数列极限的概念及定义性质

合集下载

数列极限的概念与性质

数列极限的概念与性质

数列极限的概念与性质数列是数学中一种非常重要的数学对象,它在许多领域都有广泛的应用。

而数列的极限是数列理论中的一个基本概念,通过对数列的极限的研究,可以揭示数列的性质和规律,进一步拓展数学的应用领域。

一、数列极限的概念数列极限是数学中一个非常重要的概念,它描述了数列随着项数增加而趋近的某个确定值。

对于一个数列{an},当n趋近于无穷大时,如果存在一个实数A,使得对于任意给定的正实数ε,总存在自然数N,使得当n>N时,有|an - A|< ε成立,那么数A就是数列{an}的极限,记作lim(n→∞) an = A。

二、数列极限的性质1. 唯一性:数列的极限如果存在,则唯一。

这意味着一个数列不可能有两个不同的极限。

2. 有界性:如果一个数列存在极限,则它是有界的,即数列中的所有项都在某个范围内。

3. 保号性:如果数列{an}的极限为A,则当n足够大时,数列的每一项与A的关系与A的正负号相同。

4. 极限的四则运算:如果两个数列{an}和{bn}的极限都存在,则它们的和、差、乘积、商的极限也存在,并且有相应的运算规律。

5. 夹逼定理:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且li m(n→∞) an = lim(n→∞) cn = A,那么lim(n→∞) bn = A。

6. 收敛数列的有界性:如果数列{an}的极限存在,则数列{an}是有界的。

7. 子列的极限:如果数列{an}的极限为A,则它的任意一个子列的极限也为A。

三、数列极限的应用1. 无穷级数:通过对数列极限的研究,可以求解各种无穷级数的和,如等比级数、调和级数等。

2. 函数极限:函数极限可以看作是数列极限的推广,通过对数列的极限性质的研究,可以进一步推导函数的极限性质。

3. 微积分:微积分中的导数和积分都与数列的极限密切相关,数列极限的概念和性质对于理解微积分理论非常重要。

4. 计算机科学:数列极限的思想也可以应用到计算机科学中,通过数值计算的方法来逼近数列的极限,解决计算问题。

数列极限的定义与性质

数列极限的定义与性质

数列极限的定义与性质数列是由一系列按特定规律排列的数字组成的序列。

在数学中,了解数列的极限是非常重要的。

通过研究数列的极限,我们可以揭示数列的性质,并且可以应用到不同的领域中。

本文将探讨数列极限的定义与性质,帮助读者更好地理解和应用数列。

一、极限的定义数列的极限是指当数列中的项趋近于某个值时,数列的值也趋近于该值。

数列极限可以用以下方式进行定义:设有数列 {a_n},其中 n 表示数列中的项的索引(在数列中的位置)。

若对于任意给定的正实数ε,都存在正整数 N,使得当 n > N 时,有|a_n - A| < ε 成立,则称数列 {a_n} 的极限为 A,记作lim(n→∞) a_n = A。

其中,|a_n - A| 表示 a_n 与 A 之间的差的绝对值。

ε (epsilon) 是一个任意小的正实数,N 是一个正整数。

二、极限的性质数列极限具有以下性质:1. 极限的唯一性:设数列 {a_n} 的极限为 A,则数列的极限是唯一的,即不存在另外的极限值。

2. 极限的有界性:若数列 {a_n} 的极限为 A,则对于任意给定的正实数ε,存在正整数 N,使得当 n > N 时,有|a_n| < |A|+ε 成立。

换句话说,当 n 足够大时,数列的值都在 A 的某个邻域内。

3. 极限的保号性:若数列 {a_n} 的极限为 A,且 A > 0 (或 A < 0),则存在正整数 N,使得当 n > N 时,有 a_n > 0 (或 a_n < 0) 成立。

也就是说,当 n 足够大时,数列的值与其极限符号一致。

4. 极限的四则运算:设数列 {a_n} 和 {b_n} 的极限分别为 A 和 B,则有以下四则运算定理:- 两个数列的和的极限等于两个数列的极限的和,即lim(n→∞) (a_n + b_n) = A + B。

- 两个数列的差的极限等于两个数列的极限的差,即lim(n→∞) (a_n - b_n) = A - B。

数列极限的基本概念与性质

数列极限的基本概念与性质

数列极限的基本概念与性质数列是数学中的重要概念之一,它由一系列按特定顺序排列的数所组成。

数列的极限是研究数列性质的基本概念之一,它描述了数列中数值的趋势和变化规律。

本文将介绍数列极限的基本概念和性质,并讨论其在数学和实际问题中的应用。

一、数列极限的基本概念数列极限是指当数列的项数无限增加时,数列中的数值是否会趋于某一个固定的值。

具体而言,对于一个数列{an},当存在一个实数a,对于任意给定的正数ε,总存在正整数N,使得当n>N时,有|an - a| < ε成立,则称数列{an}收敛于a,记作lim(n→∞)an = a。

如果数列不存在这样的实数a,则称数列{an}发散。

二、数列极限的性质1. 极限的唯一性:如果数列{an}收敛,那么它的极限是唯一的。

即如果lim(n→∞)an = a且lim(n→∞)an = b,则a = b。

2. 有界性:收敛的数列是有界的。

即如果lim(n→∞)an = a,则存在正数M,使得对于任意的n,有|an| ≤ M成立。

3. 极限的保号性:如果数列{an}收敛于a且a>0,那么从某一项开始,数列{an}的所有后续项都大于0。

类似地,如果a<0,则所有后续项都小于0。

4. 收敛数列的性质:如果数列{an}和{bn}分别收敛于a和b,则数列{an + bn}和{an × bn}也收敛,并且它们的极限分别为a + b和a × b。

三、数列极限的应用数列极限在数学和实际问题中有着广泛的应用。

以下列举几个典型的例子:1. 函数极限:函数极限是数列极限的一种推广。

通过将函数的自变量限制在一组无限逼近的数值上,可以研究函数在特定点的极限值。

2. 近似计算:利用数列极限的性质,可以通过有理逼近法近似计算无理数,如计算π的值等。

3. 经济学模型:经济学中的一些模型可以用数列来表示,通过分析数列的极限,可以研究经济模型的稳定性和变化趋势。

4. 物理学问题:在物理学中,数列的极限可以用于描述粒子的运动趋势和变化规律,如速度、加速度等。

第一节 数列极限的定义与性质

第一节  数列极限的定义与性质
,
xn f (n)
然而,从二维角度考察,数列{ x n}可以看作XOY面
表现为一个散点图。
二、数列极限
1、数列极限定义 (1) 数列的散点图 在XOY平面上画出如下数列的散点图:
n (1) { n 1}
1 ( 3) { n } 2
n (1) n } ( 5) { n
n { 2 } ( 2) n {( 1 ) } ( 4)
( 0) . (用反证法证明)
(4). 夹逼准则
(1) yn xn zn ( n 1, 2 , )
(2) lim yn lim z n a
n n
n
lim xn a
证: 由条件 (2) , 0 , N1 , N 2 ,


时, 时,
令 N max N1 , N 2 , 则当 n N 时, 有
机动 目录 上页 下页 返回 结束
例3. 证明数列 证: 用反证法. 假设数列
是发散的.
xn 收敛 ,
2
则有唯一极限 a 存在 .
取 1 , 则存在 N , 使当 n > N 时 , 有 2
a 1 xn a 1
但因
2
xn 交替取值 1 与-1 ,
2
而此二数不可能同时落在
2、收敛数列的性质
(1). 收敛数列的极限唯一. 证: 用反证法. 假设 取
n


因 lim xn a , 故存在 N1 , 使当 n > N1 时,
b 从而 xn a 2
同理, 因 lim xn b , 故存在 N2 , 使当 n > N2 时, 有
n

数列的极限与数列的收敛性

数列的极限与数列的收敛性

数列的极限与数列的收敛性数列是数学中的重要概念,涉及到数列的极限和数列的收敛性是数学分析中的基础知识。

本文将详细介绍数列的极限的概念、性质及相关定理,并探讨数列的收敛性及其与极限的关系。

一、数列的极限的概念及性质数列的极限是数列中数项随着序号趋向无穷时的稳定值。

具体地说,对于数列{an},若存在一个实数a,使得当n趋向无穷时,数列的每一项an都无限接近于a,那么称a为数列的极限。

记作lim(n→∞)an=a或an→a(n→∞)。

数列的极限具有以下性质:1. 极限唯一性:若数列{an}的极限存在,那么极限是唯一的。

2. 极限的有界性:若数列{an}有极限存在,那么该数列必定有界。

3. 极限的保序性:若数列{an}的极限存在,且a<b,则存在正整数N,使得当n>N时,有an<a和an<b成立。

二、数列极限的相关定理1. 夹逼定理:设{an}、{bn}和{cn}为三个数列,并且对于所有的n都有an≤bn≤cn成立。

若lim(n→∞)an=lim(n→∞)cn=a,那么lim(n→∞)bn=a。

2. 递推数列的极限存在性:设数列{an}满足an+1=f(an),其中f(x)在x=a的某个邻域内连续且lim(x→a) f(x)=a。

那么数列{an}存在极限lim(n→∞)an=a。

3. 子数列的极限:若数列{an}有极限lim(n→∞)an=a,那么对于任意单调不减的正整数函数φ(n),子数列{anφ(n)}也有极限lim(n→∞)anφ(n)=a。

三、数列的收敛性数列的收敛性是指数列是否存在极限的性质。

对于数列{an},若存在一个实数a,使得当n趋向无穷时,数列的每一项an都无限接近于a,那么称数列{an}是收敛的;若不存在这样的实数a,则称数列{an}是发散的。

判断数列收敛的方法有多种,常用的有:1. 夹逼准则:若存在两个收敛数列{bn}和{cn},且对于所有的n都有bn≤an≤cn成立,那么若数列{bn}和{cn}的极限都为a,则数列{an}的极限也为a。

数列极限名词解释

数列极限名词解释

数列极限名词解释数列极限是数学中重要的概念之一,它在分析、微积分以及实际问题的建模与求解中扮演着关键角色。

本文将对数列极限进行解释,并介绍其基本概念和性质。

一、数列的定义数列是一系列按照特定规律排列的数字的集合。

通常用{an}或{a1, a2,a3,...}表示,其中每个数an称为数列的项,n表示项的位置或索引。

二、数列的极限定义对于数列{an},当n逐渐增大时,如果数列的项趋向于某个确定的值L,即对于任意给定的正数ε,存在正整数N,当n>N时,满足|an-L|<ε,那么我们说数列的极限存在,记为lim(n→∞)an= L。

这里,L称为数列的极限,n→∞表示当n趋向于无穷大时。

三、极限的直观理解数列的极限可以被理解为当n趋近于无穷大时,数列的项逐渐接近于某个值。

直观上,我们可以将数列的项画在数轴上,随着n增大,数列的项逐渐靠近极限值L。

例如,考虑数列{1/n},当n取不断增大的正整数时,数列的项会逐渐接近0,因此该数列的极限为0。

四、数列极限的性质1.数列的极限是唯一的:如果数列{an}的极限存在,那么它的极限是唯一的,即极限值L唯一确定。

2.有界性:如果数列{an}的极限存在,那么数列必定是有界的,即存在正数M,使得对于任意的n,|an|≤M。

3.极限运算法则:设{an}和{bn}是两个数列,并且它们的极限都存在,则有以下运算法则:a)lim(n→∞)(an±bn)=lim(n→∞)an±lim(n→∞)bnb)lim(n→∞)(k*an)=k*lim(n→∞)an,其中k是常数c)lim(n→∞)(an*bn)=lim(n→∞)an*lim(n→∞)bnd)lim(n→∞)(an/bn)=lim(n→∞)an/lim(n→∞)bn,其中bn≠0五、常见数列极限1.常数数列:对于数列{an},如果an=c,其中c为常数,则该数列的极限为lim(n→∞)an=c。

数列极限概念与性质例题和知识点总结

数列极限概念与性质例题和知识点总结

数列极限概念与性质例题和知识点总结一、数列极限的概念数列是按照一定顺序排列的一列数,例如1,2,3,4,…,n,… 。

数列极限则是描述当数列中的项数无限增大时,数列的取值趋近于某个确定的常数。

用数学语言来表示,如果对于任意给定的正数ε ,总存在正整数 N ,使得当 n > N 时,|an A| <ε 恒成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A 。

通俗地说,就是当数列的项数变得非常大时,数列的项与某个常数A 的距离可以任意小。

二、数列极限的性质1、唯一性:如果数列{an} 有极限,那么极限值是唯一的。

2、有界性:如果数列{an} 有极限,那么数列{an} 一定是有界的。

3、保号性:如果lim(n→∞) an = A ,且 A > 0 (或 A < 0 ),那么存在正整数 N ,当 n > N 时,an > 0 (或 an < 0 )。

三、数列极限的例题例 1:求数列{1 / n} 的极限。

解:对于任意给定的正数ε ,要使| 1 / n 0 |<ε ,即 1 / n<ε ,解得 n > 1 /ε 。

取 N = 1 /ε + 1 (其中 x 表示不超过 x 的最大整数),当 n > N 时,| 1 / n 0 |<ε 恒成立。

所以lim(n→∞) 1 / n = 0 。

例 2:证明数列{(-1)^n / n} 的极限为 0 。

解:对于任意给定的正数ε ,因为|(-1)^n / n 0 |= 1 / n ,要使 1 / n <ε ,解得 n > 1 /ε 。

取 N = 1 /ε + 1 ,当 n > N 时,|(-1)^n / n 0 |<ε 恒成立。

所以lim(n→∞)(-1)^n / n = 0 。

例 3:判断数列{n /(n + 1)}的极限。

解:lim(n→∞) n /(n + 1) =lim(n→∞) 1 /(1 + 1 / n)当n → ∞ 时,1 /n → 0 ,所以 1 /(1 + 1 /n) → 1 。

高中数学数列极限的概念及相关题目解析

高中数学数列极限的概念及相关题目解析

高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。

在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。

本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。

一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。

数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。

数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。

2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。

3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。

二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。

解析:对于这道题目,我们可以通过直接代入数值的方法来求解。

当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。

当n趋于无穷大时,我们可以发现an的值趋近于0。

因此,根据数列极限的定义,lim(an)=0。

2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。

解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。

当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。

因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。

3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

局部 保号性
定理 3(收敛数列的 保号性)如果
lim
n
xn
a
且a>0(或a<0), 则总存在正整数N, 当n>N 时, 有
xn>0 (或 xn<0) .
xN +1, xN +2, xN+3,···
(
)x
a− a a+
推论 如果数列{xn}从某项起有 xn 0 (或 xn0), 且
lim
n
xn
a
则 a 0(或 a 0)
n n
lim(1)n 1 ? 0 .
n
n
例2
证明
(1)n
lim
n
(
n
1)2
0.
证 对 > 0,
取N
[1] 1 ,
则当
n>N
时,

|xn−0 |=
(1)n (n 1)2
0
1 (n 1) 2
1 n
<
,
(1)n

lim
n
(n
1)2
0.
为了简化解不 等式的运算,常 常把 | xn−a| 作 适当地放大.
给定0.001, 给定0.0001,
只要 n>1000时, 有 |xn−1|< 0.001, 只要 n>10000时, 有 |xn−1|< 0.0001,
给定 >0, 当 n N ( [1] )时, 有 |xn−1|< 成立.
定义2 设{xn}为一数列, 如果存在常数a, 对于任意给
定的正数 , 总存在正整数N, 使得当n>N时, 不等式
定义2 “ −N ” 定义
lim
n
xn
a
>
0,
正整数
N
,
当n
>
N
时,恒有
|xn− a |< .
例1*
设 xn=C (C为常数), 证明
lim
n
xn
C.
证 任给 > 0, 取 N = 1 , 则当n>N 时, 恒有
|xn− C |=|C− C | =0 < ,
所以,
lim
n
xn
C.
对一切自然 数 n 恒成立
当n无限增大时, xn 无限接近于1.
问题2 “无限接近”意味着什么? 如何用数学语言刻划“无限接近”
xn 无限接近于1. 就是说 | xn−1|可以任意小 , 要多么小就多么小,
n
1 n
给定0.01,

1 n
0.01,
只要n>100时,

|xn−1|<0.01,
用反证法
五、子数列及其收敛性
| xn−a |<
恒成立. 则称当 n 趋于无穷大时, 数列{xn} 以常数a 为极限, 记作
lim
n
xn
a,
或 xn a (n )
1 如果一个数列有极限, 就称这个数列是收敛的,
{xn}以a为极限, 亦称{xn}收敛于a ;
2如果一个数列没有极限, 就称这个数列是发散的,
习惯上也称
lim
n
xn
不存在.
数列极限的几何意义
a−
2
x2 x1 xN+1 a
a 的任意小 的邻域
a+
xN+2 x3 x
当n>N时, 所有的xn都落在(a−, a+ )内, 只
有有限个(至多只有N个)落在其外. 注:
(1) 是任意给定的, 但是一旦给出之后, 它就确定了.
用它来刻划 xn 与a 的接近程度 .
⑵ N 与 有关, 它随着 的给定而确定.
1 , 1 , 1 , 248
,
1 2n
,
;
xn=2 n
xn
1 2n
1, 1, 1, 1, , (1) n+1,
xn = (1)n+1
2, 1 , 4 , 3 , 6 , 5 , , n (1)n1 , ;
23456
n
n (1)n1
xn
n
2, 2 2 , 2 2 2 , , 2 2 2 ,
§1.2 数列的极限
一、数列的概念 二、数列极限的定义 三、收敛数列的性质
一、概念的引入
求半径为R的圆的面积S 割圆术: ——刘徽
正六边形的面积S1 ,
正十二边形的面积S2 ,
R
正62 n1边形的面积S n ,
S1, S2, S3, ···, Sn , ···
S
二、数列的概念
整标函数
定义1 一个定义在正整数集合上的函数 xn=f (n), 当自变量n按正整数1, 2, 3, 依次增大的顺序取
四、收敛数列的性质
用反证法
定理 1 (极限的 唯一性) 如果数列{xn }收敛, 则它的 极限唯一.
证:
假设
lim
n
xn
a,
lim
n
xn
b,
且 a<b,
由定义,
对 = b a , 对 >0, 正整数N1 , N2 ,
2
当n >N1 时, 有 |xn− a |< , a− <xn<a+ ,
当n >N2 时, 有 |xn− b |< , b− <xn<b+ ,
例3 证明 limqn 0, 其中 0<|q|<1. n
证 对 > 0, 取 N=max{1, [log |q| ] },
则当n >N 时, 有
|xn−0|=| qn −0|= |q| n< n>log|q|
故 lim qn 0. n
用定义证数列极限存在时,关键是对任意
给定 > 0 寻找N, 但不必要求最小的N.
注 数列对应着数轴上一个点列.
xn 2 xn1
可看作一动点在数轴上依次取 x1, x2, ···, xn ,···.
x1 x3 x2 x4
xn
三、数列的极限
考察数列 {1 (1)n1 }当n 时的变换趋势
n
1 4 3 6 5 n (1)n1
2, , , , , , ,
,
23456
n
问题1 当 n 无限增大时, xn是否无限接近于某一 确定的数值? 如果是, 如何确定?
值时, 函数值按相应的顺序排成一串数:
{ x1, x2, ···, xn , ···}
或 f (1), f (2), f (3), , f (n),
称为一个无穷数列, 简称为数列. 记为{xn}或{f(n)}. 数列中的每一个数叫做数列的项.
xn 称为数列{xn}的通项或者一般项.
如 {2, 4, 8, ···, 2 n , ···}
取N =max{N1, N2 }, 则当n>N时,
a
2
b
b−
<
xn<
a+
a
2
b
,
矛盾!
假设错误, 故收敛数列极限唯一.
定理 2 (收敛数列的有界性) 如果数列{xn }收敛,
则它的一定有界.
xN +1, xN +2, xN+3,···
推论 无界数列必定发散.
(
)x
a− a a+
注意:有界性只是数列收敛的必要条件, 有界数列, 不一定收敛.
说明: 常数列的极限等于同一常数.
例1 证明数列
1 4 3 6 5 n (1)n1
2, , , , , , ,
,
23456
n
的极限是1 .


>
0,
取N
1
+1,
则当n>N 时, 恒有
|xn−1|
n (1)n1 n
1
1 n
?
<
,
故 lim n (1)n1 1.
n
n
n 1
lim 1 ? 0,
相关文档
最新文档