微分方程数值解精彩试题库2011
微分方程数值解(学生复习题)

微分方程数值解(学生复习题)
一.填空
1.Euler法的一般递推公式为,整体误差为,局部截断误差为:.,改进Euler的一般递推公式
整体误差为,局部截断误差为:。
2.线性多步法绝对稳定的充要条件是。
3.当,则单步法
1(,,)0,1,2,,
n n n n T
u u h t u h n
h
,稳定。
4. 一个相容,稳定的多步法若绝对稳定,则绝对稳定域在。
5. 若,则多步法是相容的。
6.所有内点,界点的差分方程组成一个封闭的线性代数方程组,其系数矩阵
是。
7.刚性方程是:
8.Runge-Kutta法的特征值为,
相容的充要条件为:
8.二阶常微分方程边值问题:
2
2
,
(), ()
d u
Lu qu f a x b dx
u a u b
的中心差分格式为:
9.若内点的四个相邻点均属于,则称为。
10.逼近泊松方程的五点差分格式的截断误差的阶为。
逼近泊松方程的九点差分格式的截断误差的阶为。
11.线性多步法A稳定的充要条件是。
12.SOR收敛当且仅当松弛因子0,2
(),且Jacobi迭代收敛。
最佳松弛因子是。
二.判断
1.当时间步长和空间步长无限缩小时,差分格式的解是否逼近到微分方程问题的解,这就是差分格式的收敛性问题。
2.单参数的PR迭代格式的收敛速度与SOR最佳超松弛法的收敛速度同阶。
3、对称矩阵的普条件数与条件数相同。
4、一级Runge-Kutta法的绝对稳定域(-2,0)。
2011级数值分析试卷

菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。
则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。
2.设向量T n x )2,1,0( =,则=∞x 。
3.用牛顿法求方程0)(=x f 的根的公式为 。
4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。
三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。
微分方程数值解(A)

0 t T ,a 0 0 x 1 0t T 0t T
u 2 u 2 u ( x, y ) [0,1] [0,1], t 0 2 2 t x y ( x, y ) [0,1] [0,1] u ( x, y,0) ( x, y ) u (0, y, t ) ( y, t ), u (1, y, t ) ( y, t ), t 0 1 2 u ( x , 0 , t ) ( x , t ), u ( x , 1 , t ) t0 1 2 ( x, t )
的 Peaceman-Rachford 格式为
1 r 2 n 2 r 2 n ( 1 ) u y )u l ,m x l , m (1 2 2 , l , m 1,2,, N 1 , n 0,1,, M 1 1 (1 r 2 )u n 1 (1 r 2 )u n 2 y l ,m x l ,m 2 2
试讨论 Peaceman-Rachford 格式的截断误差, 并推导出计算中间层 ul ,m2 时依赖于时刻 n 和 n+1 的边界条件 十、浅谈双曲型微分方程数值解的应用领域及其研究重点。
n
1
第 2 页 共 2 页
第 1 页 共 2 页
2u 2u 0 的(Dirichlet)第一边值问题 x 2 y 2 其中: 是 的边界。当 {( x, y) | 0 x, y 1} 时,取 x y h 1 / 3 时,试写出超松弛迭代法
六、对于二维区域 的 Laplace 方程 (ROS)的计算公式的 U ( n1) AU ( n) en 的方程形式。 七、一阶双曲型方程:
试卷类别
2011年回忆版数分 高代 常微分

2011年(数学分析真题)一共九道
1,用W ALIS公式证明一个积分不等式
2,计算一个2型曲面积分
3,证明取得极值的必要条件是所有偏导为0
4,证明开集上的凸函数连续
5.证明斐波那契数列倒数和收敛(厦大那本上的)
6.证明很长的一个积分不等式
7证明点到点集的那个下确界函数一致连续
8证明质数的倒数和发散
9证明一个函数的极限在无穷远点的值为0
(线代与微分方程真题)一共十道前四道为微分方程后六道为高代
1.计算一个伯努力微分方程(简单)
2.计算一个非齐次的待定系数的方程(简单)
3.计算一个微分方程组(简单)
4.忘了,反正四个微分方程都很简单
5.计算一个矩阵的N次方
6一个矩阵的证明(简单)
7计算一个行列式
8计算一个分块矩阵的逆矩阵(这个题目我觉得是最难的)
9.计算矩阵的特征根
10,计算一个矩阵的若儿当标准型。
2011数值分析试题及答案

解:由 x( k 1) Mx( k ) g 和 x* Mx* g 可得:
x( k 1) x* M ( x( k ) x* ) , k 0,1,2,...
递推的: x( k ) x* M k ( x(0) x* ) 设 y 是矩阵 M 属于特征值 的特征向量,取 x(0) y x* ,则有:
1 1
1 0 0 0 0.3 0.2 0 0.3 0.2 0 0. 4 G ( D L) U 0 1 0 0 0 0.4 0 1 0 1 0 0 0 0 0. 3 0. 2
3 5x f ( xk ) xk a a , xk 1 k 2 , k 0,1,2,... xk xk 2 6 f ( xk ) 6 xk 6 xk
一、解答下列各题: (每题 5 分,共 30 分) 1.设近似值 x 具有 5 位有效数字,则 x 的相对误差限为多少? 解:记 x 0.a1a2 ...10 ,则 x 的相对误差为:
五、 (4 分)设矩阵 M 是 n 阶方阵, M 有一个绝对值小于 1 的特征值 ,且方程 组 x Mx g 有 唯 一 解 x * , 证 明 : 存 在 初 始 向 量 x ( 0 ) 使 迭 代 格 式 :
x ( k 1) Mx ( k ) g , k 0,1,2,...产生的序列 {x ( k ) } 收敛到 x * .
常微分方程试题答卷及参考答案

2010-2011学年第二学期常微分方程考试AB 卷答案理学院年级信息与计算科学专业 填空题(每题4分,共20分)1.形如)()('x Q y x P y +=()(),(x Q x P 连续)的方程是一阶线性微分 方程,它的通解为⎪⎭⎫ ⎝⎛⎰+⎰-⎰=c dx dxx P e x Q dx x P e y )()()(. 2.形如0y y '''-=的方程是3阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=.3.形如1111110n n nn n n n n d y d y dyx a x a x a y dx dxdx----++++=的方程为欧拉方程,可通过变换t x e =把它转化成常系数方程. 4.2(1)0,ydx x dy ++=满足初始条件:x =0,y =1的特解11ln 1y x=++5.5.微分方程0000(,),(),:,dyf x y y x y R x x a y y b dx==-≤-≤满足的解存在且唯一的条件是: (,)f x y 在R 上连续且满足利普希茨条件一、下列微分方程的解(每题5分,共30分) 1.dx dy =2)(1y x + 解:令x+y=u ,则dx dy =dxdu -1……………………….3 dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c (5)2.()()053243=+++xdy ydx y xdy ydx x解:两边同乘以y x 2得:()()0532*******=+++ydy x dx y x ydy x dx y x (3)故方程的通解为:c y x y x=+5324 (5)3.2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy=,则2p x y +=,两边对x 求导,得dxdp pp 21+= pp dx dp 21-=,……………………….3 解之得()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2, (4)且y=x+1也是方程的解,但不是奇解 (5)4.04)5(='''-x x解:特征方程0435=-λλ有三重根0=λ,42λ=,52λ=-............................3 故通解为54232221c t c t c e c e c x t t ++++=-. (5)5.4523x x x t ''''''--=+解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3)又因为=λ0是特征根,故可以取特解行如2x At Bt =+代入原方程解得A=1425,B=25- (4)故通解为x=5212325t t c e c e c t t -++- (5)6.2ln 0,xy y y '-=初值条件:y(1)=e解:原方程可化为ln dy y ydx x=………………………1 分离变量可得ln dy dxy y x=…………………………………………………..3两边积分可得ln y cx =…………………………………………………..4将初值代入上式求得方程的解:ln 2y x = (5)二、求下列方程(组)的通解(每题10分,共30分)1.求一曲线,使其任一点的切线在OY 轴上的截距等于该切线的斜率. 解:设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:dyy xdx-……………………….3 由题意得dyy x x dx-=即11dy y dx x =- 也即ydx xdy dx -+=- 两边同除以2x ,得2ydx xdy dxx x-+=-………………….5 即()ln yd d x x=- (7)即ln y cx x x =+……………………….10 为方程的解。
西安石油大学研究生数值分析10 11年试题

一、填空题(每题2分,共20分) 1.近似数 x =0.231关于真值x=0.229有
位有效数字。 。
n
2.求方程 f ( x) 0 的根时,对应的牛顿切线法迭代公式为 3.设 l i ( x) (i=0,1,2,…,n)是n次拉格朗日插值基函数,则
4 0 x1 5 2 3 1 1 x 2 9 2 2 0 x 3 3
四、(12分)写出解线性方程组
4 x1 2 x3 4 x1 4 x 2 2 x3 1 的高斯—赛德尔迭代法的迭代格式,并判断其收敛性。 3 x 5 x x 2 2 3 1
l ( x) =
i 1 i
。
4.求解微分方程初值问题
y ' f ( x, y ) 时,设x节点步长为h,则欧拉预估— y ( x0 ) y 0
迭代法和
校正方法的局部截断误差为 。 5.若线性方程组AX=b的系数矩阵A为严格对角占优矩阵,则 迭代法收敛。 6.差商与向前差分满足关系: 差商与向后差分满足关系: 7.用数值方法求积分 。 。
五、(12分)已知一组观察数据为 i 0 1 2 2 3 3 4
xi
1
yi
0
-5
-6
3
试用此组数据构造3次牛顿插值多项式 N 3 ( x) ,并计算 N 3 (1.5) 的值。 六、(12分)试确定经验公式 y ae 中的参数a和b(a为正数),使该函数曲线与下列数
bx
据按最小二乘原则相拟合(至少保留ห้องสมุดไป่ตู้位小数)。 1 2
xi
3 20
青岛大学考研真题常微分方程2011

青岛大学2011年硕士研究生入学考试试题科目代码:877科目名称:常微分方程(共3页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效一、填空题(20分,每小题4分)1.所谓微分方程就是一个或几个联系着之间关系的等式。
2.在微分方程中,必定含有未知函数的导数项,其中出现的就称为该微分方程的阶数。
3.对于n 阶方程0),...,,,,()(=′′′n y y y y x F ,如果它的解),...,,,(21n c c c x y ϕ=含有n c c c ,...,,21,则称这个解为其。
4.对于线性微分方程来说,其通解包含了它的;对于非线性方程来说其通解并不一定包含其。
5.形如n y x Q y x P dxdy)()(+=的方程,称为方程。
二、根据下图建立相应的微分方程(15分)如图所示,在一根长度为l 的可略去重量不计且不伸长的线上拴着一个质量为m 的小球,让它在过摆动线固定点的铅锤平面上的垂线附近摆动。
ϕ表示摆动线与垂线的夹角,并定义逆时针方向为正向,反之为负向。
试写出小球的摆动方程。
三、回答下列各题(25分)1.指出下列微分方程的阶数并判断是否为线性方程(1)yx dx dy 4sin −=,(2)0633=++xy dx dy y dxyd 2.什么是常微分方程的特解?何为初值问题?3.写出齐次和非齐次线性微分方程组的一般形式;叙述叠加原理;若)(1x ϕ和)(2x ϕ是非齐次线性微分方程组的解,问2211ϕϕϕc c +=是否仍为该非齐次线性微分方程组的解?四、叙述初值问题解的存在唯一性定理(Picard 定理)(10)五、利用变量分离法求解下列方程(25分)1.x y dx dycos 2=2.31−++−=y x y x dx dy 六、判定下列方程是否是全微分方程,并求解。
(20分)1.0)128()83(22322=++++dy y y x x dx xy y x 2.利用积分因子法求解方程0)(344=−+dy xy dx y x 七、求下述线性方程组的基本解矩阵(14分)x x ⎥⎦⎤⎢⎣⎡=′2012八、求下述初值问题的解(11分)⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=′11)0(,03201x e x x t九、(10分)给定非线性微分方程组)(x f x =′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题一及答案----------------------------------------------------------------------------------------------------------------------1.用欧拉法解初值问题⎩⎨⎧1=060≤≤0--='2)().(y x xy y y ,取步长h =0.2.计算过程保留4位小数。
解:h =0.2, f (x )=-y -xy 2.首先建立欧拉迭代公式),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0.2时,已知x 0=0,y 0=1,有 y (0.2)≈y 1=0.2×1(4-0×1)=0.800 0当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.614 4,有y (0.6)≈y 3=0.2×0.614 4×(4-0.4×0.4613)=0.800 02.对于初值问题⎩⎨⎧1=0='2)(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值.3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([211+++k k k k y x f y x f h, h =x k +1-x k(k =0,1,2,…,n -1),4.将下列方程化为一阶方程组(1)430(0)1,(0)0y y y y y '''-+=⎧⎨'==⎩(2)2322ln (1)1,(1)0x y xy y x x y y '''⎧-+=⎨'==⎩ (3)26(0)1,(0)1,(0)2y y y y y y ''''⎧=⎨'''==-=⎩5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。
6.下列各题先用龙格――库塔法求表头,然后用阿当姆斯法继续求以后各值(1)⎩⎨⎧==≤≤-=1.03)1(5.112'h y x y x y(2)⎪⎩⎪⎨⎧==≤≤=+1.01)1(5.1111'2h y x xy x y7.试确定公式11211()n n n n nn n y ay by cy h dy ey fy +--+-'''=+++++中的系数,,,,,a b c d e f ,使之成为一个四阶方法.8.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==9. 2.(1)0,dx x dy y ++=并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题二及答案----------------------------------------------------------------------------------------------------------------------1.用欧拉预报-校正公式求解初值问题⎩⎨⎧1=10=++'2)(sin y x y y y ,取步长h =0.2,计算 y (0.2),y (0.4)的近似值,计算过程保留5位小数.l解:步长h =0.2, 此时f (x ,y )=-y -y 2sin x .欧拉预报-校正公式为:⎪⎩⎪⎨⎧++=+=++++)],(),([2),(1111k k k k k k k k k k y x f y x f hy y y x hf y y 校正值预报值有迭代公式:⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=--+--+=-=--+=++++++++)sin (1.0)sin 1.09.0()]sin ()sin [(2)sin 2.08.0()sin (121112112121k k k k k k k k k k k k k k k k k k k k k k x y y x y y x y y x y y h y y x y y x y y h y y 校正值预报值 当k =0,x 0=1, y 0=1时,x 1=1.2,有631710=11⨯02-80⨯1=20-80=0001.)sin .()sin ..(x y y y715490=21631710+63171010-1⨯1⨯10-90⨯1=≈2121.).sin ..(.)sin ..().(y y 当k =1,x 1=1.2, y 1=0.71549时,x 2=1.4,有476970=21715490⨯02-80⨯715490=20-80=1112.).sin ..(.)sin ..(x y y y).sin ..(.).sin ...(.).(41476970+47697010-21⨯715490⨯10-90⨯715490=≈4122y y=0.526082.试写出用欧拉预报-校正公式求解初值问题⎩⎨⎧1=00=+')(y y y 的计算公式,并取步长h =0.1,求y (0.2)的近似值.要求迭代误差不超过10-5.3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([211+++k k k k y x f y x f h, h =x k +1-x k(k =0,1,2,…,n -1),4.求出梯形格式的绝对稳定性区域.5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。
6.用差分法求方程⎩⎨⎧===+''1)1(0)0(0y y y y的数值解(h = 0.2)7yxy dx dy x y 321++=解:原式可化为:x x y xx y x yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然(1)(1)0110000ln ln ,ln ,ln ;0;0.x ydx y xdy x yy x xy dx dy x yx x y y c xy x y c xy x y c y x ++-=+-==≠==++-=+-==-===8:解:由或是方程的解,当时,变量分离两边积分即故原方程的解为----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题三及答案----------------------------------------------------------------------------------------------------------------------1.写出用四阶龙格-库塔法求解初值问题⎩⎨⎧2=03-8=')(y yy 的计算公式,取步长h =0.2计算y (0.4)的近似值.计算过程保留4位小数. 解:此处f (x ,y )=8-3y , 四阶龙格-库塔法公式为)22(643211κκκκ++++=+hy y k k其中 κ1=f (x k ,y k );κ2=f (x n +12h ,y k +21h κ1);κ3=f (x k +12h ,y n +21h κ2);κ4=f (x k +h ,y k +h κ3)本例计算公式为:)(.43211++2+2+620+=κκκκk k y y其中 κ1=8-3 y k ;κ2=5.6-2.1 y k ;κ3=6.32-2.37y k ; κ4=4.208+1.578y k)1,...,2,1,0(5494.02016.1))578.1208.4()37.232.6(2)1.26.5(238(62.01-=+=-+-+-+-+=+n k y y y y y y y k k k k k k k 当x 0=0,y 0==2,46542=30042⨯54940+20161=54940+20161=≈4030042=2⨯54940+20161=54940+20161=≈201201......).(.....).(y y y y y y2.对于初值问题⎩⎨⎧1=0='2)(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值.3.用Euler 法解初值问题(0)0y ax b y '=+⎧⎨=⎩,证明:其截断误差为21()2n n y x y anh -=,这里n x nh =,n y 是Euler 法的近似解.4.求出梯形格式的绝对稳定性区域.5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。