高炉鼓风机拨风系统

合集下载

高炉鼓风系统中拨风装置的应用

高炉鼓风系统中拨风装置的应用
Байду номын сангаас2 问题的提出
在高炉鼓风机组运行制度中, 一般采用单机对单炉的运行方式, 一旦运行鼓风机出现故障,则迅速启动备用鼓风机,继续维持高炉运 行。 如果运行鼓风机系统因故障突然停机或突然停止向高炉供风,而 备 用 鼓 风 机 启 动 时 间 较 长 (冷 态 机 组 启 动 时 间 在 4~6h),这 将 造 成 高 炉坐料、风口灌渣等恶性事故的发生,将对高炉生产带来巨大的损失。
4 拨风系统的运行
在鼓风系统正常工作时,拨风系统始终处于热备用状态,只有当 鼓风系统出现紧急断风时,拨风系统才投入运行。 4.1 热备用 鼓风系统的的各种停机保护复杂,涉及的辅助 设 备 多 , 当其中任何一个因素出现故障,均可造成鼓风机停机或停止向高炉供 风,因此拨风系统必须随时处于热备用状态。 在上图中的 #2 电动拨风 阀始终处于全开状态,气动拨风阀处于关闭位置(随时可以开启);为 了在拨风过程中,保证故障机组所对应的高炉不发生风口灌渣这种恶 性事故,同时还要保证拨风风源对应的高炉不受太大影响,经过多次 的调试后最终确定将 #1 电动拨风阀的阀位控制在 25°。
SCIENCE & TECHNOLOGY INFORMATION
○百家论剑○
科技信息
高炉鼓风系统中拨风装置的应用
关馨 (宝钢集团八钢分公司能源中心热电分厂 新疆 乌鲁木齐 830022)
【摘 要】阐述了拨风系统对高炉稳定运行的重要性,并对钢铁厂高炉拨风系统的工艺组成、运行情况及需要解决的问题进行了探讨。 【关键词】高炉;鼓风系统;拨风系统
3 拨风系统的设置
在 A、B 高炉供风母管间设拨风装置, 实现各鼓 风 系 统 风 量 及 风 压的调配,可防止运行鼓风机组故障时高炉突然断风,避免高炉坐料、 风口灌渣等恶性事故的发生。 3.1 拨风工艺

中钢炼铁1#、4#、5#高炉鼓风机自动拨风系统

中钢炼铁1#、4#、5#高炉鼓风机自动拨风系统

中钢炼铁1#、4#、5#高炉鼓风机自动拨风系统摘要:为了解决高炉因鼓风机突然跳闸造成炉膛“坐料”、风口“灌渣”问题关键词:高炉;鼓风机;拨风中钢炼铁1#、4#、5#高炉自2008年投产以来,由于各种原因相继发生鼓风机事故跳闸,造成高炉事故断风,致使高炉风口灌渣事故发生.高炉风口灌渣事故不仅造成更换风口的直接经济损失,如风口设备费和人工费;间接经济损失更惨重,如停产及恢复炉况造成的经济损失。

本文详细介绍了中天钢铁1#、4#、5#高炉的自动拨风系统,论述了该系统的设计思想、系统组成、系统运行情况、plc 系统的硬件与软件构成。

1.鼓风机系统配置说明1#、4#550m3高炉配置鼓风机型号为av45-12,进口冷风流量2200 m3/min,出口冷风压力0.39mpa,常用冷风压力为0.28--0.29mpa。

5#850m3高炉配置鼓风机型号为av56-13,进口冷风流量3150m3/min,出口冷风压力0.45mpa,常用冷风压力为0.33--0.34mpa。

送风管道通径都为1200mm。

1#高炉鼓风机位于1#高炉鼓风机房,4#、5#高炉鼓风机同在4#高炉鼓风机房,两地相距约200米,中间有一根离心备用鼓风机送风管道相连。

(如下图1)2.拨风系统设计方案在1#、5#高炉之间增加自动拨风系统一套(因1#高炉与5#高炉工作压力相差较大,1#高炉向5#高炉拨风时,无法满足两个高炉的最低工作压力,因此只能5#高炉向1#高炉拨风),当1#高炉鼓风机故障跳机时,5#高炉鼓风机通过拨风管道自动往1#高炉冷风系统拨风,使1#高炉不至于风口灌渣,并在一段时间内维持较低的生产压力。

拨风管道可利用1#高炉离心备用风机冷风管道。

在4#、5#高炉之间增加自动拨风系统一套,当4#或5#高炉其中一台鼓风机故障跳机时,4#、5#高炉鼓风机通过拨风管道自动往对方高炉冷风系统拨风,使故障高炉不至于风口灌渣,并在一段时间内维持较低的生产压力。

高炉鼓风机拨风系统的探讨

高炉鼓风机拨风系统的探讨

ENERGY FOR METALLURGICAL INDUSTRYMay.202161高炉鼓风机拨风系统的探讨卢光辉1刘川川1牛佳星$郝良元$邓涛1王宗德1(1.河钢集团邯钢公司,2.河钢集团钢研总院)摘要高炉鼓风机故障停机的概率很低,但事故发生造成的损失巨大,拨风系统是高炉安全高效生产的重要保障。

在各个单位完善了高炉鼓风机的故障预警及保护措施的基础上,文章根据实际案例,论述了拨风系统的工艺结构、系统功能、拨风方案、鼓风机站应急预案等,阐述了此技术对高炉生产的重要性。

关键词高炉鼓风机拨风系统文献标识码:A文章编号:1001-1617(2021)03-0061-04Discussion on blast furnace air distribution systemLu Guanghui1Liu Chuanchuan1Niu Jiaxing2Hao Liangyuan2Deng Tao1Wang Zongde1(1.HBIS Group Hansteel Company, 2.HBIS Group Technology Research Institute)Abstract The probability of the blast furnace blower to stop working due to fault is very low.The ac­cident caused a great deal of damage.Air distribution system system is an important guarantee for blastfurnace safety production.Starting from the case,the paper discusses the process structure,systemfunction,air allocation scheme and emergency plan of the air allocation system.The importance of thistechnology to blast furnace production is expounded.Keywords blast furnace blast blower air distribution system高炉鼓风系统是高炉冶炼系统中最重要的工艺系统之一⑴。

高炉鼓风机拨风系统

高炉鼓风机拨风系统

高炉鼓风机拨风系统(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高炉鼓风机拨风系统改造杜贞晓引言在高炉工艺流程中,高炉鼓风机是高炉动力的来源,鼓风机必须给高炉提供充足、富余的风量才能保证高炉正常生产。

然而,在高炉炼铁生产过程中,各种不可预测的故障时有发生,小故障可以及时处理,但是重要的连锁信号或高压供电一旦出现问题就导致鼓风机断风或直接停机,致使高炉突然无风压,引起高炉灌渣等重大生产事故。

为避免这种重大事故的发生,我们第二炼铁厂根据实际情况,提出在鼓风机之间加拨风系统。

关键词拨风保障高炉送风避免灌渣1.1概述拨风系统是两座高炉鼓风机其中一台故障,不能正常送风,另一台风机通过管道把一部分风压临时拨给故障风机,防止有故障的高炉断风的系统。

风机故障一般分为停机和安全运行两种情况,我们这套系统针对这两种情况设计了拨风的要求和和条件。

这套系统投资小,现场设备较少,设计思路简洁明了,作用大,为避免高炉灌渣,提供了可靠有利的保障。

1.2改造内容:1.2.1、主要方法、技术路线当某座高炉风机出现故障时,风压力降低较大,为防止风压突然消失后,经过判断,确认后,利用相邻两座高炉互为拨风,有效避免高炉吹管出现灌渣现象,避免损失的扩大。

判断条件是当高炉相邻两台风机中有一台风机突然停机或安全运行时,拨风系统通过信号自动判断拨风条件,当有停机信号或安全运行时,并且停机风机风压低于设定值200KPa时,拨风控制系统控制拨风阀自动打开,使停机的风机仍然有100多KPa的压力,使高炉能保持一定的风压,避免灌渣。

1.2.2、系统原理图此套拨风系统采用了DN600不锈钢蝶阀,每两台相临风机间加两个手动阀,两个手动阀之间加一个气动蝶阀,气源采用氮气,氮气相比空气,更稳定,压力平稳,气源没有水等其他杂志,而且冬天可以防止结冰。

在设备正常运行时,三个阀门全部开启。

6 高炉送风系统

6 高炉送风系统

6 送风系统高炉送风系统包括鼓风机、冷风管路、热风炉、热风管路以及管路上的各种阀门等。

热风带入高炉的热量约占总热量的四分之一,目前鼓风温度一般为1000~1200℃,最高可达1400℃,提高风温是降低焦比的重要手段,也有利于增大喷煤量。

准确选择送风系统鼓风机,合理布置管路系统,阀门工作可靠,热风炉工作效率高,是保证高炉优质、低耗、高产的重要因素之一。

6.1 高炉鼓风机高炉鼓风机用来提供燃料燃烧所必需的氧气,热空气和焦炭在风口燃烧所生成的煤气,又是在鼓风机提供的风压下才能克服料柱阻力从炉顶排出。

因此没有鼓风机的正常运行,就不可能有高炉的正常生产。

6.1.1 高炉冶炼对鼓风机的要求1)要有足够的鼓风量。

高炉鼓风机要保证向高炉提供足够的空气,以保证焦炭的燃烧。

入炉风量通过物料平衡计算得到,也可以按照下列公式近似计算:14400IvV V u =m 3/min (6-1) 式中: 0V ——标态入炉风量,m 3/min ;u V ——高炉有效容积,m 3;I ——高炉冶炼强度,t/(m 3·d); v ——每吨干焦消耗标态风量,m 3/t 。

每吨干焦消耗标态风量主要与焦炭灰分和鼓风湿度有关,一般在2450~2800 m 3/t 之间,可根据炉料及生铁、煤气的成分计算。

2)要有足够的鼓风压力。

高炉鼓风机出口风压应能克服送风系统的阻力损失、克服料柱的阻力损失、保证高炉炉顶压力符合要求。

鼓风机出口风压可用下式表示:FS LS t P P P P ∆+∆+= (6-2)式中: P ——鼓风机出口风压,Pa ;t P ——高炉炉顶压力,Pa ; LS P ∆——高炉料柱阻力损失,Pa ; FS P ∆——高炉送风系统阻力损失,Pa 。

常压高炉炉顶压力应能满足煤气除尘系统阻力损失和煤气输送的需要。

高压操作可使高炉获得良好的冶炼效果,目前大中型高炉广为采用,大型高炉炉顶压力已达到0.25~0.40MPa 。

高炉鼓风机拨风系统操作规程

高炉鼓风机拨风系统操作规程

高炉鼓风机拨风系统操作规程一、风机拨风系统的拨风条件为防止风机系统因意外原因无法正常供风,在送风系统安装拨风阀,以防止突然断风引起高炉灌风口事故发生。

拨风阀动作条件:1、供风风机进入安全运行状态,送风压力低于100kPa时,拨风阀进行拨风。

2、供风风机主电机停机后,运行电流低于70A且送风压力低于100kPa时,拨风阀进行拨风。

3、拨风风机压力不低于150kPa(15#、16#风机不低于200 kPa)。

二、拨风阀的操作规程拨风阀设“集中控制”和“机旁操作”两种控制状态。

1、在“集中控制”状态,拨风阀由PLC进行控制,手动蝶阀保持常开状态,在供风风机满足拨风条件时,拨风阀自动打开,动作时间约为5秒,在“集中控制状态”,只控制拨风阀打开,不能自动关闭。

2、拨风阀在“机旁操作”控制状态,可通过操作“开阀”、“关闭”按钮,控制拨风阀的工作状态,其中开阀动作时间约为5秒,关阀时应先手动关闭手动蝶阀,保持2台风机风压稳定,手动阀全部关闭后,在“机旁操作”控制状态,关闭拨风阀。

3、拨风阀投入使用前,必须检查手动阀状态,保证2台手动阀均在开启状态。

三、拨风阀使用的注意事项1、高炉正常休风,在高炉大幅减风前,必须..将拨风阀转入“机旁操作状态”,风机停机后,并切断拨风阀电源。

高炉复风后,可将拨风阀投入使用。

2、拨风阀投入使用时,应处于“集中控制状态”,由PLC进行控制,当出现风机安全运行或非正常停机,拨风阀动作后,应首先通知相关两座高炉、车间领导及调度,说明情况,高炉值班室配合进行检查和操作;正常拨风后,高炉值班室不得打开冷风放散阀、炉顶放散阀排风,避免事故扩大。

3、观察正常运行的风机主电机电流、功率,避免过负荷运行。

4、检查、判断故障机的断风原因:4.1故障机转入安全运行时:4.1.1在开机画面点击“存储器复位”按钮,解除安全运行状态;4.1.2点击“自动操作”按钮,解除逆止阀、防喘阀、静叶闭锁,恢复正常操作。

2500m3高炉鼓风自动拨风工艺改造及应用.pdf

2500m3高炉鼓风自动拨风工艺改造及应用.pdf

3)" 自动拨风 " 回路一旦接通就自保持 , 只能通
过复位按钮或转换开关才能将其断开 , 如果此时揿 下 " 停止拨风 " 按钮 , 则出现停止拨风和拨风同时动 作现象 ,系统出现混乱 。 因此将停止拨风中间继电器 常闭接点串入拨风控制回路 , 确保 " 停止拨风 " 回路 一接通 ,拨风控制回路立即断开 。
5
效果
自动拨风工艺现已成了马钢 2500 m3 高炉风机
5) 运行机组能力控制器 " 自动转手动 " 信号 。 这
是确保拨风时运行机组 ( 被拨风机组 )静叶稳定的条 件。 只有在以上条件全部满足时 , 拨风装置才能立 即投入运行 。
房生产上的一项重大安全技术保障 , 改造成功后 , 极 大地缓解了高炉风机的保产压力 , 同时也避免了因 风机故障停机而造成高炉断风事故 , 为高炉稳定 、 高 产发挥了重要作用 。 2005 年 8 月 29 日 ,1# 风机由于
3
3.1
改造技术方案
拨风装置的现场设置 在 2# 大高炉建成投产后 , 高炉鼓风站站内供风
管系相应形成了两路母管 (1#、2#), 两台机组通过各 自的两只 DN1400 送 风 阀 门 分 别 与 1#、2# 母 管 相 联 通 , 在正常生产中 , 两台机组分别向两座高炉供风 , 相互隔离 , 互不影响 。 在 1#、2# 母管之间安装一联通 管及一套拨风阀组 , 两只 DN700 电动 蝶 阀 , 一 只
3.2
拨风工艺条件的确定 不可能在任何情况下 , 只要一台机组发生了故
障停机或安全运转 ,拨风装置就能立即投运 。 既要保 证拨风工艺的可靠性 , 同时又要绝对保证风机设备 的安全性 , 这是拨风工艺设计改造工作最为关键的 技术问题 。 为此经过多次探讨和调研 ,确定拨风工艺 条件如下 :

高炉拨风原理以及应用

高炉拨风原理以及应用
意 义 本 文披 风 系统 主要 由 西 门子 s 7 一 ( ) I L c控 制
【 关键词 】高炉;拨风系统;P L C;西 门子
引 言
冶 金 、 f 1 ,舟 炉 鼓 风 机 足 m 炼 铁 商 炉 供应 冶炼 所 需冷 风 体 的 设备 。撤 』 x L 机 系统 的 l : 作稳定情况, 1 l = = ( 接 影 响 舟 炉 的产 l 矗 。 运} J : 的风机 突 然发 生 战障 紧 急停机 时 , 盘 ¨ 果此 时 正处 存 高炉 …铁 } j 【 『 ,将 造 成 风 【 ¨ 1 灌渣 的 重 ^ 炙 ,川时 会给 企 、 【 k 造成l 夫经 济 拗 火 。山 J 鼓 风机 设 符仃 的不 确定 索 ,每年 这样 的 事 故总钶 发 f , 呕影 响 商炉 的 , { J 此 ,保 证供 风 系统 能稳 定地 向高炉 供 风 足高 炉J 常 、安 令 、稳定 生产 的前 提 。
⑨ 风机运 行 状态 图 1拨 风 系 统 结 构 原 理 图
2 . 系 统构 成 及 硬 件 配 置
小 系统 采 』 f ] 德 门 公 司 的P L C 及. 机卡 勾 成 高炉 拨 ̄ L P L C 控 制 系 统 ,私 个 系统 效 、 简沽 ,响』 、 迅 速 ,稳 定 r 叮 稚 ,通 过 ¨ r P R 0F I B us 络 实现 远 站 E T 2 0 0 M干 ¨ 触摸J J f 的连 接 。现 场 采 川气功2 - 偏 心 金属 新 型 能 系列 广 1 , : _ u J 作 为拨 风 , _ 乜 动阀f 1 ; 为1 L I ¨ ] 成拨 风执 仃 系统 。从 而 实现 、 … 台商l j , J 鼓风 机 停机 或 足转 入 安 运 行 模式 时 , H 1 , j 台风 机提 供 部分 风晕 确保 高炉 正常 { 小 。 拔』 x L 系统包 含 一套两 r s 7 . 3 0 0 系统 , 两 门 触 摸 屏 一个 ,六 个 电动 , 二个气动 拨 风 以及 一螋辅 助 设施 。平 时 电动 阀 为常 开 状 态 , 气动 拨风 为常 状 态 , 只有 需 要拨 风 时气 动拔 风 阀才 能 打 。 动f 『 I ; i 『 和【 乜 动 阑既 叮 以通 过 上位 机操 作 , 也 以通 过现 场 操 作箱 以及P L c 卡 r } J f 的按 { : 7 l 操 作 。P L C 系统 置 图如 2 所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高炉鼓风机拨风系统标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
高炉鼓风机拨风系统改造
杜贞晓
引言在高炉工艺流程中,高炉鼓风机是高炉动力的来源,鼓风机必须给高炉提供充足、富余的风量才能保证高炉正常生产。

然而,在高炉炼铁生产过程中,各种不可预测的故障时有发生,小故障可以及时处理,但是重要的连锁信号或高压供电一旦出现问题就导致鼓风机断风或直接停机,致使高炉突然无风压,引起高炉灌渣等重大生产事故。

为避免这种重大事故的发生,我们第二炼铁厂根据实际情况,提出在鼓风机之间加拨风系统。

关键词拨风保障高炉送风避免灌渣
概述
拨风系统是两座高炉鼓风机其中一台故障,不能正常送风,另一台风机通过管道把一部分风压临时拨给故障风机,防止有故障的高炉断风的系统。

风机故障一般分为停机和安全运行两种情况,我们这套系统针对这两种情况设计了拨风的要求和和条件。

这套系统投资小,现场设备较少,设计思路简洁明了,作用大,为避免高炉灌渣,提供了可靠有利的保障。

改造内容:
、主要方法、技术路线
当某座高炉风机出现故障时,风压力降低较大,为防止风压突然消失后,经过判断,确认后,利用相邻两座高炉互为拨风,有效避免高炉吹管出现灌渣现象,避免损失的扩大。

判断条件是当高炉相邻两台风机中有一台风机突然停机或安全运行时,拨风系统通过
信号自动判断拨风条件,当有停机信号或安全运行时,并且停机风机风压低于设定值
200KPa时,拨风控制系统控制拨风阀自动打开,使停机的风机仍然有100多KPa的压力,使高炉能保持一定的风压,避免灌渣。

、系统原理图
此套拨风系统采用了DN600不锈钢蝶阀,每两台相临风机间加两个手动阀,两个手动阀之间加一个气动蝶阀,气源采用氮气,氮气相比空气,更稳定,压力平稳,气源没有水等其他杂志,而且冬天可以防止结冰。

在设备正常运行时,三个阀门全部开启。

在休风检修设备时,关闭两端手动阀门,从而可以随意检修中间的气动阀门。

、硬件组成
2008年6月,按照分厂领导要求,电气、机械、工艺等各个工种开始施工。

我们厂共由风机10台,其中备用机2台,有8台鼓风机相邻两台之间做保护,现场设备有气动阀门4台,每个气动阀两侧又加装2台手动阀门,电气设备配电柜2面,现场安装压力变送器8台,敷设电缆1000米,自动化系统是由一套西门子 S7-300 PLC控制,配有
CP343、模拟量输入、模拟量输出、数字量输入、数字量输出模块、中间继电器、信号隔离栅、24V电源、转换开关、按钮、指示灯等元件,来完成整个系统的信号检测和控制输出,现场设备是单向电磁阀控制气动阀门开关的,动力气源是氮气。

、技术原理和应用领域
应用领域:第二炼铁厂3#、4#风机房拨风装置改造于2008年4月18日批准立项后,节省资金起见,由二炼铁自行负责施工,2008年8月8日最后改造完毕,进入试运行阶段。

技术原理:当13#高炉风机突然停机风压变低或安全运行时,13#14#间气动阀动作,14#高炉将自动拨风到13#高炉,以防止13#高炉风口灌渣。

拨风风量可达到600立方/min 以上,风压可达100kPa以上,
拨风举例
案例一:
二炼铁于2008年3月提出了拨风技改项目,并于2008年6月,经过紧张施工,提前实施完毕,拨风系统已经安装调试完毕,正式投入运行。

技改投用后,2008年10月1日15:13分,因外部线路影响13#高炉风机跳电,14#风机及时拨风,当时拨风系统根据风
压自动打开气动阀门,14#高炉风机一部分风量通过拨风阀成功拨入13#高炉,当时13
#高炉风压达到100KPa,防止了高炉出现灌渣,避免了一场重大事故发生。

案例二:
2009年12月12日16:10分,在高炉检修过程中,因高压人员操作失误,致使高压断电,使9#鼓风机主电接触器释放,引起停机,9#鼓风机排气压力在5秒钟降到0 KPa,拨风系统在发现9#风机停机后,压力达到设定值后,迅速打开拨风阀,把10#风机部分
风量通过拨风阀拨到9#机,阀门打开后9#机压力维持在130 KPa左右,这是9#机停
机后,10#风机拨风后9#风机送风压力没有降到0KPa,而是保持了130 KPa左右。

虽然风压下降了,但是压力足够高炉使用,不会对高炉产生大的影响,不至于使故障的9#高炉因断风造成灌渣的严重后果,这是9#风机拨风时运行曲线。

其中蓝色的线是风机送风压力,它从开始正常运行,到突然下降,然后在拨风阀打开后,又持续上升到100KPa,
经历了一个大的转折,在拨风阀门完全打开后就一直保持在130 KPa左右,这个压力虽小,但是足以给高炉送风了
10#风机在把部分风量拨到9#风机后,压力从296 KPa下降到180 KPa,这是10#风机拨风后曲线:
10#风机风压虽然下降了,但是对整个高炉影响不大,其压力仍然有100Kpa,对本身的炉子造成了较大的影响,但是相比灌渣造成的损失就小多了。

如果没有拨风系统,9#风机就会因为突然断风导致高炉风口灌渣,这样就会造成更大的损失,这套拨风系统的投用,从根本上改变了这一弊端,虽然影响了另一正常运行的风机,但是相比起没有拨风系统造成的灌渣更换风口和小套的损失,这些影响算不了什么,我们通过实际拨风动作的时间和时机上看,这套系统拨风还是比较及时的,能够真正彻底的避免高炉突然断风这一难题。

这是9#高炉本体突然失电断风,到拨风后高炉本体的历史记录曲线:
虽然10#高炉风压骤然下降,影响了高炉,但是却避免了9#高炉可能引起的灌渣休风事故,对炼铁厂来说,节省了休风检修费用,保证了生产的持续性。

系统问题及防范措施
本套系统也存在一些问题,阀门生锈,气源压力不足,电磁阀烧坏,配电柜失电等。

针对这些问题我们采取了一系列措施:
1、我们为配电柜配备了 3KVA的UPS,这个UPS质量可靠,在平时我们加大维护
力度,全力保障此UPS正常运行,关键时刻保障拨风系统正常供电,防止了
配电柜失电造成的阀门不能开关故障。

再以后的实践中,我们发现光加UPS
是不够的,又在原来的基础上,我们对拨风控制柜的电源改成双路供电系
统,通过两个接触器来在1、2段供电之间相互切换,当有一炉电源失电时,
另一路自动切换,保证拨风柜电源正常工作。

2、为防止UPS故障导致配电柜失电,我们把风机配电柜中用于拨风的中继改成
常得电状态,正常拨风或配电柜失电后,中继本身失电,在风机配电柜没电
源的情况下仍然能把所需信号送出,开启阀门拨风,为高炉提供保障。

以往
中继状态平时失电,当信号输出时才得电,现在这种情况得以彻底解决,可
以做到无电也可以使停机和安全运行信号都输出,保证把风机的状态能够正
常送给拨风柜,控制拨风正常运行。

3、针对阀门生锈的问题,设备科又专门采购了同型号的不锈钢阀门,利用平时
休风机会,把以前质量差的阀门替换掉,保证了阀门的动作及时和准确性,
从而解决了阀门生锈引起的设备故障问题。

总结
高炉鼓风机拨风系统是一项投资小收益大的项目,这套系统避免了一台风机突然失电造成高炉断风灌渣的事故,稳定了高炉炉况,保证了高炉生产的顺利进行,通过我们炼铁厂2起案例来看,收效很大,得到了高炉操控人员的一致好评,是一套成功的系统。

这套系统设计安装从2008年5月份开始设计实施,到8月份实施完毕,已经成功拨风数次,拨风原因众多,主要时高压断电,外网高压电波动,造成风机跳电,还有风机安全运行时,拨风系统也成功投用,到2011年,这套拨风系统已经为我厂晚会数十万经济损失,
是一项投资小见效快的成功技改。

另外这套系统维护量小,因为其外部就只有几个阀门,只要阀门质量上乘,再加上电气维护到位,加强点巡检,发现故障隐患能及时处理,就会避免拨风系统故障的发生。

在没有投用拨风系统以前,我们日照钢铁第二炼铁厂的鼓风机因故障停机导致停产几次,每次停机几乎都造成高炉灌渣等重大设备事故,在故障发生后,更换风口,影响产量,对整个炼铁成本造成了很大的影响。

自从拨风系统投用后,每次故障停机,拨风系统都能挽救高炉,为我厂挽回了很大的紧急损失,效益客观,为此公司专门给设计和施工的所有员工进行了奖励,对这项技术改造成果进行了肯定。

参考文献:
《炼铁交流》《电机与电气控制技术》《自动检测技术》。

相关文档
最新文档