《函数的图象》教学反思
函数的教学反思8篇

函数的教学反思8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、述职报告、演讲稿、心得体会、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, job reports, speeches, insights, contract agreements, documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数的教学反思8篇只有重视起教学反思的写作,我们才能在后续的教学中更好地展示自我,详细地教学反思是需要结合我们的教学过程的,以下是本店铺精心为您推荐的函数的教学反思8篇,供大家参考。
《函数》教学反思(精选8篇)

《函数》教学反思(精选8篇)《函数》教学反思(精选8篇)《函数》教学反思篇1初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇2初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇3范文(一)《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。
函数的图像教学反思5篇

函数的图像教学反思5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、军训心得、学习心得、培训心得、条据文书、读后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work reports, military training experiences, learning experiences, training experiences, doctrinal documents, post reading feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!函数的图像教学反思5篇通过教学反思的书写,很多人都可以增强自我指导,作为教师通过教学反思来快速提升我们的教学能力,以下是本店铺精心为您推荐的函数的图像教学反思5篇,供大家参考。
函数的图像教学反思

《函数的图像》教学反思这次的课内比教学,我授课的课题是人教版八年级上册14.1.3《函数的图像》。
函数的图象是研究函数问题的重要工具,也是数形结合思想的具体应用,在整个数学的学习中占有极为重要的地位。
鉴于其特殊地位,我对该课的教学设计做了精心的准备,以期获得较好的教学效果,使学生较好地掌握本堂课的教学目标。
回顾自己从教学设计到授完本节课,我觉得在整个过程中,我有许多成功的地方,也有许多的不足之处。
一、自己满意的地方1.教学中注重了理论与实际的结合,从而激发了学生的学习兴趣,提高了教学效率。
函数是一个较为抽象的概念,对于刚接触函数的八年级学生来说有一定的难度,因而许多学生学习的积极性明显降低。
因此,在函数图象这一节,我尽可能的引入了我们生活实际中的例子加以讲解,例如,在导入课题时,我用了黄梅县2010年春季某天的气温随时间变化的函数图象来说明函数可以用一个特殊的图形来表示,也就是函数图象,从而顺利过渡到本节课的内容上。
再如,课堂习题的设计中,我使用了大家耳熟能闻的龟兔赛跑为模型,并引导学生借助图象讲解故事,他们的积极性在此得到了极大的提升,从而有效地实现了我预期的教学目标。
2.多媒体教学手段的有效引入,既形象直观地让学生理解了函数图象的意义,又进一步激发了学生的学习兴趣。
函数的图象是所有满足函数解析式的实数对在平面直角坐标系中所对应的点组成的。
为了进一步阐明函数图象的这一涵义,我从正方形的面积(s)和边长(x)的关系中抽象出了函数关系式s=x2(x>0),然后借助PPT和几何画板将该函数的图象通过描点法展示了出来。
学生从函数图象的动态形成中,轻而易举得理解了函数图象的意义,甚至有许多学生在这一过程中也掌握了任一函数图象的画法。
几何画板在数学中的应用也激发了许多学生的兴趣,他们中有的同学课后找到我向我问起了动画的形成过程,我借此机会鼓励他们好好学习,可以在课外的时间去学习几何画板的使用。
3.确立了学生是课堂的主体,教师是主导的角色定位。
初中数学_函数的图象教学设计学情分析教材分析课后反思

《函数的图象》教学设计教学目标1.通过画图象,理解并感知函数图象的定义。
2.会观察、分析函数图象信息,解决实际问题。
3.提高识图能力、分析函数图象信息能力。
教学重点:把实际问题转化为函数图象,再根据函数图象来研究实际问题。
教学难点:通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程设计:(一)知识背景导入变化与对应(二)展示学习目标(三)复习巩固1.课件出示问题2.引导学生回顾知识点(四)创设情境,感觉新知(1)函数的图象的定义1.活动一:出示摩天轮,让学生思考如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?2.动画播放:将每对t和h的数据作为点的坐标,在以t为横轴、h为纵轴的直角坐标系中描出各点,并将描出的点用平滑的曲线依次连接起来3.学生思考:其中对于给定的每一个时间 t,高度 h对应有几个值?4.从而总结函数图像定义:归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.5.巩固练习达标测试第4题(2)函数图像的意义活动二:下图是下图反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系.你从图象中得到了哪些信息?思路导引:找出函数的图象所要表达的数字信息.【规律总结】读取图象所表达的信息应注意:(1)弄清坐标轴和图象上的点所表示的意义.(2)图象上的最高点和最低点往往有特殊意义.(3)上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示函数值不随自变量的变化而变化.(在本次活动中教师应重点关注:(1)有些问题中的函数关系很难列式子表示,但是可以用图像直观地来反映。
(2)看图象时应注意的问题。
)活动三:分析图象解决实际问题如图所示,小明家、食堂、图书馆在同一条直线上。
小明从食堂吃早餐,接着去图书馆读报,然后回家。
一次函数的图像与性质教学反思

一次函数的图像与性质教学反思第一篇:一次函数的图像与性质教学反思一次函数的图像与性质教学反思一、总体概述:《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图像的一般规律。
加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
本节课的学习目标主要包括三部分内容:1.如果函数表达式中的k 相同,那么他们的函数图像互相平行;2.将直线y=kx沿y轴向上平移b个单位,得到直线y=kx+b;沿y轴向下平移b个单位,得到直线y=kx-b;3.由k、b的正负号判断函数图像所经过的象限。
本节课的难点是根据函数表达式中k和b的正负快速的画出图像的草图进而判断出图像所经过的象限。
二:教学流程上课一开始我让学生自己先动手运用两点法画出y=-2x,y=-2x+3,y=-2x-4这三个函数的图像,接着让给学生观察这三个函数图象的位置关系以及函数表达式中的共同点,并用自己的语言总结;第二步,我以教鞭作为教具取一个固定的点在黑板上动态的演示出直线的上下平移,得出图像的平移与函数表达式之间的关系;再讲最后一个内容之前先让学生观察函数表达式中的b和图像与y轴的交点的纵坐标之间的关系,使学生了解表达式中的b就是图像与y轴的那个交点,从而得出当y>0时图像交与y轴的正半轴,当y<0时,图像交与y轴的负半轴,再结合k正负决定函数的增减性这个知识点,学会在没有要求的情况下大致的画出函数图象,进而判断出函数所经过的象限。
这节课基本脱离教材的束缚从学生的认知顺序出发,层层递进。
在教学当中设计了多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。
通过随后的提问、练习以及下课前得小测发现大部分学生都掌握的很好,基本完成了学习目标。
高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

函数sin()(0,0)y A x A ωϕω=+>>的图象(一)一、教材分析本节是人教A 版数学第一册第5章第6节的内容,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。
本节课的主要内容是结合实例,了解)sin(φω+=x A y 的实际意义,会用五点法画出函数的图象,揭示参数φω,,A 变化时对函数)sin(φω+=x A y 图象的形状,位置的影响,讨论函数)sin(φω+=x A y 的图象与正弦函数的关系;通过引导学生对函数图象规律性的探索,让学生体会到从简单到复杂,从特殊到一般的化归思想;通过对参数的分类讨论,让学生深刻认识到图象变换与函数解析式变换的内在联系。
二、教学目标:1. 分别通过对三角函数图像的各种变换的探究和动态演示让学生了解三角函数图像各种变换的实质和内在规律。
2. 通过对函数sin()(0,0)y A x A ωϕω=+>>图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。
3. 培养学生观察问题和探索问题的能力。
三、教学重、难点:教学重点:函数sin()(0,0)y A x A ωϕω=+>>的图像的画法和图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。
教学难点:各种变换内在联系的揭示。
四、教法学法采取各个击破,归纳整合为主线,自主探索、合作学习为主导,教师总结点评为辅助,充分发挥学生的动手能力的教学方法;多媒体辅助教学。
五、教学过程:(一)、新课引入:那么怎么画函数12sin()34y x π=-的图象? (二)、尝试探究探究(一):对 sin()y x ϕϕ=+对的图象的影响问题1:sin()3y x π=+函数周期是多少?你有什么办法画出该函数在一个周期内的图象?学生:用“五点法”作出函数 问题2:比较函数 sin()3y x π=+与sin y x = 的图象的形状和位置,你有什么发现?学生:函数sin()3y x π=+的图象,可以看作是把曲线sin y x =上所有的点向左平移3π个单位长度而得到的. 那么函数sin()3y x π=-的图象?学生:函数sin()3y x π=-的图象,可以看作是把曲线sin y x =上所有的点向右平移3π个单位长度而得到的.问题3:一般地,对任意的 (0)ϕϕ≠,函数 sin()y x ϕ=+ 的图象是由函数 sin y x = 的图象经过怎样的变换而得到的? 归纳:函数sin()y x ϕ=+的图象,可以看作是把曲线sin y x =上所有的点向左(0ϕ>时)或向右0ϕ<(时)平移ϕ个单位长度而得到的.上述变换称为平移变换探究(二):(0)sin y x ωωω>=对的图象的影响问题1:函数sin 2y x =周期是多少?如何用“五点法”画出该函数在一个周期内的图象?问题2:比较函数 sin 2y x =与sin y x = 的图象的形状和位置,你有什么发现?学生:函数 sin 2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标缩短到原来的12倍(纵坐标不变)而得到的. 那么函数1sin()2y x =的图象?学生:函数 1sin()2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标伸长到原来的 2 倍(纵坐标不变)而得到的.问题3:一般地,对任意的 (0)ωω>,函数 sin y x ω=的图象是由函数sin y x =的图象经过怎样的变换而得到的?归纳:函数sin (0)y x ωω=>的图像可由函数y =sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的ω1倍(纵坐标不变).......而得到的,称为周期变换。
《一次函数的图象》教学反思

《一次函数的图象》教学反思
由于本周前几天一直在准备区里的同课异构的比赛,因此留给这节课准备的时间并不多,甚至在上课之前还在思考哪个环节设置的不合理,思路不清楚,但幸好还是准时准点的把这节课完整的讲了下来。
本节课的内容比较多,知识点不仅多,而且很难理解,因此在知道要讲这节课时,我们要上公开课的三位老师都是束手无策,甚至没有一点想法。
我选择了观看《洋葱数学》,想看一下他们是如何讲清楚这节课的,在观看的过程中发现了Geogebra这个数学软件,对本节课的学习有极大的帮助,因此我就赶紧下载下来,自己摸索使用,在本节课的过程中起到了很大的作用。
并且《洋葱数学》中有一小部分对函数图象的平移解释的非常具体和形象,我也选择借用,来帮助学生更好的理解。
当然本节课也存在很多不足,尤其是备课不充分,出现了知识上的错误,“一次函数的图象是一条不经过原点的直线”这句话本身就是错误的,但我在听到学生这样回答时,没有能够深入地思考,也认为这句话没有问题,造成了知识上的错误;其次是书上有一个知识点没有讲到,就是“表达式与函数图象是一一对应的”,因为在书中只是标注的一句话,就没有引起重视,从而忽略了这一点;最后是有道题的答案本身就是错误的,在备课时没有仔细看仔细想,造成在讲的
时候才发现,这是最不应该的,一定要引以为戒,以后坚决不能出现此类现象。
听完教研员的评课,感觉自己最需要改正的就是上课没有激情,语调过于平淡,对学生的评价语过于单调,鼓励性语言用的太少,在学生反映平平的时候,没有能力调动学生的积极性,这些需要大量的时间去联系,尤其是平常讲课的时候需要各位的注意,多向其他老师学习,试着改变自己,在上公开的时候学会放得开,不能要拘谨。
作为新教师,在教学的道路上才开始起步,有很多需要改进的地方,希望以后能够越走越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的图象》的教学反思
《函数的图象》是九年制义务教育新课程标准八年级第十九章第二节第一课时的内容。
它是在初中用变量的观点初步探讨函数的概念的基础上,对函数的再认识,即通过图象再认识,进一步加深对函数概念的理解,在初中数学的学习中起着重要的作用。
函数的图象以几何形式直观地表示变量间的对应关系,是研究函数的重要工具。
学习函数的图象不仅要了解它的一般意义和作法,更重要的是了解其中包含的数形结合地研究问题的思想。
出示股票走势图和心电图引入新课,包含生活元素的函数图象吸引学生的兴趣,从横纵坐标的单位简要分析图象的变化规律及特殊点的意义,感悟事物变化无常和对生命的认识。
用正方形与边长的关系作为背景,合作探究出正方形的面积与边长之间的函数关系,列表求出相应函数值,使用五点法画图,强调自变量的取值范围对图象的影响。
为了巩固先列表、再描点、最后连线的作图过程,再讲两个典型例子,至此共展示了一次函数、二次函数、反比例函数三种常见的函数图象。
画图比较枯燥,但也是动手操作的必备技能,在图象上找点很不准确,但是根据解析式判断某个点是否在图象就很有说服力,学生也喜欢用计算来验证。
虽然代入横纵坐标都能验证,但是为了方便学生选择代入自变量。
再次回到生活中温度随着时间而变化的图象中研究问题,引导学生从横纵坐标的意义出发,先研究具体点,描述点的意义,根据两点判断温度变化趋势,看看把握住时间永远是一往无前的这一特点,对比多点的横纵坐标分段得出详细的变化趋势。
带着图象特殊点及走势的分析经验,学生先自学小明的一天活动轨迹,然后再合作交流补充完整问题。
老师指一名学生说出答案,并
及时提问,督促全体学生总结到位,都有收获。
遗憾的是,在反比例函数图象的处理上过于粗糙,没能将两支分别讲解,造成学生见识了不同的函数的图象,但是浅尝辄止没能真正的形成基本印象。
而且在列表时为什么没有自变量为零,这个知识点并没有讲出来。