数列极限存在的条件
数列的极限与边界

数列的极限与边界数列是数学中的一个重要概念,它由按照一定规律排列的一系列数字组成。
数列的极限与边界是数列在逼近终点时所遵循的规律与限制。
本文将探讨数列的极限与边界。
一、数列的极限数列的极限是指当数列的项无限逼近某个值时,该值被称为数列的极限。
数学符号表示为liman=n→∞。
1. 无穷大与无穷小在数列中,当数列的项无限逼近正无穷或负无穷时,我们称之为无穷大。
而当数列的项无限逼近零时,我们称之为无穷小。
2. 极限的存在性数列的极限并不总是存在,有些数列的极限是不存在的。
存在极限的数列被称为收敛数列,不存在极限的数列被称为发散数列。
3. 收敛数列的性质收敛数列具有以下性质:- 收敛数列的极限是唯一的;- 若数列{an}与{bn}分别收敛于a和b,则{an+bn}也收敛,并且其极限为a+b;- 若数列{an}收敛于a,且对于每一个n,有an≤bn≤cn,则数列{bn}和{cn}也收敛,并且它们的极限都是a。
二、数列的边界数列的边界是指数列的项在有限范围内所能够达到的上下限。
在数列中,存在上确界和下确界。
上确界是指数列的项中最大的一个值,而下确界是指数列的项中最小的一个值。
1. 上确界的定义对于数列{an},如果存在一个实数M,使得对于任意的n,都有an≤M成立,那么M就是该数列的上确界。
2. 下确界的定义对于数列{an},如果存在一个实数m,使得对于任意的n,都有an≥m成立,那么m就是该数列的下确界。
3. 数列的有界性如果数列既有上确界,又有下确界时,我们称该数列是有界的;如果不存在上确界或下确界,则该数列是无界的。
三、数列的极限与边界的关系数列的极限与边界是数列的内在联系。
在数列中,若数列的极限存在,则该数列必定是有界的,即存在上确界和下确界。
1. 极限与上确界的关系对于收敛数列{an},当其极限存在时,该极限即为该数列的上确界。
2. 极限与下确界的关系对于收敛数列{an},当其极限存在时,该极限即为该数列的下确界。
数学分析9数列极限存在的条件

§3 数列极限存在的条件教学目的:使学生掌握判断数列极限存在的常用工具。
教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性。
教学重点:单调有界定理、Cauchy 收敛准则及其应用。
教学难点:相关定理的应用。
教学方法:讲练结合。
教学程序:引言在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。
这是极限理论的两基本问题。
在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值。
本节将重点讨论极限的存在性问题。
为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。
从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛。
例如{}(1)n -。
但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。
为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。
一、 单调数列定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列。
递增和递减数列统称为单调数列.例如:1n ⎧⎫⎨⎬⎩⎭为递减数列;{}2n 为递增数列;(1)n n ⎧⎫-⎨⎬⎩⎭不是单调数列。
二、 单调有界定理〔问题〕 (1)单调数列一定收敛吗?;(2)收敛数列一定单调吗?一个数列{}n a ,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。
数学分析2-323 数列极限存在的条件

n
2
) 1
1 (1 1 )(1 2 ) (1 n 1)
n! n 1 n 1
n1
1 (1 1 )(1 2 ) (1 n ).
(n 1)! n 1 n 1
n1
把 en 和 en1的展开式作比较就可发现, en 的展开
式有 n 1 项,其中的每一项都比 en1 的展开式中
的前 n 1 项小,而 en1 的最后一项大于零.因此
n(n 1) n!
11 nn
1 1 1 (1 1 ) 1 (1 1 )(1 2 ) 1! 2! n 3! n n
1 (1 1 )(1 2 ) (1 n 1),
(1)
n! n n
n
前页 后页 返回
由此得
en1
1
1 1!
1 (1 2!
1 n
) 1
1 (1 3!
1 n
)(1 1
A2 2 A,并解出 A 2, A 1.
由极限的不等式性, 知道 A 0 , 所以
lim
n
an
2
.
前页 后页 返回
例2 下面的叙述错在哪儿?
“设 an 2n, n 1, 2, , 则
an1 2n1 2an .
因为显然有
an
0,
所以
{ an }
递增 . 设
lim
n
an
A,
从而得出
A 2A A 0,
即 lim 2n 0 .” n
以前知道圆周率 π 是一个重要的无理数,现在来
介绍另一个重要的无理数 e.
前页 后页 返回
考察数列
en
(1
1 n
)n
的收敛性,下面的证法
高等数学 第1章 第七节 极限存在准则 两个重要极限

则
lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n
的
极
限
存
在,
且
lim
n
xn
a.
准则1 若
1当x
U
x
极限的存在准则

例3
证明 lim n 1.
n
1 n
证
当 n 1 时,
n 1, 令 n 1 an , (an 0)
根据牛顿二项式公式
1 n
1 n
则 n (1 an )n , n (1 an )n
n( n 1) 2 n( n 1) 2 n 1 nan an an an , 2 2
极限的存在准则
一、夹逼准则 二、单调有界收敛准则 三、极限存在的柯西准则
一、夹逼准则
准则 (数列收敛的夹逼准则)
如果数列{ xn }、 { yn } 及 { zn } 满足下列条件 : (1) yn xn zn
n
( n 1, 2, 3, );
n
( 2) lim yn a , lim zn a , 那么数列{ xn } 存在, 且 lim xn a .
x x0 ( x ) x x0 ( x ) x x0 ( x ) o
lim h( x ) A,
那么 lim f ( x ) 存在, 且等于 A.
n2 sin n2 例1 求极限 lim . n n
3
解
0
3
n2 sin n2 3 n2 1 3 n 0, n n n
3
n2 sin n2 0. 根据夹逼准则可知 lim n n
说明 : 利用夹逼准则求极限关键是构造出 yn 与 zn , 并且 yn 与zn 的极限是容易求的 .
1 1 1 . 例2 求 lim 2 2 2 n n 1 n 2 n n 1 1 n n , 解 2 2 2 2 n 1 n n n 1 n n 1 n 1, 又 lim 2 lim n n n n 1 1 n n 1 lim 2 lim 1, 由夹逼准则得 n n 1 n 1 1 2 n 1 1 1 lim 2 1. 2 2 n n 1 n 2 n n
极限存在准则两个重要极限公式

夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:
当
x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积
即
1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限
说 明: 单调下降有下界数列必有极限 (1) 在收敛数列的性质中曾证明:收敛的数列一定 有界,但有界的数列不一定收敛.
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.
又
xn
1
1
n
n
1
1
ห้องสมุดไป่ตู้n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
2023年12月9日星期六
4
目录
上页
下页
返回
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
)
( n 1, 2,
), 且
x1 0,
a0,
求
lim
n
xn
.
利用极限存在准则
高数二 1.5极限存在的条件

证 N1 0, N 2 0, 使得
当 n N 1时恒有 yn a , 当 n N 2时恒有 z n a ,
取 N max{ N 1 , N 2 }, 即 a y n a ,
上两式同时成立,
极限存在的条件
极限存在的条件
1.夹逼准则
准则Ⅰ 如果数列 x n , y n 及z n 满足下列条件:
(1) yn xn zn
n
( n 1,2,3)
( 2) lim yn a , lim zn a ,
那末数列 x n 的极限存在, 且lim x n a .
n
n
若 lim f ( x ) A, 数列f ( xn )是f ( x )当x a
x a n
时的一个子列, 则有lim f ( xn ) A.
证 lim f ( x ) A
x x0
0, 0, 使当0 x x 0 时, 恒有 f ( x ) A .
y
sin x x
2 n n1 1 sin 2 1 lim n sin 1, lim n n 1 n n n
函数极限与数列极限的关系
推论 函数极限存在的充要条件是它的任何子 列的极限都存在,且相等.
例4 证明 lim sin
x 0
1 不存在. x
y sin 1 x
1 证 取 x n , n
lim xn 0,
n
且 xn 0;
1 取 x , lim x 且 x n n 0, n 0; 4 n 1 n 2
又 lim xn x0 且 xn x0 ,
数列极限存在的条件

1 2
n
2
n
2
2n 2n
1
n1
n 1 n2
1
n2
1
n1
2n
n 1 1 n 2
n1 n2 2n
n3 4n2 4n 1 1, n3 4n 2 4n
yn ↘.
显然有 xn yn . n, 有 xn yn y1 4. 即数列{ yn }有上界. 评註: 该证法的特点是惊而无险,恰到好处.
1 ↘.
1
1
n
xn
1
1
1
2
n
n
2
证法四 ( 仍利用均值不等式 )
n个
1
1
n
1
1
1
1
1
1
n n n n
n1
1
n1
1 n
1
n
2 n1
1
1
n1
.
n 1 n 1 n 1
xn xn1 ,
即 xn ↗.
“均值不等式妙用两则”.
证法五 先证明:对 0 a b 和正整数 n ,有不等式
a1
a2
a n1
1
1, n 1
an 1,
可仿上证得 n 3 时
1
1 n
n
↗。
( n 1时无意义, n 2 时诸 ai = 0 , 不能用均值不等式. ) 当 n 2 时, 由
1
1 1 n
1 1 n
1 n2
1,
1
1 n
1 1
1
.
n
1
1n
n
1
1
1
n
.
由
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3 数列极限是否存在的条件在研究比较复杂的数列极限问题时,通常先考察该数列是否有极限(极限的存在性问题);
若极限存在,再考虑如何计算此极限(极限值的计算问题)。
这是极限理论的两个基本问题。
在实际应用中,解决了数列极限的存在性问题之后,即使极限的计算较为困难,但由于当充分大时,能充分接近其极限,故可用作为的近似值。
为了确定某个数列是否存在极限,当然不可能将每一个实数依定义一一验证,根本的办法是直接从数列本身的特征来作出判断。
若数列的各项满足关系户式则称为递增(递减)数列。
递增数列和递减数列统称为单调数列。
定理1(单调有界定理)单调有界数列必收敛(必有极限)。
证明:不妨设为有上界的递增数列。
由确界原理,数列有上确界,记。
下面证明。
事实上,,按上确界的定义,存在中某一项,使得。
又由的递增性,当时有。
另一方面,由于是的一个上界,故对一切都有。
从而当时有。
这就证明了。
同理可证有下界的递减数列必有极限,且其极限为它的下确界。
例1 求
解:由均值不等式, 得有下界;
不偿失注意到对有并且
↘···,
故
例2 数列单调有界性.
证明: 设应用二项式展开,得
,
+
注意到
且比多一项即↗.
有界.
综上, 数列{}单调有界.
单调有界定理只是数列收敛的充分条件。
下面给出在实数系中数列收敛的充分必要条件。
定理2(柯西Cauchy收敛准则)数列收敛的充要条件是:,使得当时有。
这个定理从理论上完全解决了数列极限的存在问题。
柯西收敛准则的条件称为柯西条件,它反映的事实:收敛数列各项的值愈到后面,彼此愈是接近,以至充分后面的任何两项之差的绝对值可小于预先给定的任意小正数。
柯西收敛准则把定义中与的关系换成了与的关系,其好处在于无需借助数列以外的数,只要根据数列本身的特征就可以鉴别其收敛性。
例3:证明任一无限十进小数的位不足近似所组成的数列
(2)
满足柯西条件(从而收敛),其中为中的一个数,。
证明:记。
不妨,则有
对任给的,取,则对一切有。
这就证明了数列(2)满足柯西条件。
利用Cauchy收敛准则求极限的例子。
例3:设,,,求;
解:设,显然.
由于, 则
.
于是
().
由Cauchy收敛准则知:存在,把它记为.
由极限的四则运算,在两端同时取极限,得.
注意到,故.
注:Cauchy收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性.。