届高三第三次月考数学试题(文)
贵州师大附中2010届高三第三次月数学试题(文科)答案

贵州师大附中2009——2010学年第一学期第三次月考高三数学文科参考答案1317、(1)f (x)的最小正周期22Tππ==,f (x)的最小值为2+1=3;(2)f (x)的单调递增区间是,36k kππππ-+(),单调递减区间是2,63k kππππ++().18、(1)21151(1)39P=--=;(2)2221131(1)(1)344P=---=19、证明(Ⅰ)∵P A⊥底面ABCD,∴P A⊥BC. 又AB⊥BC,P A∩AB=A,∴BC⊥平面P AB. ……2分又BC⊂平面PCB,∴平面P AB⊥平面PCB. ………………………………………4分(Ⅱ)∵P A⊥底面ABCD ,∴AC为PC在平面ABCD内的射影. 又∵PC⊥AD.∴AC⊥AD. ……5分在梯形ABCD中,由AB⊥BC,AB=BC,得∠BAC=4π,∴∠DCA=∠BAC=4π.又AC⊥AD,故△DAC 为等腰直角三角形.∴DC AC AB)=2AB. 连接BD,交AC于点M,则2.D M D CM B AB==……………………………7分在△BPD中,2,PE D MEB M B==∴PD∥EM又PD 平面EAC,EM⊂平面EAC,∴PD∥平面EAC. ……………………………8分(Ⅲ)在等腰直角△P AB中,取PB中点N,连接AN,则AN⊥PB.∵平面P AB⊥平面PCB,且平面P AB∩平面PCB=PB,∴AN⊥平面PBC.在平面PBC内,过N作NH⊥直线CE于H,连接AH,由于NH是AH在平面CEB内的射影,故AH⊥CE.∴∠AHN就是二面角A—CE—P的平面角,……12分在Rt△PBC中,设CB=a,则PB a,BE=1,33P B=NE=166P B a=,CE=,3a由NH ⊥CE ,EB ⊥CB 可知:△NEH ∽△CEB . ∴.NH CB NECE=代入解得:NH.在Rt △AHN 中,AN=,2a ∴tan AHN=AN NH=即二面角A —CE —P 的为.…12分解法二:(Ⅱ)建立空间直角坐标系A —xyz ,如图. 设P A =AB =BC =a ,则A (0, 0, 0), B (0, a , 0), C (a , a , 0), P (0, 0, a ), E 20,,.33a a ⎛⎫⎪⎝⎭……5分 设D (a , y , 0),则=(-a , -a , a), =(a , y , 0), ∵CP ⊥AD , ∴·=-a 2 - ay =0,解得:y =-a .∴DC =2AB .连接BD ,交AC 于点M , 则 2.D M D C M BAB==……………………………6分 在△BPD 中,2,PE D M EBM B==∴PD ∥EM .又PD 平面EAC ,EM 平面EAC , ∴PD ∥平面EAC .………………………………………8分 (Ⅲ)设n 1=(x ,y ,1)为平面EAC 的一个法向量, 则n 1⊥, n 1⊥∴0,20.33ax ay ay a +=⎧⎪⎨+=⎪⎩解得:x =12,y =-12,∴n 1=(12, -12,1). ………………………………………10分设n 2=(x′, y′, 1)为平面EBC 的一个法向量,则n 2⊥, n 2⊥,又=(a ,0,0),=(0,-,33a a ),∴''0,0,33ax ay a ⎧=⎪⎨-+=⎪⎩解得:x ′=0,y ′=1, ∴n 2=(0,1,1).cos<n 1, n 2>==6.∴二面角A —CE —P 的大小为arccos6.……………………12分20、解: (1)当x=40时,汽车从甲地到乙地行驶了5.240100=小时,要耗油()(5.175.28408034012800013升)=⨯+⨯-⨯.答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升. (2)当速度为x 千米/小时,汽车从甲地到乙地行驶了,100小时x设耗油量为h(x)升,依题意得:h(x)=(880312800013+-x x )·2100180015(0120)12804x x x x =+-≤<, h '(x)=233264080800640xx xx -=-(0<x≤120)令h ' (x)=0,得x=80.当x ∈(0,80)时,h’(x)<0,h(x)是减函数;当x ∈(80,120)时,h ' (x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120)上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 21、解:(Ⅰ) ∵切点为(1,3),∴k +1=3,得k =2.∵f ′(x )=3x 2+a ,∴f ′(1)=3+a =2,得a =-1. ………2分 则f (x ) =x 3-x +b.由f (1)=3得b =3.∴f (x )=x 3-x+3. …………………………………………………………4分 (Ⅱ)由f (x )=x 3-x +3得f ′(x )=3x 2-1,令f ′(x )= 3x 2-1>0,解得x <-3或x>3.………………………6分∴函数f (x )的增区间为(-∞,-3),(3,+∞). …………………8分(Ⅲ)F (x )=x 3-3x ,F ′(x )=3x 2-3 令F ′(x )=3x 2-3=0,得x 1=-1,x 2=1. ……………………………………10分∴当x 分22. (Ⅰ)依题意,得2a m+2 = a m+1 + a m ∴2a 1q m+1 = a 1q m + a 1q m – 1 ,在等比数列{a n }中,a 1≠0,q≠0, ∴2q 2 = q +1,解得q = 1或21-. …………………………………………………………………… 4分(Ⅱ)若q=1,S m + S m+1 = ma 1 + (m+1) a 1=(2m+1) a 1,S m + 2 = (m+2) a 1 ,∵a 1≠0,∴2S m+2≠S m + S m+1 若q =21-,S m + 1 =m2m )21(6132)21(1)21(1-⋅-=----+S m + S m+1 =)21(1)21(1)21(1)21(11m m----+----+])21()21[(32341m m+-+--==m)21(3134--∴2 S m+2 = S m + S m+1故当q = 1时,S m , S m+2 , S m+1不成等差数列;当q =21-时,S m , S m+2 , S m+1成等差数列.……… 12分。
河北省香河县第一中学2024届高三下学期第三次月考试卷(数学试题文)

河北省香河县第一中学2024届高三下学期第三次月考试卷(数学试题文)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知平面向量a ,b ,c 满足:0,1a b c ⋅==,5a c b c -=-=,则a b -的最小值为( ) A .5B .6C .7D .82.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( ) A .2B .0C .2-D .2±3.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强4.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A 2B .2C 10D .105.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A .18B .14C .16D .126.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x <<C .{|2}x x >D .{}1x x >7.已知数列{}n a 为等比数列,若a a a 76826++=,且a a 5936⋅=,则a a a 768111++=( ) A .1318B .1318或1936C .139D .1368.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-,B .[42]-,C .[0]2,D .2[3]e -,9.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A .10 B .3C .5D .210.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离11.已知正方体1111ABCD A B C D -的棱长为1,平面α与此正方体相交.对于实数(03d d <<,如果正方体1111ABCD A B C D -的八个顶点中恰好有m 个点到平面α的距离等于d ,那么下列结论中,一定正确的是A .6m ≠B .5m ≠C .4m ≠D .3m ≠12.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( ) A .14πB .1πC .12πD .24ππ- 二、填空题:本题共4小题,每小题5分,共20分。
2024学年黑龙江省虎林市高三3月月考(数学试题文)

2024学年黑龙江省虎林市高三3月月考(数学试题文)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .14152.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .63.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B 22C .2D .134.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺5.已知抛物线2:2(0)C y px p =>的焦点为F ,对称轴与准线的交点为T ,P 为C 上任意一点,若2PT PF =,则PTF ∠=( )A .30°B .45°C .60°D .75°6.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .157.将函数f (x )=sin 3x -3cos 3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称;④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( ) A .①②B .②③C .①②④D .②③④8.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .3C .2海里D .39.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+D .,a b R ∃∈,a b a b -≥+10.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A .1313 B .413C 27D .4711.已知函数()()1xf x k xe =-,若对任意x ∈R ,都有()1f x <成立,则实数k 的取值范围是( )A .(),1e -∞-B .()1,e -+∞C .(],0e -D .(]1,1e -12.设不等式组030x y x +≥⎧⎪⎨≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( ) A .524B .724C .1124D .1724二、填空题:本题共4小题,每小题5分,共20分。
四川省南充高中2013届高三上学期第三次月考 数学文

P
E
M
D
·3·
C
A
B
HLLYBQ 整理
供“高中试卷网() ”
x2 y2 21. (本小题满分 12 分) 椭圆 C: 2 + 2 =1(a>b>0)的两个焦点为 F1 、 F 2, 点 P 在椭圆 C 上, 且 PF1⊥F 1F 2, a b 1 且|PF1 |= ,|F 1F 2|=2 3. 2 (Ⅰ)求椭圆 C 的方程; (Ⅱ)以此椭圆的上顶点 B 为直角顶点作椭圆的内接等腰直角三角形 ABC,这样的直角三角形是 否存在?若存在,请说明有几个;若不存在,请说明理由.
a b
C. 2 ) B .必要不充分条件
D. −2
1 ⎞ ⎛ 1⎞ 4. “ log 3 a > log 3 b ”是“ ⎛ ⎜ ⎟ < ⎜ ⎟ ”的( ⎝2⎠ ⎝ 2⎠
A .充分不必要条件 C .充要条件 5.命题 p : ∀x ∈ R ,函数 f ( x ) = 2 cos2 x +
D.既不充分也不必要条件
B. 则 a + b + c 的取值范围是( A. (1, 2013) ) C. (2, 2013 ) D. (2, 2014) B . (1, 2014)
1 3
二、填空题(每小题 4 分,共 16 分) 13.已知函数 f ( x ) = ⎨
2x ( x < 3) ,则 f (2012) = _____________. ⎩ f ( x − 3) ( x ≥ 3) ⎧
= log 2 a n , 求数列 ⎧ ⎨
1 ⎫ ⎬ 的前 n 项和 Tn . ⎩b n bn+1 ⎭
福建省南平市2024届高三下学期第三次质量检测数学试题(解析版)

南平市2024届高三第三次质量检测数学试题(考试时间:120分钟满分:150分)注意事项:1.答卷前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()i 2i i z z +=-,则z =()A.1B.C.D.2【答案】A 【解析】【分析】根据复数代数形式的运算法则化简复数,再根据复数模的计算公式计算即可.【详解】由题意可知,复数z 满足i 2i(i)z z +=-,则可转化为2i (2i)(12i)43i 12i (12i)(12i)55z --+===+--+,所以||1z ==.故选:A.2.已知,a b ∈R ,那么22log log a b >是1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据对数函数和指数函数的单调性可得.【详解】因为0,0a b >>,且2log y x =在()0,∞+上单调递增,所以22log log 0a b a b >⇒>>,又12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以11,,22aba b a b ⎛⎫⎛⎫⇔∈ ⎪⎪⎝⎭⎝⎭R ,所以2211log log 33aba b a b ⎛⎫⎛⎫>⇒>>< ⎪ ⎪⎝⎭⎝⎭,1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭成立,0b a <<时,不能得出22log log a b >成立.故选:A .3.已知向量a ,b 满足4a = ,2b = ,,150a b =︒ ,则a 在b上的投影向量为()A.bB.C.b-D.【答案】D 【解析】【分析】利用||cos ,||b a a b b,计算可得a 在b上的投影向量.【详解】a 在b上的投影向量为:1||cos ,4cos1502||b a a b b b =︒=.故选:D.4.对任意非零实数α,当x 充分小时,()11x x αα+≈+⋅.如:1121 2.2524⎛⎫==≈⨯+⨯= ⎪⎝⎭的近似值为()A.1.906B.1.908C.1.917D.1.919【答案】C 【解析】化为131218⎡⎤⎛⎫⋅+-⎪⎢⎥⎝⎭⎣⎦,根据新定义,直接计算取近似值即可.【详解】1312218⎛⎫==⋅⋅- ⎝⎭131112121 1.917838⎡⎤⎡⎤⎛⎫⎛⎫=⋅+-≈+⨯-≈ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.故选:C .5.已知π1tan 62α⎛⎫+= ⎪⎝⎭,则2πcos 23α⎛⎫-= ⎪⎝⎭()A.35-B.34C.45-D.45【答案】A 【解析】【分析】由同角三角函数的基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭,再由二倍角的余弦公式和诱导公式化简代入即可得出答案.【详解】因为π1tan 62α⎛⎫+= ⎪⎝⎭,所以22πsin 16π2cos 6ππsin cos 166αααα⎧⎛⎫+ ⎪⎪⎝⎭⎪=⎛⎫⎪+ ⎪⎨⎝⎭⎪⎪⎛⎫⎛⎫+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得:2π1sin 65α⎛⎫+= ⎪⎝⎭,22ππππcos 2cos 2πcos 212sin 3666αααα⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦131255⎡⎤=--⨯=-⎢⎥⎣⎦.故选:A .6.关于t 的实系数二次不等式()210t b t a +-+<的解集为()2,1--,若1x y a b -=,(),x y ∈R ,则2x y-的最小值为()A.12B.C.2D.【答案】C 【解析】【分析】由已知可得21--,是一元二次方程()210t b t a +-+=的根,进而可得24a b =⎧⎨=⎩,可得1412222y x yyy y-+==+,可求2x y -的最小值.【详解】因为关于t 的实系数二次不等式()210t b t a +-+<的解集为()2,1--,所以21--,是一元二次方程()210t b t a +-+=的根,所以21(1)2(1)b a --=--⎧⎨-⨯-=⎩,解得24a b =⎧⎨=⎩,所以241x y -=,所以241x y =+,所以141222,22y x yy y y -+==+≥=当且仅当0,1y x ==时取等号.所以2x y -的最小值为2.故选:C.7.在正四面体ABCD 中,P 为棱AD 的中点,过点A 的平面α与平面PBC 平行,平面α 平面ABD m =,平面α 平面ACD n =,则m ,n 所成角的余弦值为()A.3B.13C.23D.33【答案】B 【解析】【分析】由面面平行的性质定理可得//m BP ,//n PC ,所以m ,n 所成角即为BPC ∠,在BPC △中,由余弦定理求解即可.【详解】因为平面//α平面PBC ,α 平面ABD m =,平面PBC ⋂面ABD BP =,所以//m BP ,因为平面//α平面PBC ,α 平面ACD n =,平面PBC ⋂面ACD PC =,所以//n PC ,所以m ,n 所成角即为,BP PC 所成角,而,BP PC 所成角为BPC ∠,设正四面体ABCD 的棱长为2,所以2AB AC AD BD BC =====,所以BP CP ===所以1cos 3BPC ∠==.故选:B .8.已知椭圆C 的焦点为()11,0F -,()21,0F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =-,则C 的方程为()A.2212x y += B.22132x y +=C.22143x y += D.22154x y +=【答案】D 【解析】【分析】由题意设椭圆C 的方程为:222211x y a a +=-,由,11F A F B ⊥ ,2223F A F B =- 可求出54,33A ⎛⎫ ⎪⎝⎭或54,33A ⎛⎫- ⎪⎝⎭,代入椭圆方程化简即可得求出25a =,即可得出答案.【详解】因为椭圆C 的焦点为()11,0F -,()21,0F ,所以设椭圆C 的方程为:222211x y a a +=-,设()00,B y ,(),A m n ,()21,0F ,则()()2201,,1,F A m n F B y =-=- ,因为2223F A F B =-,所以()0211323m n y⎧-=-⨯-⎪⎪⎨⎪=-⎪⎩,所以052,33m n y ==-,所以052,33A y ⎛⎫- ⎪⎝⎭,又因为11F A F B ⊥ ,所以()101082,,1,33F A y F B y ⎛⎫=-= ⎪⎝⎭,所以2082033y -=,所以02y =±,所以54,33A ⎛⎫ ⎪⎝⎭或54,33A ⎛⎫- ⎪⎝⎭,因为A 在C 上,所以2225169911a a +=-,即42950250a a -+=,解得:25a =或259a =,因为椭圆C 的焦点在x 轴上,所以25a =.故C 的方程为22154x y +=.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.六位评委给某选手的评分分别为:16,18,20,20,22,24.去掉最高分和最低分,所得新数据与原数据相比不变的是()A.极差B.众数C.平均数D.第25百分位数【答案】BC 【解析】【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】从6个原始评分中去掉1个最高分、1个最低分,得到4个新数据为:18,20,20,22,极差为:22184-=,众数为:20,平均数为:18202022204+++=,因为0.2541⨯=,所以第25百分位数为1820192+=,而原数据:16,18,20,20,22,24,极差为:24168-=,众数为:20,平均数为:161820202224206+++++=,因为0.256 1.5⨯=,所以第25百分位数为18,所以所得新数据与原数据相比不变的是:众数和平均数.故选:BC.10.已知圆C :()()221225x y -+-=,直线l :()()()211740m x m y m m +++--=∈R ,则()A.直线l 过定点()3,1B.圆C 被x轴截得的弦长为C.当2m =-时,圆C 上恰有2个点到直线l 距离等于4D.直线l 被圆C 截得的弦长最短时,l 的方程为250x y --=【答案】ACD 【解析】【分析】直线l 的方程变形为:()2740x y m x y +-++-=,令m 的系数等于零,即可判断A ;()1,2C 到x 轴的距离为2,求出圆C 被x 轴截得的弦长可判断B ;计算出当2m =-时,圆心到直线的距离即可判断C ;当PC l ⊥时,弦长最短,即可判断D.【详解】对于A ,直线l 的方程变形为:()2740x y m x y +-++-=,令27040x y x y +-=⎧⎨+-=⎩,解得31x y =⎧⎨=⎩,所以直线l 恒过定点()3,1P ,故A 正确;对于B ,圆C 的圆心()1,2C ,半径=5r ,()1,2C到x 轴的距离为2,所以圆C 被x 轴截得的弦长为=,故B 错误;对于C ,当2m =-时,直线l :3100x y +-=,此时圆心()1,2C 到直线l 的距离102d ==,而542r d -=-<,所以当2m =-时,圆C 上恰有2个点到直线l 的距离等于4,故C 正确.对于D ,当PC l ⊥时,弦长最短,此时1121231l CPk k =-=-=--,因为直线l 过定点()3,1P ,所以l 的方程为:()123y x -=-,化简为:250x y --=,故D 正确.故选:ACD.11.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.()f x 满足()()213244f x f x x ---=-,()1g x -的图象关于直线1x =对称,则()A.()()202f f -=B.()11g =C.()1y f x x =+-为奇函数D.()1001100k g k ==∑【答案】ABD 【解析】【分析】对于A ,将恒等式代换变形得到()()112f x f x x +--=,再代入特殊值即可验证A ;对于B ,在()()112f x f x x +--=两边求导得到()()112g x g x ++-=,再代入特殊值即可验证B ;对于C ,举出()πsin2x f x x =+,()ππ1cos 22xg x =+作为反例即可说明C 错误;对于D ,证明()()112g x g x -++=,再对求和式变形即可验证D.【详解】对于A ,由()()213244f x f x x ---=-可知222213244222x x x f f +++⎛⎫⎛⎫⋅---⋅=⋅- ⎪ ⎪⎝⎭⎝⎭,即()()112f x f x x +--=.从而()()111121f f +--=⋅,即()()202f f -=,故A 正确;对于B ,在()()112f x f x x +--=两边同时求导,可得()()112f x f x ''++-=,即()()112g x g x ++-=.代入0x =即得()11g =,故B 正确;对于C ,考虑()πsin2x f x x =+,()ππ1cos 22x g x =+,则()()g x f x =',且()()()()()()π21π32213221sin32sin44cos πcos π4422x x f x f x x x x x x x -----=-+---=--+=-,()()()()()ππππ11111cos 1cos 02222x x g x g x g x g x ⎛⎫-⎛⎫+----=--=+-+= ⎪ ⎪⎝⎭⎝⎭,故此时()(),f x g x 满足全部条件,但()()π1π11sin 1cos22x xf x x x x ++-=++-=+并不是奇函数(因为显然不过原点),故C 错误;之前已证()()112g x g x ++-=,再由()1g x -的图象关于直线1x =对称,知()()1111g x g x +-=--,即()()g x g x =-.故()()()()()()()()11111211212g x g x g x g x g x g x g x g x -++=-++=-+--=-+--=.所以()()()()100505011143412502100k k k g k g k g k ====-+-==⨯=∑∑∑,故D 正确.故选:ABD.【点睛】关键点点睛:本题的关键点在于对恒等式的换元及变形,需要选取恰当的换元方式方可简化等式.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合(){}2,4A x y yx ==,(){},B x y y x ==,则A B ⋂的子集个数为______.【答案】4【解析】【分析】先求交集中的元素,根据元素个数可得子集个数.【详解】由24y x y x ⎧=⎨=⎩解得00x y =⎧⎨=⎩或1414x y ⎧=⎪⎪⎨⎪=⎪⎩,所以11(0,0),(,)44A B ⎧⎫⋂=⎨⎬⎩⎭,有两个元素,所以A B ⋂的子集个数为224=.故答案为:4.13.函数()()sin 0f x x ωω=>在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增,且在区间()0,2π上恰有两个极值点,则ω的取值范围是______.【答案】3544ω<≤【解析】【分析】利用正弦型函数的单调性可得302ω<≤,利用正弦型函数的极值点可得3544ω<≤.【详解】由()()sin 0f x x ωω=>在区间3π,6π⎡⎤-⎢⎥⎣⎦上单调递增,可得ππ2π62k ω-≥-+,ππ2π32k ω≤+,k ∈Z ,即312k ω≤-,362k ω≤+,k ∈Z ,即302ω<≤,又()()sin 0f x x ωω=>在区间()0,2π上恰有两个极值点,可得3π5π2π22ω<≤,即3544ω<≤.综上,3544ω<≤.故答案为:3544ω<≤.14.在正四棱台1111ABCD A B C D -中,2AB =,111A B =,且该正四棱台的每个顶点均在表面积为8π的球O 上,则平面11BCC B 截球O 所得截面的面积为______.【答案】8π7##8π7【解析】【分析】先求出外接球的半径与球心位置;再做辅助线证明出2O F ⊥平面11B BCC ,在21EO E 中,设2,EF x O F d ==,结合图象列出关于,x d 的方程组,最后解出截面圆的半径即可.【详解】由球O 的表面积为8π,所以24π8πS R ==,可知球O ,设上下底面的中心分别为12,O O ,因为2AB =,从而可知球O 的球心与下底面ABCD 的中心2O 重合;分别取11B C 和BC 的中点1E E 、,连接112111212,,,,,C O EO E E E O EO O O ,则在直角梯形112C O O C 中得1262O O =,则在直角梯形112E O O E 中得12E E =,过点2O 作1E E 的垂线,垂足为F ,由于BC ⊥平面112E O O E ,2O F ⊂平面112E O O E ,所以2BC O F ⊥,由21OF EE ⊥,1EE BC E = ,1,EE BC ⊂平面11B BCC ,从而2O F ⊥平面11B BCC ,在21EO E 中,设2,EF x O F d ==,则172E F x =-,则221x d +=,和22222x d ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,联立解得:276,77x d ==,又因为平面11B BCC 截球所得平面图形为圆面,所以圆面的半径287r =,所以圆面面积为28ππ7r =.【点睛】方法点睛:构建方程组利用勾股定理解截面圆半径是解决立体几何的一种重要方法.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()31ln 222f x ax x x x=--+,且()f x 图象在1x =处的切线斜率为0.(1)求a 的值;(2)令()()g x f x '=,求()g x 的最小值.【答案】(1)1(2)0【解析】【分析】(1)对()f x 求导,可得()10f '=,解方程即可得出答案;(2)由(1)知函数()31ln 222f x x x x x =--+,对()f x 求导,令()211ln (0)22g x x x x =+->,对()g x 求导,判断()g x '与0的大小得出()g x 的单调性,即可求出()g x 的最小值.【小问1详解】因为()31ln 222f x ax x x x =--+,所以()()2311ln 22f x a x x -+'=+,因为()f x 图象在1x =处的切线斜率为0,所以()10f '=,即31022a -+=,所以1a =.【小问2详解】由(1)知函数()31ln 222f x x x x x=--+,()f x 的定义域为()0,∞+,()211ln 22f x x x =+-',则()211ln (0)22g x x x x =+->,求导得()233111x g x x x x='-=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在()0,1上递减,在()1,∞+上递增,()()min 10g x g ==.16.建盏为宋代名瓷之一,是中国古代黑瓷的巅峰之作,其采用福建建阳特有的高铁黏土和天然釉矿为原料烧制而成,工艺难度大,成功率低.假设建盏烧制开窑后经检验分为成品和废品两类,现有建盏10个,其中5个由工匠甲烧制,3个由工匠乙烧制,2个由工匠丙烧制,甲、乙、丙三人烧制建盏的成品率依次为0.2,0.1,0.3.(1)从这10个建盏中任取1个,求取出的建盏是成品的概率;(2)每件建盏成品的收入为1000元,每件废品的收入为0元.乙烧制的这3件建盏的总收入为X 元,求X 的分布列及数学期望.【答案】(1)0.19(2)分布列见解析,数学期望为300元【解析】【分析】(1)设事件B 为“取得的建盏是成品”,事件1A ,2A ,3A 分别表示“取得的建盏是由甲、乙、丙烧制的”,求得每个事件的概率,进而利用()()()()()()()112233P B P A P BA P A PB A P A P B A =++∣∣∣可求取出的建盏是成品的概率;(2)这3件中成品的件数为Y .由题可知13,10Y B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式可求X 分布列及数学期望.【小问1详解】设事件B 为“取得的建盏是成品”,事件1A ,2A ,3A 分别表示“取得的建盏是由甲、乙、丙烧制的”.则()151102P A ==,()230.310P A ==,()321105P A ==.又()10.2P BA =∣,()20.2PB A =∣,()30.3P B A =∣,所以()()()()()()()112233P B P A P BA P A PB A P A P B A =++∣∣∣0.50.20.30.10.20.30.19=⨯+⨯+⨯=【小问2详解】设这3件中成品的件数为Y .由题可知13,10Y B ⎛⎫~ ⎪⎝⎭.因为1000X Y =,X 的可能取值为0,1000,2000,3000所以()()03031972900C 10101000P X P Y ⎛⎫⎛⎫===== ⎪ ⎪⎝⎭⎝⎭,()()12131924310001C 10101000P X P Y ⎛⎫⎛⎫=====⎪ ⎪⎝⎭⎝⎭,()()2123192720002C 10101000P X P Y ⎛⎫⎛⎫===== ⎪ ⎪⎝⎭⎝⎭,()()33319130003C 10101000P X P Y ⎛⎫⎛⎫=====⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为X100020003000P7291000243100027100011000所以()72924327101000200030003001000100010001000E X =⨯+⨯+⨯+⨯=元.17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB CD ∥,AB BC AD CD ==<,2π3ABC ∠=.M ,N 分别为棱CD ,PD 上的动点(与端点不重合),且CM DN CD DP=.(1)求证:AD ⊥平面APC ;(2)若3AP =,设平面AMN 与平面APC 所成的角为α,求cos α的最大值.【答案】(1)证明见解析(2)155【解析】【分析】(1)解法一:由AB BC AD ==,AB CD ∥,2π3ABC ∠=,推出AD AC ⊥,又PA ⊥平面ABCD ,由线面垂直判定定理可得AD ⊥平面PAC ;解法二:同解法一:(2)解法一:设1AD =,建立空间直角坐标系A xyz -,令CM DNCD DPλ==,设()111,,M x y z ,()222,,N x y z ,设平面AMN 的法向量为(),,n x y z =,由cos n AD n ADα⋅=⋅ ,利用基本不等式求解最值;解法二:不妨设1AD =,由AC ,AD ,AP 两两垂直,故建立如图所示的空间直角坐标系A xyz -,求解平面AMN 的法向量为(),,n x y z =,由cos n AD n ADα⋅=⋅ ,利用基本不等式求解最值.【小问1详解】解法一:因为AB BC AD ==,AB CD ∥,2π3ABC ∠=,所以π6CAB ∠=,2πππ362CAD ∠=-=,即AD AC ⊥又PA ⊥平面ABCD ,所以PA AD ⊥因为AC PA A ⋂=,,AC PA ⊂平面PAC ,所以AD ⊥平面PAC ;解法二:同解法一.【小问2详解】解法一:设1AD =,如图所示,建立空间直角坐标系A xyz -.令CM DNCD DPλ==,()0,1λ∈,设()111,,M x y z ,()222,,N x y z 则有CM CD λ=,DN DPλ=即()()111,x y z λ-=,解得))1,,0M λλ-同理可得()0,1N λ-设平面AMN 的法向量为(),,n x y z =,由)()10,10,n AM x y n AN y z λλλ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 令1x =,则)1y λλ-=,()221z λλ-=.得平面AMN的一个法向量为)()22111,,n λλλλ⎛⎫-- = ⎪⎝⎭又由(1)可知()0,1,0AD =是平面APC 的一个法向量,则有cos n ADn ADα⋅==⋅5==当且仅当211λλ-⎛⎫=⎪⎝⎭,即12λ=时取“=”又π0,2α⎛⎫∈ ⎪⎝⎭,所以cosα的最大值15cos5α=解法二:不妨设1AD=,由AC,AD,AP两两垂直,故建立如图所示的空间直角坐标系A xyz-,则根据题意可得:())1,1,0AM AC ADλλλ=+-=-()()10,,AN AD APλλλ=+-=,()0,1λ∈,设平面AMN的一个法向量为(),,n x y z=,())1010n AM x yn AN y zλλλ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩取1x=,1yλ=-,()221zλλ=-于是()2231,,11nλλλ⎛⎫⎪=⎪--⎝⎭,cos5α=当且仅当211λλ-⎛⎫=⎪⎝⎭,即12λ=时取“=”又π0,2α⎛⎫∈ ⎪⎝⎭,所以cos α的最大值15cos 5α=.18.已知()11,0A -,()21,0A ,直线1A P ,2A P 相交于点P ,且它们的斜率之积是4,记点P 的轨迹为曲线C(1)求C 的方程;(2)不过1A ,2A 的直线l 与C 交于M ,N 两点,直线1MA 与2NA 交于点S ,点S 在直线12x =上,证明:直线l 过定点.【答案】(1)()22114y x x -=≠±(2)证明见解析【解析】【分析】(1)由斜率公式结合题意即可列式,化简即可得解.(2)设直线l 的方程为:()1x my n n =+≠±,将其与椭圆方程联立,从而122841mny y m -+=-,21224441n y y m -⋅=-,思路一:由斜率公式、(1)中结论以及点S 在直线12x =上,可得1143A N A Mk k =-,从而结合韦达定理可得n 为定值2,由此即可得证;思路二:联立直线1MA 与直线2NA 的方程,可得()()12121111y yx x x x +=-+-,在里面代入12x =,结合韦达定理即可得出n 为定值,由此即可得证.【小问1详解】设(),P x y ,则()111PA y k x x =≠-+,()211PA y k x x =≠-,由已知,有()4111y yx x x ⋅=≠±+-,故C 的方程为()22114y x x -=≠±.【小问2详解】解法一:设()11,M x y ,()22,N x y ,若直线l 的斜率为0,则直线1MA 与2NA 的交点在y 轴上,与已知矛盾,故设直线l 的方程为:()1x my n n =+≠±,由2244x my n x y =+⎧⎨-=⎩,得()222418440m y mny n -++-=,()22Δ16410m n =+->,则122841mn y y m -+=-,21224441n y y m -⋅=-,由点S 在直线12x =上,设1,2S t ⎛⎫⎪⎝⎭,则121312A M t k t ==+,22112N A tk t==--,所以213A M NA k k =-,又124A N A N k k ⋅=,则()1134A N A M k k ⋅-=,即1143A N A M k k =-,21214113y y x x ⋅=-++,()()12213411y y my n my n -=++++,()()()()221212434410my y mn m y y n ++++++=,()()()222224484344104141n mn m mn m n m m --+++++=--,220n n --=,所以1n =-(舍去),或2n =,所以l 的方程为2x my =+,过定点()2,0解法二:设()11,M x y ,()22,N x y ,若直线l 的斜率为0,则直线1MA 与2NA 的交点在y 轴上,与已知矛盾,故设直线l 的方程为:()1x my n n =+≠±,由2244x my n x y =+⎧⎨-=⎩得,()222418440m y mny n -++-=,()22Δ16410m n =+->,则122841mn y y m -+=-,21224441n y y m -⋅=-,所以()()2121212n y y mny y-+=-⋅,即()()2121212n y y my y n-+=-,又直线1MA 的方程为()1111y y x x =++,直线2NA 的方程为()2211y y x x =--,联立直线1MA 与直线2NA 的方程,可得()()12121111y y x x x x +=-+-,又点S 在直线12x =上,故()()2112131y x y x +=--,所以()()()()()()21211121212121111111y x y my n my y n y y x y my n my y n y +++++==-+-+-()()()()()()()()()()21212222121211111122111122n y y n y y n y y n nnn y y n n y y y n y nn-+-+-++-+==⋅++--+--+-()()()()2121111131111n y n y n n n n y n y n +--++=⋅==---++--,故2n =,直线l 的方程为2x my =+,过定点()2,0.19.若数列{}n c 共有()*,3m m m ∈≥N 项,对任意()*,i i i m ∈≤N 都有1i m i c c S +-=(S 为常数,且0S >),则称数列{}n c 是S 关于m 的一个积对称数列.已知数列{}n a 是S 关于m 的一个积对称数列.(1)若3m =,11a =,22a =,求3a 的值;(2)已知数列{}n b 是公差为()0d d ≠的等差数列,111b =-,若10m =,2n n nb a b +=,求d 和S 的值;(3)若数列{}n a 是各项均为正整数的单调递增数列,求证:12112153m m m m a a a a Sa a a a --++⋅⋅⋅++<.【答案】(1)4(2)1,2S d ==(3)证明见解析【解析】【分析】(1)依题意可得22S a a =,从而求出3a ;(2)依题意11i ia a S -=,即可得到21311i ii ib b S b b +--⨯=,再结合等差数列通项公式得到()2222222222111111121311109d i d i d b b d S d i d i d b b d -++++=-+-++,再根据对应系数相等得到方程组,解得即可;(3)依题意可得()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,再利用裂项相消法计算可得.【小问1详解】依题意224S a a ==,又13a a S =,所以314Sa a ==.【小问2详解】法一:由10m =知对任意i ()*,10i i ∈≤N 都有11i i a a S -=,即()()()()112131*********i i i i b i d b i db b S b b b i d b i d+--+++-⨯=⨯=+-+-,所以()()222112221112111310119b i i d b d S bi i db d++-+=+-+-+,所以()2222222222111111121311109d i d i d b b d S d i d i d b b d -++++=-+-++,所以()22222222111111111213109d d S d d S d b b d S d b b d ⎧-=-⎪⎪=⎨⎪++=-++⎪⎩,因为0d ≠,111b =-,所以2112240S d b d =⎧⎨+=⎩,即12S d =⎧⎨=⎩.法二:当1,2i =时由11029S a a a a ==得31241111029b b b b S b b b b =⨯=⨯,所以1111111121131098b d b d b d b d b b d b d b d++++⨯=⨯+++,即()()()()22222221111111110161211122710b b d db b d d b b d d b b d ++⨯++=++⨯+,令21110p b b d =+,22111211q b b d d =++,则()()221616p d q q d p +=+,因为0d ≠,111b =-,所以p q =,2221111101211b b d b b d d +=++,即2d =,1S =,当110i ≤≤时都有()()()()2131111112111212112111210i i i i i i i i b b a a b b i i +----++-+-=⨯=⨯-+--+-92132113292i i S i i-+-=⨯==-+-,所以2d =,1S =成立.【小问3详解】由已知1m a a S =,21m a a S -=,…,1i m i a a S +-=,所以()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,所以112222*********m m m a a a S a a a m -⎛⎫++⋅⋅⋅+≤+++⋅⋅⋅+ ⎪⎝⎭1111111111114224354611S m m ⎡⎤⎛⎫<++-+-+⋅⋅⋅+- ⎪⎢⎥-+⎝⎭⎣⎦1111111111115142231142233S S S m m ⎡⎤⎡⎤⎛⎫⎛⎫<+++--<+++= ⎪ ⎪⎢⎥⎢⎥+⎝⎭⎝⎭⎣⎦⎣⎦,即12112153m m m m a a a a S a a a a --++⋅⋅⋅++<.【点睛】关键点点睛:对于新定义型问题,关键是理解定义,第三问关键是利用放缩法得到()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,再由裂项相消法求和.。
长沙市长郡中学2023届高三上学期第三次月考数学试题(含答案)

【答案】D
【解析】
【分析】先作出 关于 的对称点 ,再作 关于 的对称点 ,因为光线从 点出发射到 上的 点经 反射后,入射光线和反射光线都经过 关于直线 的对称点 点,又因为再经 反射,反射光线经过 关于直线 的对称点,所以只需连接 、 交 与点 ,连接 、 分别交 为点 、 ,则 , 之间即为点 的变动范围.再求出直线 , 的斜率即可.
A. B.
C. D.
【答案】ABD
【解析】
【分析】观察图形,分析剪掉的半圆的变化,纸板 相较于纸板 剪掉了半径为 的半圆,再分别写出 和 的递推公式,从而累加得到通项公式再逐个判断即可
【详解】根据题意可得纸板 相较于纸板 剪掉了半径为 的半圆,故 ,即 ,故 , , , … ,累加可得 ,所以 ,故A正确,C错误;
6.设 ,则()
A. B.
C. D.
【答案】D
【解析】
【分析】分别判断出 , , ,即可得到答案.
【详解】 .
因为 ,所以 .
所以 ;
因为 在R上为增函数,所以 ;
因为 在 上为增函数,且 所以 ,即 ;
所以 .
故选:D
7.将函数 的图象上所有点向右平移 个单位长度,得到如图所示的函数 的图象,则 ()
10.设 ,函数 在区间 上有零点,则 的值可以是()
A. B. C. 解不等式 得解.
【详解】由题得 ,
令 ,解得 ,取k=0,
,即 .
故选:BCD
11.如图, 是一块半径为1的圆形纸板,在 的左下端前去一个半径为 的半圆后得到图形 ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形 , ,记纸板 的周长为 ,面积为 ,则下列说法正确的是()
第一中学202届高三数学上学期第三次月考试题文

陕西省西安市长安区第一中学2021届高三数学上学期第三次月考试题 文满分150分,考试时间120分钟一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若复数(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为 ( )A 。
6-B.2-C. 4D.62.已知{}{}{}1,2,3,4,1,2,2,3U M N ===,则()N M C U⋃=( )A. {}1,4 B 。
{}1,3,4 C 。
{}4 D 。
{}2 3.已知平面向量(1,2),(2,)a b m =-=,且b a ⊥,则32a b +=( )A.(7,2)B.(7,14)- C.(7,4)- D 。
(7,8)- 4.“2a =-"是“直线()12:30:2140l ax y lx a y -+=-++=与互相平行"的()A.充分不必要条件B.必要不充分条件 C 。
充分必要条件 D 。
既不充分也不必要条件5.已知}{na 为等差数列,若π=++951a a a,则)cos(82a a+的值为( )A.21 B.23C 。
21- D 。
23- 6.若定义在R 上的偶函数()y f x =是[)0,+∞上的递增函数,则不等式()()2log 1f x f <-的解集是()A.1,22⎛⎫ ⎪⎝⎭B 。
()(),22,-∞-+∞C 。
RD 。
()2,2-7.已知实数x,y满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =4x +y 的最大值为( )A .10B .8C .2D .08.执行如图所示的程序框图,若输出的结果是8,则输入的数是( )A .2或22B .22或22-C .2-或22-D .2或22-9.某几何体的三视图如图所示,则该几何体的体积是( )A 。
3 B 。
33 C.332D.33410.函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向左平移6π个单位后关于原点对称,则函数)(x f 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为( ) A .3 B .21-C .21D 311.直线l :(2y k x =与曲线()2210xy x -=>相交于A 、B 两点,则直212221线l 倾斜角的取值范围是( )A 。
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在,”的否定是A.存在,B.不存在,C.任意,D.任意,2.若集合(i 是虚数单位),,则等于A. B. C. D.3.已知奇函数,则A.-1B.0C.1D.4.已知,是两条不同的直线,,是两个不同的平面,则下列可以推出的是A.,, B.,,C.,, D.,,5.已知函数图象的一个最高点与相邻的对称中心之间的距离为5,则A.0B. C.4D.x ∈Z 220x x m ++…x ∈Z 220x x m ++>x ∈Z 220x x m ++>x ∈Z 220x x m ++…x ∈Z 220x x m ++>{}2341,i ,i ,i A ={}1,1B =-A B ⋂{}1-{}1{}1,1-∅()()22cos x x f x m x -=+⋅m =12m l αβαβ⊥m l ⊥m β⊂l α⊥m l ⊥l αβ⋂=m α⊂m l m α⊥l β⊥l α⊥m l m β()()4cos (0)f x x ωϕω=+>6f ϕπ⎛⎫-=⎪⎝⎭2ϕ2ϕ6.已知是圆上一个动点,且直线与直线(,,)相交于点,则的取值范围为A. B.C. D.7.是椭圆上一点,,是的两个焦点,,点在的角平分线上,为原点,,且.则的离心率为A.8.设集合,那么集合中满足条件“”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数满足,,并且当时,,则下列关于函数说法正确的是M 22:1C x y +=1:30l mx ny m n --+=2:30l nx my m n +--=m n ∈R 220m n +≠P PM 1,1⎤-+⎦1⎤-⎦1,1⎤-+⎦1⎤+⎦P 2222:1(0)x y C a b a b+=>>1F 2F C 120PF PF ⋅= Q 12F PF ∠O 1OQPF OQ b =C 12(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=A 1234513x x x x x ++++……()f x ()()22f x f x ππ+=-()()0fx f x ππ++-=()0,x π∈()cos f x x =()f xA. B.最小正周期C.的图象关于直线对称D.的图象关于对称11.若双曲线,,分别为左、右焦点,设点是在双曲线上且在第一象限的动点,点为的内心,,则下列说法不正确的是A.双曲线的渐近线方程为B.点的运动轨迹为双曲线的一部分C.若,,则D.不存在点,使得取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为________.13.各角的对应边分别为,,,满足,则角的取值范围为________.14.对任意的,不等式(其中e 是自然对数的底)恒成立,则的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求数列的前项和.302f π⎛⎫=⎪⎝⎭2T π=()f x x π=()f x (),0π-22:145x y C -=1F 2F P I12PF F △()0,4A C 045x y±=I 122PF PF =12PI xPF yPF =+ 29y x -=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭4x ABC △a b c 1b ca c a b+++…A *n ∈N 11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…a n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T16.(本小题满分15分)如图,在四棱锥,,,,点在上,且,.(1)若为线段的中点,求证:平面;(2)若平面,求平面与平面所成夹角的余弦值.17.(本小题满分15分)已知函数有两个极值点为,,.(1)当时,求的值;(2)若(e 为自然对数的底数),求的最大值.18.(本小题满分17分)已知抛物线的焦点为,为上任意一点,且的最小值为1.(1)求抛物线的方程;(2)已知为平面上一动点,且过能向作两条切线,切点为,,记直线,,的斜率分别为,,,且满足.①求点的轨迹方程;②试探究:是否存在一个圆心为,半径为1的圆,使得过可以作圆的两条切线,,切线,分别交抛物线于不同的两点,和点,,且为定值?若存在,求圆的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量,,,…,(且),令,如果存在,使得,那么称是该向量组的“长向量”.(1)设,且,若是向量组,,的“长向量”,求实数的取值范P ABCD -BCAD 1AB BC ==3AD =E AD PE AD ⊥2DE PE ==F PE BFPCD AB ⊥PAD PAB PCD ()21ln 2f x x x ax =+-1x ()212x x x <a ∈R 52a =()()21f x f x -21e x x …()()21f x f x -2:2(0)E x py p =>F H E HF E P P E M N PM PN PF 1k 2k 3k 123112k k k +=P ()0,(0)Q λλ>P Q 1l 2l 1l 2l E ()11,A s t ()22,B s t ()33,C s t ()44,D s t 1234s s s s Q 1a 2a 3a n a N n ∈3n …123n n S a a a a =++++{}()1,2,3,,p a p n ∈ p n p a S a - …p a(),2n a n x n =+n ∈N 0n >3a 1a 2a 3ax围;(2)若,且,向量组,,,…,是否存在“长向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“长向量”,其中,.设在平面直角坐标系中有一点列,,,…,,满足为坐标原点,为的位置向量的终点,且与关于点对称,与(且)关于点对称,求的最小值.sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭n ∈N 0n >1a 2a 3a 7a 1a 2a 3a 1a2a3a()1sin ,cos a x x =()22cos ,2sin a x x = 1P 2P 3P n P 1P 2P 3a 21k P +2k P 1P 22k P +21k P +k ∈N 0k >2P10151016P P参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C 【解析】集合,,.故选C.3.A【解析】是奇函数,,,,,.故选A.4.D 【解析】有可能出现,平行这种情况,故A 错误;会出现平面,相交但不垂直的情况,故B 错误;,,,故C 错误;,,又由,故D 正确.故选D.5.C 【解析】设的最小正周期为,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有,得,则有,解得,所以,所以.故选C.6.B 【解析】依题意,直线恒过定点,直线恒过定点,显然直线,因此,直线与交点的轨迹是以线段为直径的圆,其方程为:,圆心,半径,而圆的圆心,半径,如图:,两圆外离,由圆的几何性质得:,{}i,1,1,i A =--{}1,1B =-{}1,1A B ⋂=-()f x ()()22cos x x f x m x -=+⋅()()()2222x x x xf x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =()()122cos 0x x m x -∴++=10m ∴+=1m =-αβαβm l m α⊥l βαβ⊥⇒ l α⊥m l m α⇒⊥ m βαβ⇒⊥ ()f x T 224254T ⎛⎫+= ⎪⎝⎭12T =212πω=6πω=()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭()()1:310l m x n y ---=()3,1A ()()2:130l n x m y -+-=()1,3B 12l l ⊥1l 2l P AB 22(2)(2)2x y -+-=()2,2N 2r =C ()0,0C 11r =12NC r r =>+12min1PMNC r r =--=-,所以的取值范围为.故选B.7.C 【解析】如图,设,,延长交于点,由题意知,为的中点,故为中点,又,即,则,又由点在的角平分线上得,则是等腰直角三角形,故有化简得即代入得,即,又,所以,所以,.故选C.8.D 【解析】因为或,所以若,则在中至少有一个,且不多于3个.所以可根据中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为,所以共有种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为,故A 正确;,结合A 选项可知第70百分位数为第7个数和第812max1PMNC r r =++=+PM 1⎤-+⎦1PF m =2PF n =OQ 2PF A 1OQ PF O 12F F A 2PF 120PF PF ⋅= 12PF PF ⊥2QAP π∠=Q 12F PF ∠4QPA π∠=AQP △2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩2,2,m n b m n a -=⎧⎨+=⎩,,m a b n a b =+⎧⎨=-⎩2224m n c +=222()()4a b a b c ++-=2222a b c +=222b a c =-2223a c =223e =e =0i x =1i x =1234513x x x x x ++++……()1,2,3,4,5i x i =1i x =i x 2315C 2N =⋅3225C 2N =⋅435C 2N =⋅23324555C 2C 2C 2130N =⋅+⋅+⋅=422616-=1070%7⨯=个数的平均数,即,故B 不正确;这10年粮食年产量的平均数为,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于时,,并且满足,则函数的图象关于直线对称.由于,所以,故,故,故函数的最小正周期为,根据,知函数的图象关于对称.由于时,,,故A 正确,由于函数的最小正周期为,故B 错误;由函数的图象关于对称,易知的图象不关于直线对称,故C 错误;根据函数图象关于点对称,且函数图象关于直线对称,知函数图象关于点对称,又函数的最小正周期为,则函数图象一定关于点对称,故D 正确.故选AD.11.ABD 【解析】双曲线,可知其渐近线方程为,A 错误;设,,的内切圆与,,分别切于点,,,可得,,,由双曲线的定义可得:,即,又,解得,则点的横坐标为,由点与点的横坐标相同,即点的横坐标为,故在定直线上运动,B 错误;由,且,解得,,,,则,同理可得:,设直线,直线,联立方程得,设的内切圆的半径为,则,解得,即,353836.52+=()13232302835384239263533.710⨯+++++++++=()0,x π∈()cos f x x =()()22f x f x ππ+=-()f x 2x π=()()0fx f x ππ++-=()()fx f x ππ+=--()()()()()22f xf x f x f x ππππ--+=+=--=-()()()24f x f x f x ππ=-+=+4π()()0fx f x ππ++-=()f x (),0π()0,x π∈()cos f x x =3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4π()f x (),0π()f x x π=(),0π2x π=()3,0π4π(),0π-22:145x y C -=02x =1PF m =2PF n =12PF F △1PF 2PF 12F F S K T PS PK =11F S FT =22F T F K =2m n a -=12122F S F K FT F T a -=-=122FT F T c +=2F T c a =-T a I T I 2a =I 2x =122PF PF =1224PF PF a -==18PF =24PF =1226F F c ==126436167cos 2868PF F ∠+-∴==⨯⨯12sin PF F ∠==12tan PF F ∠∴=21tan PF F ∠=)1:3PF y x =+)2:3PF y x =-(P 12PF F △r ()12118684622PF F S r =⨯⨯=⨯++⋅△r =I ⎛ ⎝,,,由,可得解得,,故,C 正确;,,当且仅当,,三点共线取等号,易知,故存在使得取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90 【解析】展开式的通项公式为,令,解得,所以展开式中的系数为.13. 【解析】从所给条件入手,进行不等式化简,观察到余弦定理公式特征,进而利用余弦定理表示,由可得,可得.14. 【解析】对任意的,不等式(其中e 是自然对数的底)恒成立,只需恒成立,只需恒成立,只需恒成立,2,PI ⎛∴=- ⎝ (17,PF =- (21,PF =- 12PI xPF yPF =+ 27,,x y -=--⎧⎪⎨=⎪⎩29x =49y =29y x -=1224PF PF a -== 12244PA PF PA PF AF ∴+=+++…A P 2F ()1min549PA PF +=+=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭()()521031553C C 3rr rrr r r T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭1034r -=2r =4x 225C 310990⋅=⨯=0,3π⎛⎤⎥⎝⎦()()1b c b a b c a c a c a b+⇒+++++……()()222a c a b b c a bc ++⇒++…cos A 222b c a ac +-…2221cos 22b c a A bc +-=…0,3A π⎛⎤∈ ⎥⎝⎦11ln2-*n ∈N 11e 1n an n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…11e n an +⎛⎫+ ⎪⎝⎭…()1ln 11n a n ⎛⎫++ ⎪⎝⎭…11ln 1a n n -⎛⎫+ ⎪⎝⎭…构造,,,.下证,再构造函数,,,,设,,,令,,,,在时,,单调递减,,即,所以递减,,即,所以递减,并且,所以有,,所以,所以在上递减,所以的最小值为.,即的最大值为.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为是正项等比数列,所以,公比,因为,所以,即,则,解得(舍去)或,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又因为,所以,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)依题意得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)当时,,所以,因为,所以,当时,符合上式,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)()()11ln 1m x x x =-+(]0,1x ∈()()()()()22221ln 11ln 1x x x m x x x x ++-=++'(]0,1x ∈()(]22ln 1,0,11x x x x+<∈+()()22ln 11x h x x x =+-+(]0,1x ∈()()()2221ln 12(1)x x x xh x x ++-'-=+(]0,1x ∈()()()221ln 12F x x x x x =++--()()2ln 12F x x x =+-'(]0,1x ∈()()2ln 12G x x x =+-(]0,1x ∈()21xG x x=-+'(]0,1x ∈(]0,1x ∈()0G x '<()G x ()()00G x G <=()0F x '<()F x ()()00F x F <=()0h x '<()h x ()00h =()22ln 11x x x+<+(]0,1x ∈()0m x '<()m x (]0,1x ∈()m x ()111ln2m =-11ln2a ∴-…a 11ln2-{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2n n a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n …()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ()121n b b n n =+11b =()21n b n n =+1n =1n b ={}n b ()21n b n n =+因为,所以.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)16.【解析】(1)设为的中点,连接,,因为是中点,所以,且,因为,,,,所以四边形为平行四边形,,且,所以,且,即四边形为平行四边形,所以,因为平面平面,所以平面.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)因为平面,所以平面,又,所以,,相互垂直,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,所以,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)设平面的一个法向量为,则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设平面的一个法向量为,()211211n b n n n n ⎛⎫==- ⎪++⎝⎭1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭M PD FM CM F PE FMED 12FM ED =AD BC 1AB BC ==3AD =2DE PE ==ABCE BC ED 12BC ED =FM BC FM BC =BCMF BFCM BF ⊄,PCD CM ⊂PCD BF PCD AB ⊥PAD CE ⊥PAD PE AD ⊥EP ED EC E ()0,0,2P ()0,1,0A -()1,1,0B -()1,0,0C ()0,2,0D ()1,0,0AB = ()0,1,2AP = ()1,0,2PC =- ()1,2,0CD =-PAB ()111,,m x y z =1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-()0,2,1m =- PCD ()222,,n x y z =则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)设平面与平面所成夹角为,则∙∙∙∙∙∙∙∙∙∙∙(15分)17.【解析】(1)函数的定义域为,则,当时,可得,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)当或时,;当时,;所以在区间,上单调递增,在区间上单调递减;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)所以和是函数的两个极值点,又,所以,;所以,即当时,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)易知,又,所以,是方程的两个实数根,则且,,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设,由,可得,令,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)则,所以在区间上单调递减,222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 21z =()2,1,1n = PAB PCD θcos θ=()21ln 2f x x x ax =+-()0,+∞()211x ax f x x a x x -+=+-='52a =()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==10,2x ⎛⎫∈ ⎪⎝⎭()2,x ∈+∞()0f x '>1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 10,2⎛⎫ ⎪⎝⎭()2,+∞1,22⎛⎫ ⎪⎝⎭12x =2x =()f x 12x x <112x =22x =()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭52a =()()21152ln28f x f x -=-()()()()22221212111ln2x f x f x x x a x x x -=+---()21x ax f x x-+='1x 2x 210x ax -+=2Δ40a =->120x x a +=>121x x =2a >()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭21x t x =21e x x (21)e x t x =…()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭e t …()222111(1)1022t g t t t t-⎛⎫=-+=-< ⎪⎝⎭'()g t [)e,+∞得,故的最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙(15分)18.【解析】(1)设抛物线的准线为,过点作直线于点,由抛物线的定义得,所以当点与原点重合时,,所以,所以抛物线的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)①设,过点且斜率存在的直线,联立消去,整理得:,由题可知,即,所以,是该方程的两个不等实根,由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)又因为,所以,,由,有,所以,因为,,,所以点的轨迹方程为.②由①知,设,,且,∙∙∙∙∙∙∙∙∙(9分)联立消去,整理得,又,,,,由韦达定理可得,同理可得,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)又因为和以圆心为,半径为1的圆相切,,即.同理,所以,是方程的两个不等实根,()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭…()()21f x f x -e 1122e -+E l 2py =-H 1HH ⊥l 1H 1HF HH =H O 1min 12pHH ==2p =E 24x y =(),P m n P ():l y k x m n =-+()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩y 24440x kx km n -+-=()2Δ164440k km n =--=20k mk n -+=1k 2k 1212,,k k m k k n +=⎧⎨=⎩()0,1F 31n k m -=0m ≠123112k k k +=121232k k k k k +=21m m n n =-0m ≠12n n -=1n ∴=-P ()10y x =-≠(),1P m -()14:1l y k x m =--()25:1l y k x m =--1m ≠±0m ≠()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩y 2444440x k x k m -++=()11,A s t ()22,B s t ()33,C s t ()44,D s t 12444s s k m =+34544s s k m =+()()()212344515454444161616s s s s k m k m k k m m k k =++=+++1l ()0,(0)Q λλ>1()()2224412120m k m k λλλ-++++=()()2225512120m k m k λλλ-++++=4k 5k ()()22212120m k m k λλλ-++++=所以由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(14分)所以,若为定值,则,又因为,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)所以圆的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)19.【解析】(1)由题意可得:,解得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)(2)存在“长向量”,且“长向量”为,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)理由如下:由题意可得,若存在“长向量”,只需使,又,故只需使,即,即,当或6时,符合要求,故存在“长向量”,且“长向量”为,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)(3)由题意,得,,即,即,同理,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)三式相加并化简,得,即,,所以,设,由得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)设,则依题意得:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--1234s s s s 220λ-=0λ>λ=Q 22(1x y +=312a a a +…40x -……2a 6a1n a ==p a1n p S a - …()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-71p S a -=== 022cos12p π+ (1)1cos 22p π--……2p =2a 6a123a a a + (2)2123a a a + …()22123a a a +...222123232a a a a a ++⋅ (2)22213132a a a a a ++⋅ …222312122a a a a a ++⋅…2221231213230222a a a a a a a a a +++⋅+⋅+⋅…()21230a a a ++…1230a a a ++ …1230a a a ++=()3,a u v = 1220a a a ++= sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩(),n n n P x y ()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩得,故,,所以,,当且仅当时等号成立,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)故.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP ++++++⎡⎤=--=-=⎣⎦22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ …()4x t t ππ=-∈Z 10151016min1014420282P P =⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
邻水县九龙中学2014届高三(上)第三次月考试题
数学(文科)
(考试时间:120分钟)
注意事项:
1、答题前填写好自己的姓名、班级、考号等信息
2、本试卷分为第Ⅰ卷和第Ⅱ卷两部分。
第I卷(试卷)1至2页,第Ⅱ卷3至4页,请将
答案正确地填写在答题卷上
第I卷(选择题共50分)
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项
中,只有一个是符合题目要求的)
1、若集合A=[2,4],集合B=[1,4],则
A、[1,2]
B、{1,2}
C、[1,2)
D、(1,2]
2、定义运算,则函数
的最小正周期为()
A .4π
B .2π
C .π
D .
3、已知命题p : ∀x R ∈,2x >0,则
A 、非p :∃x R ∈,02<x
B 、非p :∀x R ∈,02≤x
C 、非p :∃x R ∈,02≤x
D 、非p :∀x R ∈,02<x 4
、
若
tan =3,则 的值等于
A 、6 B. 4 C. 3 D. 2
5、设2)(2-=e x f ,则函数)(x f 的零点位于区间
A 、(—1, 0)
B 、(0 ,1)
C 、(1, 2)
D 、(2 ,3)
6、将函数的图象向左平移
个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A、B、
C、
D、
7、若函数的值域为
,则
的取值为( )
A、B、
C、
D 、
8、函数ln ||y x x =的图象大致是
A
B
C D
9、已知函数()e e
x
x
f x m -=-,若()23f x '≥m 的取值范围是
A 、[0,)+∞
B 、[2,)+∞
C 、[3,)+∞
D 、(,3]-∞
10、定义在[0,1]上的函数)(x f 满足)(2
1
)5(,1)1()(,0)0(x f x f x f x f f ==-+=,
且当 1021≤<≤x x 时,)2013
1
().()(21f x f x f 则≤等于
A 、21
B 、161
C 、321
D 、64
1 二、填空题(每小题5分,共25分)
11、函数y=)13lg(+x 的定义域是 __________
12、已知3cos 2θ=,则44sin cos θθ-的值为 . 13、已知变量x ,y 满足约束条件
则z =2x +y 的最大值为 .
14、已知定义在R 上的函数()y f x = 满足条件3()()2
f x f x +=-,且 (1)=2014f ,则(2014)=f ________.
15、在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点.如果函数()f x 的图象恰好通过k (*k ∈N )个整点,则称()f x 为k 阶整点函数.给出下列函数:①()cos f x x =;②2()(1)f x x π=-;③21()()3
x f x -=;④0.6()log (1)f x x =+;⑤1()1f x x =-. 其中是1阶整点函数的序号有______________.(只填序号) 三、解答题(本大题6小题,共75分,解答题应写出必要文字的说明、证明过程或演
算步骤)
16、(本小题12分)设向量m (cos α=,1),n (sin α=,2),且m ∥n ,其中(0)2
π
α∈,. (Ⅰ)求sin α; (Ⅱ)若3sin()5αβ-=,(0)2π
β∈,,求cos β. ▲
17、(本小题12分)已知函数()sin()f x A x ωϕ=+(其中0,2A πϕ><)的图象 如图所示.
(1) 求函数()f x 的解析式;
(2)求()f x 的单调区间.
▲
18、(本小题12分)已知函数
(I )函数f (x )的图象在(1,f (1))处的切线方程为y =2x +b ,
求a ,b 的值;
(II )若f (x )≥0对任意x >0恒成立,求a 的最小值。
▲
19、(本小题12分)已知函数2
1cos 2sin 23)(2--=x x x f ,x R ∈. (Ⅰ)求函数()f x 的最小值和最小正周期;
(Ⅱ)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,满足3c =,
()0f C =且sin 2sin B A =,求a 、b 的值.
▲
20、(本小题13分)已知函数()log (3)a f x ax =-.
(1) 当30,2x ⎡⎤∈⎢⎥⎣⎦
时,函数()f x 恒有意义,求实数a 的取值范围; (2) 是否存在这样的实数a ,使得函数()f x 在区间[]2,3上为增函数,并且()
f x 的最大值为1.如果存在,试求出a 的值;如果不存在,请说明理由.
21、(本小题14分)已知函数),(,)(R x R k kx e x f x ∈∈-=
(Ⅰ)若,e k =试确定函数)(x f 的单调区间;
(Ⅱ)若0>k ,且对于任意0≥x ,0)(>x f 恒成立,求实数k 的取值范围; (Ⅲ)令,ln 2)(x e x g x -=若至少存在一个实数[]e x ,10∈,使)()(00x g x f <成
立,求实数k 的取值范围。