ?=][ (5) 由(5)式可以看出,当其他条件不变时,旋光度a 与反应物浓度成正比,即 c K a ' = (6) 式中:' K 是与物质的旋光能力、溶液层厚度、溶剂性质、光源的波长、反应时的温度等有关的常数。 蔗糖是右旋性物质(比旋光度0 206.66][=D a ),产物中葡萄糖也是右旋 性物质(比旋光度0205.52][=D a ),果糖是左旋性物质(比旋光度 0 209.91][-=D a )。因此当水解反应进行时,右旋角不断减小,当反应终了时 体系将经过零变成左旋。 因为上述蔗糖水解反应中,反应物与生成物都具有旋光性。旋光度与

蔗糖的转化实验报告详教学内容

蔗糖的转化 1319班 张柳君 201340176 【实验目的】 1. 测定蔗糖转化反应的速率常数和半衰期。 2. 了解旋光仪的构造、工作原理,掌握旋光仪的使用方法。 【实验原理】 蔗糖转化反应为: C 12H 22O 11 + H 2O → C 6H 12O 6 + C 6H 12O 6 蔗糖 葡萄糖 果糖 为使水解反应加速,常以酸为催化剂,故反应在酸性介质中进行。由于反应中水是大量的,可以认为整个反应中水的浓度基本是恒定的。而H +是催化剂,其浓度也是固定的。所以,此反应可视为准一级反应。其动力学方程为 kC dt dC =- (1) 式中,k 为反应速率常数;C 为时间t 时的反应物浓度。 将(1)式积分得: 0ln ln C kt C +-= (2) 式中,C 0为反应物的初始浓度。 当C =1/2C 0时,t 可用t 1/2表示,即为反应的半衰期。由(2)式可得: k k t 693.02ln 2/1== (3) 蔗糖及水解产物均为旋光性物质。但它们的旋光能力不同,故可以利用体系在反应过程中旋光度的变化来衡量反应的进程。溶液的旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源波长及温度等因素有关。 为了比较各种物质的旋光能力,引入比旋光度的概念。比旋光度可用下式表示: []lC t D α α= (4) 式中,t 为实验温度(℃);D 为光源波长;α为旋光度;l 为液层厚度(m);C 为浓度(kg·m -3)。

由(4)式可知,当其它条件不变时,旋光度α与浓度C 成正比。即: α=KC (5) 式中的K 是一个与物质旋光能力、液层厚度、溶剂性质、光源波长、温度等因素有关的常数。 在蔗糖的水解反应中,反应物蔗糖是右旋性物质,其比旋光度[α]20D =66.6°。产物中葡萄糖也是右旋性物质,其比旋光度[α]20D =52.5°;而产物中的果糖则是左旋性物质,其比旋光度[α]20D =-91.9°。因此,随着水解反应的进行,右旋角不断减小,最后经过零点变成左旋。旋光度与浓度成正比,并且溶液的旋光度为各组成的旋光度之和。若反应时间为0,t ,∞时溶液的旋光度分别用α0,αt ,α∞表示。则: α0=K 反C 0 (表示蔗糖未转化) (6) α∞=K 生C 0 (表示蔗糖已完全转化) (7) 式(6)、(7)中的K 反和K 生分别为对应反应物与产物之比例常数。 αt =K 反C +K 生(C 0-C ) (8) 由(6)、(7)、(8)三式联立可以解得: ()∞∞ -'=--=αααα000K K K C 生反 (9) ()∞∞ -'=--=ααααt t K K K C 生反 (10) 将(9)、(10)两式代入(2)式即得: ()()∞∞-+-=-αααα0ln ln kt t (11) 由(11)式可见,以ln(αt -α∞)对t 作图为一直线,由该直线的斜率即可求得反 应速率常数k 。进而可求得半衰期t 1/2。 根据阿累尼乌斯公式2 11212)(ln T RT T T E k k a -=,可求出蔗糖转化反应的活化能E a 。 【仪器试剂】 旋光仪1台;恒温旋光管1只;恒温槽1套;台称1台;停表1块;烧杯(100mL)1个;移液管(30mL)2只;带塞三角瓶(100mL)2只。

蔗糖转化反应动力学实验报告

蔗糖转化反应动力学 姓名 学号 班级 实验日期 1 实验目的 (1) 测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期。 (2) 学习旋光度测量方法及在化学反应动力学研究中的应用。 2 实验原理 蔗糖溶液在酸性介质中可水解生成葡萄糖和果糖。反应如下: ()() 果糖葡萄糖612661262112212O H C O H C O H O H C H +→++ 水解反应中,水是大量的,虽然有部分水分子参加了反应,但与溶质浓度的改变相比可以认为它的浓度是恒定的,而且氢离子是催化剂,其浓度也保持不变,故反应速率只与蔗糖浓度有关,可视为一级反应,其速率方程为:kc dt dc =- 积分上式得:kt c c =0 ln 反应的半衰期与反应速率常数的关系式为:k k t 693 .02ln 2 1== 由积分式不难看出:只要测得不同反应时刻对应的反应物浓度,就可以lnc 对c 作图得 到一条直线,由直线斜率求得反应速率常数。然而,反应是在不断进行,要快速分析出不同时刻反应物的浓度是困难的。在本实验中,蔗糖及其水解产物都具有旋光性,即能够通过它们的偏振光的偏振面旋转一定的角度(该角度称为旋光度,常以α 符号表示),来量度其浓度。蔗糖是右旋的,水解混合物是左旋的,所以随水解反应的进行,反应体系的旋光度会由右旋逐渐转变为左旋,因此可以利用体系在反应过程中旋光度的改变来量度反应的进程。 当其它条件不变时,旋光度与物质浓度成正比,即AC =α 蔗糖是右旋物质,产物中葡萄糖也是右旋物质,果糖是左旋物质。因此当水解反应进行时,右旋角不断减小,当反应终了时,体系将经过零变成左旋。 设0α、t α和 α∞分别表示反应在起始时刻、t 时刻和无限长时体系的旋光度。反应在相同条件下进行,旋光度与浓度成正比,而且溶液的旋光度为各组成旋光度之和。 由AC =α可导出 )(00∞-=ααK C )(0∞-=ααt K C 由0 ln c kt c =可导出 0 ln t kt αααα∞∞-=- 以0ln()αα∞-对时间t 作图可得一条直线,由直线的斜率即可求得反应速率常数。

旋光法测定蔗糖转化反应的速率常数-实验报告

(六)旋光法测定蔗糖转化反应的速率常数 一、目的要求 1、测定蔗糖转化反应的速率常数和半衰期。 2、了解该反应的反应物浓度与旋光度之间的关系。 3、了解旋光仪的基本原理,掌握旋光仪的正确使用方法。 二、仪器与试剂 WZZ-2B自动旋光仪,样品管,秒表,恒温槽,量筒,锥形瓶,蔗糖水溶液,盐酸水溶液 三、实验原理 蔗糖在水中水解成葡萄糖与果糖的反应为 C12H22O11(蔗糖)+ H2O C6H12O6 (葡萄糖)+ C6H12O6(果糖)为使水解反应加速,反应常常以H+为催化剂。由于在较稀的蔗糖溶液中,水是大量的,反应达终点时,虽然有部分水分子参加了反应,但与溶质(蔗糖)浓度相比可以认为它的浓度没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所以该反应可视为一级反应(动力学中称之为准一级反应)。该反应的速度方程为:-dC/dt = kC 其中C为蔗糖溶液的浓度,k为蔗糖在该条件下的水解反应速度常数 该反应的半衰期与k的关系为:t1/2 = ln2/k 蔗糖、葡萄糖、果糖都是旋光性的物质,即都能使透过它们的偏振光的振动 面旋转一定的角度,称为旋光度,以表示。其中蔗糖、葡萄糖能使偏振光的振动面按顺时针方向旋转,为右旋光性物质,旋光度为正值。而果糖能使偏振光的振动面按逆时针方向旋转,为左旋光性物质,旋光度为负值。

反应进程中,溶液的旋光度变化情况如下: 当反应开始时,t=0,溶液只有蔗糖的右旋,旋光度为正值,随着反应的进行,蔗糖溶液减少,葡萄糖和果糖浓度增大,由于果糖的左旋能力强于葡萄糖的右旋。整体来说,溶液的旋光度随着时间而减少。当反应进行完全时,蔗糖溶液为零,溶液中只有葡萄糖和果糖,这时,溶液的旋光度为负值。可见,反应过程中物质浓度的变化可以用旋光度来代替表示。 ln ( t -) = - k t +ln (0-) 从上式可见,以ln ( t -)对 t作图,可得一直线,由直线斜率可求得速度常数k。 四、实验步骤 1、从烘箱中取出锥形瓶。恒温槽调至55℃。 2、开启旋光仪,按下“光源”和“测量”。预热10分钟后,洗净样品管,然后在样品管中装人蒸馏水,测量蒸馏水的旋光度,之后清零。 3、量取蔗糖和盐酸溶液各30毫升至干净干燥的锥形瓶,盐酸倒入蔗糖中,摇匀,然后迅速用此溶液洗涮样品管3次,再装满样品管,放入旋光仪中,开始记时。将锥形瓶放入恒温槽中加热,待30分钟后取出,冷却至室温。 4、记时至2分钟时,按动“复测”,记录。如此,每隔2分钟测量一次,直至30分钟(注意:数值为正值时使用“+复测”,数值为负值时使用“-复测”)。 5、倒去样品管中的溶液,用加热过的溶液洗涮样品管3次,再装满样品管,测其旋光值,共测5次,求平均值。 五、实验数据记录

蔗糖水解速率常数的测定实验报告

蔗糖水解速率常数的测定 一. 实验目的: 1.测定蔗糖水溶液在H +催化下转化反应的速度常数和半衰期。 2.掌握旋光仪的使用。 二. 实验原理: 蔗糖水解反应式为: 612661262112212O H C O H C O H O H C H +?→?++ 蔗糖 葡萄糖 果糖 H +是催化剂,如果无H +存在,反应速度极慢,此反应是二级反应。但由于反应时水是大量存在的,整个反应过程中水的浓度可近似为恒定,因此可视为准一级反应,反应速度方程如下: A A kC dt dC =- (18-1) 式中C A 为t 时刻的蔗糖浓度,k 为反应速度常数。 若令蔗糖起始浓度为C A.0,(18-1)式积分得: kt C C A A =0,ln (18-2) 由于蔗糖、葡萄糖和果糖都含有不对称的碳原子,它们都是旋光性物质,但 它们的旋光能力各不相同,其中蔗糖右旋,比旋光度[] 6.6020 =D α,葡萄糖右旋,比旋光度[] 5.5220 =D α,果糖左旋,比旋光度[ ] 9.9120 -=D α,所以随着反应的进行,物质的旋光度不断变化,由右旋逐渐变为左旋,故可利用体系在反应过程中旋光度的变化来量度反应的进程。 旋光度的测量可使用旋光仪(见第2章 常用仪器简介 2.6.旋光仪)。当样品管长度,光波波长、温度、溶剂等其他条件都不变时,溶液旋光度α与其中旋光性物质浓度C 呈线性关系。 KC =α (18-3) 式中比例常数K 与物质的旋光能力、溶剂性质、样品管长度、温度等有关。 旋光度只有相对含义,它因实验条件的不同会有很大的差异。物质的旋光能 力可用比旋光度来度量,比旋光度用下式表示: []lC D αα1020= (18-4) 式中:20为实验时的温度20℃;D 是指所用钠光灯源D 线,波长为589nm ;α为测得的旋光度(单位:度);l 为样品管的长度(单位:厘米);C 为浓度(单位:克/mL )。 设反应初始时即t=0时,蔗糖的浓度为C A ,O ,当时间为t 时,蔗糖的浓度为C A 。则

相关文档
最新文档