matlab三机九节点电力系统仿真(带程序)
Matlab中的电力系统仿真方法

Matlab中的电力系统仿真方法引言:随着电力系统的迅速发展和复杂性增加,电力系统仿真成为电力工程研究和设计的重要工具。
Matlab作为一种强大的数学计算工具,为电力系统仿真提供了丰富的功能和灵活性。
本文将探讨在Matlab中进行电力系统仿真的方法和技术,以及如何利用Matlab解决电力系统设计和优化的问题。
一、概述电力系统仿真是一种模拟电力系统运行和行为的技术,能够帮助分析和解决电力系统中的各种问题。
Matlab在电力系统仿真中具有广泛的应用,提供了强大的建模和计算功能。
利用Matlab进行电力系统仿真可以有效地模拟电力系统的运行和优化算法的性能,为电力系统的设计和运行提供重要参考。
二、电力系统建模在进行电力系统仿真之前,需要对电力系统进行准确的建模。
Matlab提供了各种建模工具和函数,可以用于描述电力系统中的各种元件和拓扑结构。
例如,可以使用Matlab的电路元件库模型化发电机、变压器、线路和负荷等元件,并使用节点和支路等数据结构描述电力系统的拓扑。
同时,Matlab还提供了用于构建电力系统模型的函数和工具箱,如Power System Toolbox和Simulink Power System Blockset。
这些工具提供了模型建立、参数设定和仿真运行等功能,方便用户创建和分析电力系统模型。
三、电力系统仿真技术1. 静态潮流计算静态潮流计算是电力系统仿真中常用的一种方法,用于研究电力系统的潮流分布和电压稳定性等问题。
Matlab提供了多种求解潮流计算的方法,例如基于牛顿-拉夫逊法的Power Flow Toolbox和基于改进迭代法的Fast-Decoupled Power Flow。
这些方法可以通过Matlab编程实现,计算电力系统中各节点的电压、相角和功率等参数。
利用这些计算结果,可以评估电力系统的稳定性、检测潮流拥挤和进行电力负荷分析等。
2. 动态稳定分析动态稳定分析是研究电力系统在暂态和稳态过程中的稳定性问题。
matlab电路仿真教程

matlab电路仿真教程Matlab是一种功能强大的软件,用于进行电路仿真和分析。
通过Matlab,用户可以轻松地进行电路分析、验证和优化。
在本教程中,我将介绍如何使用Matlab进行电路仿真,并提供一些实例来帮助您更好地理解。
首先,我们需要了解Matlab中的电路仿真工具。
Matlab提供了许多函数和工具箱,用于电路建模和仿真。
其中最常用的是Simulink和Circuits工具箱。
Simulink是一个可视化的仿真环境,用于建立和模拟电路系统。
Circuits工具箱则提供了一些基本电路元件和函数,用于电路建模和分析。
要开始使用Matlab进行电路仿真,首先需要安装Matlab和Simulink软件,并确保您具有有效的许可证。
然后,打开Matlab并导航到Simulink库。
在Simulink库中,您将找到许多电路元件,例如电阻器、电容器和电感器,以及电压源和电流源。
将合适的元件拖放到工作区域中,然后连接它们以构建您的电路。
在电路建模完成后,您需要为电路设置适当的参数。
例如,您可以指定电阻、电容和电感的值,以及电压源和电流源的值。
您还可以添加信号源和观察点,以便在仿真期间监视电路的行为。
一旦您完成了电路建模和参数设置,接下来就可以对其进行仿真了。
在Simulink工具箱中,有几种不同类型的仿真可用,例如时域仿真和频域仿真。
通过选择合适的仿真类型,并设置仿真时间和步长,您可以开始执行仿真并观察电路的响应。
在仿真完成后,您可以使用Matlab绘图工具箱中的一些函数来绘制和分析电路响应。
例如,您可以绘制电压随时间的变化曲线,或者计算电源输出和负载电流之间的关系。
通过使用Matlab的分析工具,您还可以进行降阶、优化和参数估计等进一步分析。
让我们通过一个简单的示例来说明如何使用Matlab进行电路仿真。
假设我们有一个简单的RC电路,其中包括一个电阻器和一个电容器。
我们想要了解电容器的电压如何随时间变化。
三机九节点潮流暂态MATLAB仿真

三机九节点潮流暂态MATLAB仿真院系: 自动化学院专业:电力系统及其自动化学号: 姓名: 时间: 1 研究对象1.1 三机九节点系统模型100MW35MVar7239j0.0585j0.06250.0119 + j0.10080.0085 + j0.072B/2 = j0.1045B/2 = j0.0745230/13.818/23018kV13.8kV8230kV230kVB/2 = j0.179B/2 = j0.088B/2 = j0.1530.010 + j0.0850.032 + j0.161 56125MW90MW50MVar30MVarB/2 = j0.079230kV40.017 + j0.0790.039 + j0.170j0.057616.5/23016.5kV1图1.1 WSCC-9系统模型图1.1是一个三机九节点的系统阻抗图,图中给出的阻抗参数都是以100MVA为基准的标幺值。
该图中包括三台发电机,三台双绕组变压器,九条母线(节点)和三个负荷。
本文将对该系统的动态过程进行相应的仿真分析。
1.2 系统参数1.2.1 节点参数按照节点类型,9个节点分为,给出已知参数如下表:表1.1 节点已知参数节点类型电压幅值电压角度发电机有功发电机无功负荷有功负荷无功1 Vθ 1.040 0 0.7160 0.2705 0 02 PV 1.025 1.6300 0.0665 0 03 PV 1.025 0.8500 -0.1086 0 04 PQ 0 05 PQ 1.2500 0.50006 PQ 0.9000 0.30007 PQ 0 08 PQ 1(0000 0.35009 PQ 0 0上表中发电机有功、无功出力和负荷的有功无功功率均为以100MVA为基准时的标幺值。
1.2.2 支路参数表1.2 支路参数首节点末节点电阻电抗电纳一半4 5 0.0100 0.0850 0.08804 6 0.0170 0.0920 0.07905 7 0.0320 0.1610 0.15306 9 0.0390 0.1700 0.17907 8 0.0085 0.0720 0.07458 9 0.0119 0.1008 0.10451 4 0.0000 0.0576 0.00002 7 0.0000 0.0625 0.00003 9 0.0000 0.0586 0.0000上表中所有的参数均为标幺值,对于变压器支路。
(完整版)电力系统分析大作业matlab三机九节点潮流计算报告

电力系统分析大作业一、设计题目本次设计题目选自课本第五章例5-8,美国西部联合电网WSCC系统的简化三机九节点系统,例题中已经给出了潮流结果,计算结果可以与之对照。
取ε=0.00001 。
二、计算步骤第一步,为了方便编程,修改节点的序号,将平衡节点放在最后。
如下图:第二步,这样得出的系统参数如下表所示:第三步,形成节点导纳矩阵。
92132 7 45683第四步,设定初值:01)0(6)0(5)0(4)0(3)0(2)0(1∠======••••••U U U U U U ;0)0(8)0(7==Q Q ,0)0(8)0(7==θθ。
第五步,计算失配功率)0(1P ∆=0,)0(2P ∆=-1.25,)0(3P ∆=-0.9,)0(4P ∆=0,)0(5P ∆=-1,)0(6P ∆=0,)0(7P ∆=1.63, )0(8P ∆=0.85;)0(1Q ∆=0.8614,)0(2Q ∆=-0.2590,)0(3Q ∆=-0.0420,)0(4Q ∆=0.6275,)0(5Q ∆=-0.1710, )0(6Q ∆=0.7101。
显然,5108614.0|},max {|-=>=∆∆εi i Q P 。
第六步,形成雅克比矩阵(阶数为14×14)第七步,解修正方程,得到:=∆)0(1θ-0.0371,=∆)0(2θ-0.0668,=∆)0(3θ-0.0628,=∆)0(4θ0.0732,=∆)0(5θ0.0191,=∆)0(6θ0.0422,=∆)0(7θ0.1726,=∆)0(8θ0.0908;=∆)0(1U 0.0334,=∆)0(2U 0.0084,=∆)0(3U 0.0223,=∆)0(4U 0.0372,=∆)0(5U 0.0266,=∆)0(6U 0.0400。
从而=)1(1θ-0.0371,=)1(2θ-0.0668,=)1(3θ-0.0628,=)1(4θ0.0732,=)1(5θ0.0191,=)1(6θ0.0422,=)1(7θ0.1726,=)1(8θ0.0908;=)1(1U 1.0334,=)1(1U 1.0084,=)1(1U 1.0223,=)1(1U 1.0372,=)1(1U 1.0266,=)1(1U 1.0400。
(完整word版)基于MATLABSimulink的电力系统仿真实验

基于MATLAB/Simulink 的电力系统故障分析10kv 系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:g BlOCk Parameters: Th「ee・P hase SoUrCeThree-Phase SOllrCe (nask} ζlink;7hrGG-phas≡ VOItaZG SoUrCG in SGrieK With RL bxanch.Par>∑n ∙t ∙rsPhase—tO-PhaSG τ≡s volta≡G (V):110. 5e3Phase anrl⅛ Gf chase A (degreGs):lθFrtQutncy (HX):InternaI Conn.action: ∣ Y厂SPeCifr iaped&nce USXnS Sh^Xt V CirCUit IeVeISoUree resistance (Oh=Si:I O. 009SoUrCe inductance (H):116. 58e-5APPIr JOK Cancel Helpt∣∣ BlOCk Parameters; Linel-Three-Phase PZ SeCtion Lin已□a5⅛) (Iink)ThiB block inpleaents a thr«t-phi.i∙ PI section lin∙ to XePreS∙nt a thiGG-phasG transaision line. Thig block iGDresents OnIy OnG Pl section. TO Inplenenteyou si□Dlr need to CanneCt COPiea Qf this block in2>ore that One PI secti∙onjsexies・ParaaQtQTS ---------------------------------------------------------------------FreQUenCy Ueecl for RLC specification (Hz):F5PoIitiVe- Ind z⅜ro-seau⅜nce resiβtances (Ohas/ka) [ K: RO ]:I [ 0.01273 O. 3SG4:Positive* and Zero e SGauenc© inductances ⅛∙,lαι) [ LI LO ]:IT O. 9327e-3 4. 1264e-3]PCSitiV⅛- and ∑4ro∙-ssau4nee ca-pacitanees (FJka;IeICOI :I [12. 74e-9 7. 751e-9ΓLine SeetiOn IGnSth (ka√ :1130OK CanCeI KeIP Apply■OK CanCaI I EelD 厂 删 FUnCtiOn BIOCk Parameters; AddlCu s Acld c ∙r subtract XnPUtS- S^CIfT Cne Oi the fol.ovιng:a. string COntaining ∙ or - for each InPLt port, for SPaCer tetτem PortS (e. c.—・Db) SCaIar >≡ 】・ A value > 1 SUal all inputs: 1 SUnI ∙lts ⅜nts Of a tingle InPLt v ,∙ctorMain ∣ SifnftI data typaκICOn sha□e: ∣ re:t&ngulax▼]LISt Of KXeni:I 4**SaSDle t-n≡ βl for IEherXted):∣∙χ X I Cancel I HeID I Appl ∙BJ c5s3βN∕MUItimeterlHdPAaIbb Q ∖te ∂⅛ufementsU ∆Λ r βbr. LCAd3 LO a ∙133 Uan: TTbri VCΛ Lc&d3i U H : Ub Tht*∙Pb ⅛m F ⅛JlCl/fault. B» α>: IhrCQ-Pbazc fαulτl∕iαu^r C_l Cb- IHLeC ?hase Γa^lvl∕FAulV AI AT. Lo AdiIbU Lcαd3ICn GOad3lb: Ib"Q ∙7hα" I>αultl/fault Blb: Ih^ec _?hasc F aulVl∕Γau2V CUC lb: IhtraA ・7乃a=a FArJItI/FAult A—Σ-J Cown IR«rf)ve*f -IUPMe ⅝⅛∣ SOUrCe BIQCk Parameters; FromF∑o□Keceive SiEnaIC frσ≡ the GOtO block Irith the SDeClfiGd :as ・ If the tae is definedas r scoped , in the GOtO block, then a GOtO TaE ViSlbility bl ∙ock aust te used to definethe VieibiIity Of tht tac ・ After : UPdat ∙ DiaCraa I the block icon displays theSeleCted tag nase >Local taes are encIOSed in brackets. .], and SeODed tag na=es areSneIOSed in braees ; J).L ΦQ 43 Lθft<13 ≥p∣e 匚IEd MeaSU Ξ小 PIOt SdAe ⅛<igpαg Ie wI PiCX制SOUrCe BlOCk Parameters; FrOm4 「町〕一Fro□----------------------------R<c∙iv∙ SdKnalS froa the Goto bl>ck With the specified tar- If tht tae is d<ιfi∏4dseoped, in the Go∙tc Mcelt then a GOtO 7ar Vigibility blσek ≡ust be USGCl to definethe block icon displays the the Vigibility Of the tag. After , Update DiaeraID JISeIeCted tag nazιe (IOCaI tags are enclosed in brackets. and SCQPed tag nazes axeenclose! in braces::}〉・OK Cancel I Help FUnCtiOn BlOCk Parameters: DiSCrete 3・PhaSe SeqUeflCe AnalyZer三相短路仿真波形如下:如图1——a、b、c 三相短路电流仿真波形图分析:正常运行时,a、b、c 三相大小相等,相位相差120 度。
matlab 电力系统仿真 例程

matlab 电力系统仿真例程英文回答:MATLAB Power System Simulation Examples.MATLAB is a widely used software platform for power system simulation due to its robust capabilities and user-friendly interface. Here are a few common examples of power system simulations performed using MATLAB:Load flow analysis: This simulation helps determine the voltage and current distribution in a power system under steady-state conditions. It is used for planning, operation, and analysis of power systems.Transient stability simulation: This simulation assesses the dynamic behavior of a power system during sudden disturbances, such as faults or load changes. It helps ensure that the system remains stable after such events.Power flow optimization: This simulation optimizes the power flow through a power system to minimize losses, improve voltage stability, or reduce operating costs.Renewable energy integration: This simulation helps evaluate the impact of integrating renewable energy sources, such as solar and wind, into the power system.Microgrid modeling: This simulation investigates the performance and control of small-scale power systems, known as microgrids, which can provide localized and resilient power generation.MATLAB offers various toolboxes and capabilities for power system simulation, including:SimPowerSystems: A dedicated toolbox for modeling and simulating electrical power systems, including power generation, transmission, and distribution.Simulink: A powerful simulation environment formodeling dynamic systems, including power systems.Power System Blockset: A library of pre-built blocks for power system components, such as generators, transformers, and transmission lines.中文回答:MATLAB 电力系统仿真示例。
Matlab中的电力系统仿真与稳态分析技术

Matlab中的电力系统仿真与稳态分析技术随着电力系统技术的不断发展,利用计算机软件进行电力系统仿真和稳态分析已经成为一个常见的工具。
Matlab作为一种强大的数学计算和仿真软件,在电力系统仿真和稳态分析中发挥了重要的作用。
本文将探讨Matlab在电力系统仿真和稳态分析中的应用,并对其相关技术进行介绍和分析。
第一部分:电力系统仿真技术的基本原理电力系统仿真是通过建立电力系统的数学模型,模拟实际电力系统运行过程的一种技术。
其基本原理是建立电力系统的节点电压和支路电流方程,使用数值计算方法求解这些方程,以得到电力系统的稳态解。
Matlab在电力系统仿真中常用的函数有powerflow和newton_raphson,它们分别用于求解电力系统的潮流计算和稳定计算。
潮流计算是电力系统仿真中最基本的环节,用于计算电网各节点的电压和支路的电流。
它的实质是求解电力系统的非线性方程组,对于大规模电力系统而言,这个方程组的求解是一个非常复杂的过程。
而Matlab提供了一套强大的数值计算工具箱,能够有效地处理这类问题。
利用Matlab编写的潮流计算程序,可以提供准确的电力系统状态信息。
第二部分:Matlab在电力系统仿真中的应用案例Matlab在电力系统仿真中提供了丰富的函数库和工具箱,可以用于建立电力系统的数学模型、求解电力系统方程组以及进行结果的可视化分析。
下面我们通过一个简单的案例,来展示Matlab在电力系统仿真中的应用。
假设一个3节点的电力系统,其中包括一个发电机节点、两个负荷节点以及电源节点。
我们可以通过Matlab的power_system函数建立电力系统的模型,并使用powerflow函数计算电力系统的潮流分布。
计算完成后,我们可以通过Matlab的plot函数绘制各节点的电压和支路的电流图像,对电力系统的稳态运行情况进行可视化分析。
第三部分:电力系统稳态分析技术的应用除了电力系统仿真,Matlab还可以用于电力系统稳态分析。
Matlab技术在电力系统仿真中的应用指南

Matlab技术在电力系统仿真中的应用指南I. 引言电力系统仿真是电力领域中重要的研究工具之一。
它能够帮助电力工程师、研究人员和决策者分析电力系统的运行情况,评估系统的稳定性和可靠性,并进行优化和规划。
在电力系统仿真中,Matlab技术被广泛应用,本文将探讨Matlab在电力系统仿真中的具体应用指南。
II. 电力系统建模与仿真在电力系统的仿真过程中,建模是关键。
Matlab提供了一系列强大的工具和函数,用于电力系统的建模和仿真。
电力系统通常可以分为三个主要的子系统:发电系统、输电系统和配电系统。
每个子系统都有其特定的建模需求。
1. 发电系统建模发电系统的建模包括发电机、励磁系统和稳定器的建模。
Matlab提供了多种建模方法,如传递函数模型、状态空间模型和非线性模型。
用户可以根据实际情况选择合适的建模方法,并使用Matlab的仿真工具进行系统稳定性和响应性能的评估。
2. 输电系统建模输电系统建模是电力系统仿真中的一个关键环节。
Matlab提供了强大的电力网络建模工具,可以用来建立输电线路、变压器和各种网络拓扑结构。
用户可以通过Matlab的图形用户界面或脚本语言来创建并配置电力网络模型,然后进行仿真分析。
3. 配电系统建模配电系统建模是电力系统仿真的最后一个环节。
Matlab提供了用于建立配电系统的工具和函数。
用户可以使用Matlab的电力系统模块来创建配电网络模型,并进行负载流、短路分析、电能质量评估等仿真计算。
这些模型和仿真分析结果可以帮助用户评估配电系统的可靠性和效益。
III. 电力系统模拟与分析在电力系统仿真中,模拟和分析是非常重要的步骤。
Matlab提供了各种仿真和分析工具,用户可以利用这些工具来模拟电力系统的运行情况,并评估系统的性能。
1. 稳定性分析电力系统的稳定性是电力系统仿真中的一个关键指标。
Matlab提供了用于稳定性分析的工具,可以帮助用户评估电力系统的电压稳定性和频率稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院:自动化学院 专业:电气工程专业 学号: 姓名: 授课教师:江宁强
一、摘要
电力系统仿真计算己经成为电力系统设计、 运行与控制中不可缺少的手段。 通过设 置不同故障类型、 不同故障地点运用仿真技术可以对电力系统的暂态稳定进行分析。 本文采 用 IEEE 3 机 9 节点的经典多机模型,基于隐式梯形积分法对系统发生三相金属性短路故障 进行仿真,分析系统在这种情况下的暂态稳定。发电机模型采用经典的二阶模型;负荷采用 恒定阻抗负荷。在 Matlab2010 上编写程序进行调试和运行。 电力系统是由不同类型的发电机组、 多种电力负荷、 不同电压等级的电力网络等组成的 十分庞大复杂的动力学系统。 其暂态过渡过程不仅包括电磁方面的过渡过程, 而且还有机电 方面的过渡过程。由此可见,电力系统的数学模型是一个强非线性的高维状态方程组。在动 态稳定仿真中使用简单的电力系统模型, 通过仿真计算分析说明, 此仿真方法可以进行简单 的电力系统暂态分析,对提高电力系统暂态稳定具有重要意义。
潮流计算
计算故障前中后发电机 内节点的导纳矩阵
发电机初值计算
列写系统状态方程 (转子运动方程)
调用 ode45 计算发电攻角、 转速变化情况
后处理
图 3-1 仿真流程图
四、仿真模型
在电力系统的机电暂态仿真中, 常根据实际要求的不同, 采用不同时间尺度的仿真模型, 而仿真算法和采用的模型有直接的关系, 下面就本次仿真实例机电暂态过程的仿真模型及其 仿真算法。 一、潮流计算 由于本文以三机九节点为模型,假定节点一为参考节点,这样就有 2 两个发电机的 PV 节 点,6 个 PQ 节点,未知量为 8 个节点(包括 2 个 PV 节点和 6 个 PQ 节点)的电压相角,还有 6 个节点(PQ 节点)的电压幅值。 可以先求出 Y 矩阵
18 KV
2
230 KV j 0.0625 0.0085 j 0.072
负荷C 230 KV
0.0119 j 0.1008
13.8 KV j 0.0586
B / 2 j 0.0745
B / 2 j 0.1045
3
230 / 13.8
2
18 / 230
8
0.032 j 0.161
B / 2 j 0.153
二、案例
本次课程主要应用 P. M. Anderson and A. A. Fouad 编写的《Power System Control and Stability》 一书中所引用的 Western System Coordinated Council (WSCC)三机九节点系统模型。 系统电路结构拓扑图如下:
B=[1 2 3 4 4 5 6 7 8
发电机数据如下: % 发电机 母线 Xd Xd' Td0' Ge=[ 1 1 0.1460 0.0608 8.96 2 2 0.8958 0.1198 6.00 3 3 1.3125 0.1813 8.59
三、仿真框图
在仿真之前,首先,应明确仿真的所要到达的结果,即仿真目标:本此仿真的结果主要 是得到发电机攻角、转速随时间变化的值,包括故障前、故障中、故障后。故障前,系统处 于稳定状态,发电机的攻角、转速基本稳定。而当系统发生故障以及故障切除,系统结构拓 扑发生变化,系统的状态也将随时间发生变化,为了求取系统状态的变化,我们通过对系统 进行简化建立数学模型,得到相关的代数一微分方程组,进行数值计算,从而得到系统状态 的随时间的变化值。 此次仿真的系统以发电机二阶经典模型来进行系统是数学建模, 系统的 状态量为发电机攻角、发电机转速。 其次,当明确仿真目标后,我们就得明确大体的仿真框架流程。 仿真框架流程如下: 数据准备 (支路、节点、发电机)
3
B / 2 j 0.179
7
0.039 j 0.170
9
0.010 j 0.085
0.017 j 0.092
B / 2 j 0.088
B荷B
负荷A
16.5 / 230
16.5 KV
1 1
j 0.0576
4
图 2-1 3 机 9 节点系统 系统数据其中,节点数据如下: 节点号 有无负载 类型 基准 期望电压 N=[1 2 3 4 5 6 7 8 9 0 0 0 0 1 1 0 1 0 3 2 2 0 0 0 0 0 0 1.0400 1.0250 1.0250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 125.00 90.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 50.00 30.00 0.00 35.00 0.00 71.60 163.00 27.00 6.70 16.50 18.00 13.80 230.00 0.00 0.00 230.00 0.00 1.040 1.025 1.025 1.026 0.996 1.013 1.026 1.016 电压 相角 有功负荷 无功负荷 有功出力 无功出力 电压
85.00 -10.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
230.00 1.032];
%支路数据 % 从 到 4 7 9 5 6 7 9 8 9 电阻 0.0 0.0 0.0 0.010 0.017 0.032 0.039 0.0085 0.0119 电抗 0.0576 0.0625 0.0586 0.085 0.092 0.161 0.170 0.072 0.1008 0.0 0.0 0.0 0.176 0.158 0.306 0.358 0.149 0.209 Xq 0.0969 0.8645 1.2578 容纳 1 1 1 0 0 0 0 0 0 Xq' 0.0969 0.1969 0.2500 类型 1 1 1 0 0 0 0 0 0]; Tq0’ Tj 0 47.28 0.535 12.80 0.600 6.02 Xf 0.0576 0.0625 0.0585]; 变比