北京大学研究生入学考试——高等代数与解析几何_试题及答案 2复习进程
高等代数与解析几何考研试题 (2)

北京大学2005 数学专业研究生 数学分析 1. 设x xx x x x f sin sin 1sin )(22--=,试求)(sup lim x f x +∞→和)(inf lim x f x +∞→.解: 22sin 1()sin sin (0,1].sin x x f x x x x x-=∈-首先我们注意到.在的时候是单调增的 222222sin 1sin .sin sin ,,lim sup sin 11x x x x x x x x x x x x x x →+∞-≤≤→+∞---并且在充分大的时候显然有所以易知在时当然此上极限可以令2,2x k k ππ=+→+∞这么一个子列得到.2222sin sin ().lim 0,lim inf 0,lim inf ()0.sin sin x x x x x x f x f x x x x x→+∞→+∞→+∞===--对于的下极限我们注意到而所以有此下极限当然可以令(21),.x k k π=+→+∞这么个子列得到2. (1)设)(x f 在开区间),(b a 可微,且)(x f '在),(b a 有界。
证明)(x f 在),(b a 一致连续.证明:()(,).()(,).f x x a b M f x a b '∈设在时上界为因为在开区间上可微12,(,),x x a b ∀∈对于由,Lagrange 中值定理存在12121212(,),()()()x x f x f x f x x M x x ξξ'∈-=-≤-使得.这显然就是12,,.()(,).Lipschitz x x f x a b 条件所以由任意性易证明在上一致收敛 (2) 设)(x f 在开区间),(b a )(+∞<<<-∞b a 可微且一致连续,试问)(x f '在),(b a 是否一定有界。
(若肯定回答,请证明;若否定回答,举例说明) 证明:否定回答.()(,).f x a b '在上是无界的12()(1),()[0,1].f x x f x Cantor =-设显然此在上是连续的根据定理,闭区间上连续函数一致连续.所以()f x 在(0,1)上一致连续.显然此12121()(1)(0,1).().2(1)f x x f x x -'=-=-在上是可微的而121()(0,1).2(1)f x x -'=-在上是无界的3.设)1(sin )(22+=x x f . (1)求)(x f 的麦克劳林展开式。
2018年北京大学高等代数与解析几何试题及解答

6. (1) 显然V = 0及V = Mn (K )为两个平凡的公共子空间,但不是n维的. 设 Vi = span {E1i , E2i , · · · , Eni } , i = 1, 2, . . . , n. 则Vi 是n维公共子空间. 另外, V = {(α, α, 0, . . . , 0) | α ∈ K n }也是n维公共子空间. (2) 若V ⊂ V , 但是V = 0, 则存在B ∈ V 设bij = 0, 则
u v w
可得 yw − vz = 0
(x − 1)w − (z − 1)u = 0 , (x + 1)v − (y + 1)u = 0 因为(u, v, w) = 0, 因此上述线性方程组有非零解, 从而 0 1−z −z 0 y x−1 w = 0.
−y − 1 x + 1
B= sin θ3
cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 − cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 sin θ2 sin θ1 cos θ2 cos θ1 cos θ2
= cos θ2 sin θ3
9. (15分) 记A是与下面三条直线都相交的直线的并集: 达式f (x, y, z ) = 0,其中f 是一个三元多项式.
y = 0 z = 0
,
x = 1 z = 1
,
x = −1 y = −1
. 给出A的一个一般表
10. (15分) 证明几何空间中任意一个旋转变换f , 只要转轴通过原点, 就一定可以写成f = gz ◦ gy ◦ gx 的形式, 其 中gx , gy , gz 分别表示绕x, y, z 轴的旋转变换.
北京大学基础数学专业-数学基础考试2 (高等代数、解析几何) 讲义-考研资料-考研真题

北京大学基础数学专业-数学基础考试2 (高等代数、解析几何) 讲义-考研资料-考研真题报考北京大学基础数学专业考研专业课资料的重要性根据考研网的统计,87.3%以上报考北京大学基础数学专业考研成功的考生,尤其是那些跨学校的考研人,他们大多都在第一时间获取了北京大学基础数学专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料,精准确定专业课考核范围和考点重点,才确保了自己的专业课高分,进而才才最后考研成功的。
如果咱们仔细的研究下问题的本质,不难发现因为非统考专业课的真题均是由北京大学基础数学专业自主命题和阅卷,对于跨校考研同学而言,初试和复试命题的重点、考点、范围、趋势、规律和阅卷的方式等关键信息都是很难获取的。
所以第一时间获取了北京大学基础数学专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料的考生,就占得了专业课复习的先机。
专业课得高分便不难理解。
那么怎么样才能顺利的考入北京大学基础数学专业呢?为了有把握的的取得专业课的高分,确保考研专业课真正意义上的成功,考研专业课复习的首要工作便是全面搜集北京大学基础数学专业的内部权威专业课资料和考研信息,建议大家做到以下两点:1、快速消除跨学校考研的信息方面的劣势。
这要求大家查询好考研的招生信息,给大家推/shop/2、确定最合适的考研专业课复习资料,明确专业课的复习方法策略,并且制定详细的复习计划,并且将复习计划较好的贯彻执行。
北京大学基础数学专业内部讲义。
因为数学基础考试2 (高等代数、解析几何) 是北京大学基础数学专业核心专业基础课,授课老师权威。
本数学基础考试2 (高等代数、解析几何) 讲义内容全面、重点突出,知识结构清晰,涵盖北京大学基础数学专业全部的考研知识点,可帮助考生迅速准确把握重北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 的考试重点和出题方向。
北京大学基础数学专业的本校考研学生以及当地考生多以此讲义进行复习。
北京大学高等代数和解析几何真题1983——1984年汇总

北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。
121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。
证明:多项式在有理数域上不可约。
20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。
(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。
20,A B 五、(分)设是两个n 级正定矩阵。
证明:AB 是正定矩阵的充要条件是A 与B 可交换。
1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。
10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。
试证:向量不共面。
15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。
(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。
{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。
高等代数(北大版第三版)习题答案II 2

第六章 线性空间1.设,N M ⊂证明:,MN M MN N ==。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM ∈。
又因,M N M ⊂ 故M N M =。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N ⊂所以MN N =。
2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。
证 ),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。
反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL ∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。
若x M NL M N L ∈∈∈(),则x ,x 。
在前一情形X x M N ∈, X ML ∈且,x MN ∈因而()(M L )。
,,N L x M N X M L M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。
证因为,于是,所以,且A不是正定矩阵。
故必存在非退化线性替换使,且在规范形中必含带负号的平方项。
于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。
13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。
证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。
14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。
证必要性。
采用反证法。
若正惯性指数秩r,则。
即,22222 若令,y,则可得非零解使。
这与所给条件矛盾,故。
充分性。
由,知,222故有,即证二次型半正定。
.证明:是半正定的。
证()可见:。
21)当不全相等时2)当时f。
2故原二次型是半正定的。
AX是一实二次型,若有实n维向量X1,X2使16.设,。
X1。
证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。
由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。
不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。
令,,,则由可求得非零向量X0使2222,X0即证。
17.A是一个实矩阵,证明:。
证由于的充分条件是与为同解方程组,故只要证明与同解即可。
事实上,即证与同解,故。
注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。
一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。
n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。
北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]
![北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]](https://img.taocdn.com/s3/m/447c948ecc22bcd126ff0c92.png)
例如,设V = P[x] 是数域 P 上多项式全体所构成的线性空间,定义 Af (x) = f ′(x) , Bf (x) = xf (x) , ∀f (x) ∈V ,
北京大学 2007 年《高等代数与解析几何》试题解答
北京大学 2007 年高等代数与解析几何试题 解答
1、回答下列问题:
(1)问是否存在 n 阶方阵 A, B ,满足 AB − BA = E (单位矩阵)?又,是否存在 n 维
线性空间V 上的线性变换 A ,B ,满足 AB − BA = E (恒等变换)? 若是,举出例子;若否,
的基础解系)构成 n × r 矩阵 C ,则 rank(C) = r ,且 AC = O , BC = O .
考虑齐次线性方程组 CT X = 0 ,其解空间 S 的维数 dim(S ) = n − r = rank( A) .
因为 C T AT = O ,所以 A 的行向量都是 C T X = 0 的解,因此 A 的行空间WA 是 S 的一 个子空间,即WA ⊆ S .注意到 dim(WA ) = rank( A) = dim(S ) ,故WA = S .
容易验证: AB − BA = E . (2)设 n 阶矩阵 A 的各行元素之和为常数 c ,则 A3 的各行元素之和是否为常数?若是,
是多少?说明理由.
【解】是.设 η = (1,1, ,1)T 是 n 维列向量,则由 A 的各行元素之和为常数 c ,知 Aη = cη ,从而 A3η = c3η .所以 A3 的各行元素之和为常数 c3 .
北京大学2020年高等代数与解析几何试题及解答

5. 当 rank(A) < n − 1 时, A∗ = 0, 于是 A∗ 的特征值为 0, 特征向量为 Cn 中任意非零向量.
当 rank(A) = n − 1 时, rank (A∗) = 1, 于是 A∗ 的特征值为 0 (n − 1 重), tr (A∗) (1 重), 设 A∗ = αβT, 则 tr (A∗) 对应的特征向量为 kα, k ̸= 0; 0 对应的特征向量为由 A 的列向量线性生成的非零向量.
8. (20 分) 在平面 π 上取定平面直角坐标系, 设该平面里的一条二次曲线 γ 的方程为 x2 + 2y2 + 6xy + 8x + 10y + 6 = 0.
(1) 证明: γ 是双曲线. (2) 写出 γ 的长短轴方程和长短轴长, 并指出长短轴中哪一个与 γ 有交点.
9. (15 分) 在平面 π 上取定平面直角坐标系, 已知该平面里的一个椭圆 γ 的方程为 x2+8y2+4xy+6x+20y+4 = 0. 求 γ 的内接三角形 (即三个顶点都在 γ 上的三角形) 的面积的最大值.
− sin φj cos φj
=
− sin φj cos φj
][ ]
cos φj
01 ,
sin φj 1 0
(φj ̸= kπ, j = 1, 2, . . . , l) .
注意到若 σ 是正交变换, 则 σ 是镜面反射当且仅当 σ 在 V 中的标准正交基下的矩阵的特征值为 1 (n − 1 重), −1 (1 重), 而把 J 分解成有限个那样的正交矩阵的乘积的分解是存在的, 这里的有限个更 精确一点可改为不超过 n 个, 于是 σ 可以表示为一系列镜面反射的乘积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
(1) 是 上的一个内积,证明如下:
容易验证 是 上的一个双线性函数
对 中任意的非零向量 ,
令 ,是 上的一个多项式函数,有
可得
若 ,由于 在 上连续,则必有 ,
则 ,即 ,与 是 中非零向量矛盾。所以 ,
可知 ,其中 是 阶单位矩阵, 是一个 的矩阵,从而
并且对任意的 ,有
因此 都属于方程组 解空间,从而是方程组 解空间的一组基
4.(1)设数域 上 级矩阵,对任意正整数 ,求
[C是什么?]
(2)用 表示数域 上所有 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为 上的线性空间。数域 上 级矩阵 称为循环矩阵。用 表示 上所有 级循环矩阵组成的集合。
3.设数域 上的 级矩阵 的 元为
(1).求 ;
(2).当 时, .求齐次线性方程组 的解空间的维数和一个基。
解:
(1)
若 ,
若 ,
若 ,
(2)
若 ,则 ,方程组 只有零解,其解空间维数为0
若 ,则由(1)知道 的任意一个3级子式的行列式为0,而 的一个2级子式 的行列式为 ,从而
于是方程组 解空间的维数是 ,取向量组 ,其中 , ,
从而 到 上的正交投影轨迹的方程就是
2.在直角坐标系中对于参数 的不同取值,判断下面平面二次曲线的形状: .
对于中心型曲线,写出对称中心的坐标;
对于线心型曲线,写出对称直线的方程。
解:
记 ,容易验证 ,因此直角坐标变换 是一个正交变换
在这个变换下,曲线方程变为
1) 时, ,曲线为双曲线,是中心型曲线,对称点为
6.设 是数域 上 维线性空间 上的一个线性变换,用 表示 上的恒等变换,证明:
证明:
记
其中 ,
因此 ,
于是
证明: 是 的一个子空间,并求 的一个基和维数。
证:
对任意的 ,以及 ,有
因此
对任意的 ,和 ,有
因此
可知 是 的一个子空间。
记 ,其中 , ,
对任意的 ,有 ,即 所有向量都能用向量组 线性表出
设一组数 ,满足 ,亦即
可得 ,向量组 线性无关
综上向量组 是 的一组基
5.(1)设实数域 上 级矩阵 的 元为பைடு நூலகம்( )。在实数域上 维线性空间 中,对于 ,令 。试问: 是不是 上的一个内积,写出理由。
所以 是 上的一个内积
(2)由于 正定, ,可得 , , ,
由 知方程组 解空间 的维数为 , 同时也是 的属于0特征值的特征子空间
由 , 和 ,知 是 的特征值, 是B的属于特征值 的特征向量
设 的属于这个特征值的特征子空间为 ,由 , ,所以
即 ,而 , , 的一组基为
,因此 没有其他特征值, 是 的唯一非零特征值,也是 最大的特征向量
北京大学2005数学专业研究生高等代数与解析几何。
1.在直角坐标系中,求直线 到平面 的正交投影轨迹的方程。
其中B是常数
解:
可以验证点 ,从而
把 写成参数方程: ,任取其上一点 ,设该点到 上的投影为点
整理即知, 到 上的正交投影轨迹满足方程
由于 ,上述方程表示一条直线,而 和 不同时成立,因此 到 上的正交投影轨迹是一条直线
2) 时,曲线方程为 ,是一对平行直线,是线心型曲线,对称直线为 ,即
3) 时, ,曲线为椭圆,是中心型曲线,对称点为
4) 时,曲线方程为 ,是一个点,是中心型曲线,对称点为
5) 时, ,曲线为虚椭圆,是中心型曲线,对称点为
6) 时,曲线方程为 ,是一对虚平行直线,是线心型曲线,对称直线为 ,即
7) 时, ,曲线为双曲线,是中心型曲线,对称点为