深部矿产资源开采与利用中的挑战
深部开采分析与研究

深部开采分析与研究首先,深部开采可以定义为对超过地表三百米的地下资源进行开采利用的工程技术。
它主要包括石油、天然气、煤炭、金属矿产等的开采。
目前,深部开采已成为许多国家追求能源独立、经济发展的一种重要手段。
尤其是在发达国家,深部开采已经取得了突破性的进展,成为国民经济的支柱产业。
然而,由于深部开采存在着一系列的技术挑战和环境问题,其影响也越来越大,因此深入研究深部开采是十分必要的。
接着,深部开采面临的挑战是多方面的。
首先是技术挑战,深部开采的技术要求高,投入大,风险高。
例如,由于地下温度和压力的不断增加,开采过程中很容易发生事故,给工人的生命安全带来威胁。
同时,深部开采还面临着能源消耗大、环境污染等问题。
另外,深部开采还存在一些地质难题,如地下水的处理、地下应力的影响等,这些都给深部开采带来了很大的困难。
针对深部开采所面临的技术挑战和环境问题,研究人员提出了一系列的解决方案。
首先,可以通过研发新的材料和技术来提高深部开采的效率和安全性。
例如,可以开发新型抗压材料来使地下设备更加耐久;可以采用无人机和机器人技术来进行高效的勘探和开采;可以开发新型地下水处理技术来解决地下水污染问题。
另外,还可以通过加强国际合作,共同研究解决深部开采问题。
各国可以分享自己的经验和技术,互相学习,共同进步。
总之,深部开采是一项复杂而重要的工程技术,它对于国家的发展和经济增长具有重要意义。
然而,深部开采也面临着许多技术挑战和环境问题,需要我们进行深入研究和解决。
只有在技术创新和国际合作的基础上,才能实现深部开采的可持续发展,为人类的繁荣和进步做出贡献。
深海矿产资源开发技术的挑战与机遇

深海矿产资源开发技术的挑战与机遇在地球的广袤海洋中,深海区域蕴藏着丰富的矿产资源,这些资源对于解决人类社会日益增长的资源需求具有重要的战略意义。
然而,深海矿产资源的开发并非易事,面临着诸多技术挑战,但同时也带来了巨大的机遇。
深海环境极端恶劣,压力巨大、温度低、光线微弱,这些条件给矿产资源的开发带来了第一道难题。
在深海中,水压可以达到数百甚至上千个大气压,这对设备的抗压能力提出了极高的要求。
为了应对这种压力,需要使用特殊材料和先进的制造工艺来打造坚固的开采设备。
但目前,能够承受如此高压的材料和技术仍有待进一步研发和完善。
深海的通信也是一个棘手的问题。
由于海水对电磁波的强烈衰减作用,传统的通信方式在深海中效果不佳。
这使得地面控制中心与深海作业设备之间的信息传输变得困难重重。
如何实现高效、稳定的深海通信,确保及时、准确地控制和监测开采作业,是当前亟待解决的技术难题之一。
再者,深海矿产资源的探测和定位技术尚不够精确。
要找到隐藏在深海中的矿产资源并非易事,需要借助先进的地质探测设备和技术。
然而,现有的探测手段在准确性和分辨率方面还有很大的提升空间。
如果不能准确地找到矿产资源的位置和分布情况,就会大大增加开发的成本和风险。
同时,深海开采过程中的环境保护也是不容忽视的挑战。
深海生态系统非常脆弱,一旦遭到破坏,恢复起来极其困难。
在开发矿产资源的过程中,如何最大限度地减少对深海环境的影响,避免造成生态灾难,是必须要面对的重要课题。
尽管面临着诸多挑战,但深海矿产资源开发也带来了前所未有的机遇。
首先,深海矿产资源的开发将推动相关技术的创新和进步。
为了解决深海开采中的各种技术难题,科学家和工程师们将不断探索新的材料、新的制造工艺和新的通信技术。
这些技术的突破不仅有助于深海矿产资源的开发,还可能在其他领域产生广泛的应用,如海洋工程、国防科技等。
其次,深海矿产资源的开发有望为经济发展提供新的动力。
一旦成功开发深海矿产资源,将为相关产业带来巨大的经济效益,创造大量的就业机会。
探讨深部开采面临的主要问题与对策

101科技资讯 SCIENCE & TECHNOLOGY INFORMATION 工 业 技 术针对矿井深部开采,开采的深度直接反映矿井的开采难度。
近年来,随着我国经济持续、稳定增长,对于能源需求量日益增多,使得矿井开采的延伸速度在不断加快。
目前,我国矿井开采已发展至深部开采阶段,同浅部开采对比,深部开采的成本较高,随着深度增加,也不利于采矿环境,给煤矿生产、安全造成极大问题。
笔者根据自身多年从业经验,对深部开采中面临的主要问题进行分析,并提出一些针对性的建议,现总结如下。
1 深部开采面临的主要问题第一,巷道围岩变形。
地应力随着开采深度的增加而增大,同时巷道周围的应力也随之增高。
处于浅部较硬的围岩,直到深部后形成工程软岩,主要表现应变软化、强烈扩容性特点,降低了巷道岩体的强度,严重破坏了支护与巷道。
按照相关统计显示,深部巷道的翻修比例在91%以上,显著增加了巷道维护成本,导致矿井生产系统不畅通,降低运输能力,以及风水电等一系列系统问题。
具体表现如下方面:其一,巷道的变形速度较快,底鼓较为严重,变形量较大,在深部高应力的条件下,岩体具备较高能量,对巷道开挖具有卸荷作用,短时间可释放岩体聚集能量,深部围岩最大应力和最小应力差呈上升趋势。
前掘后修已成为深部回采巷道施工的基础工作;其二,岩性显著影响了巷道的稳定性,对于浅部岩体而言,岩性变化几乎不影响巷道变形。
而到达深部之后,不同岩性围岩的变形差异逐渐增加,巷道位置取决于岩性主导因素,若同一巷道的岩性不同,采用非等强支护方法已成为主要的巷道围护方法;其三,掘进后,巷道持续流变和变形,是深部巷不变形的表现特征。
第二,矿井煤同瓦斯之间的冲击、突出地压。
其一,随矿井开采深度有所增加,煤层瓦斯压力随之增加,许多旧浅部属于非突出煤层,转变成突出煤层,随深度增加,其突出频度、强度也显著增大。
由于我国煤矿开采条件较为复杂,矿井几乎全部为瓦斯矿井,瓦斯是煤矿安全生产的必要问题。
地下开采矿山深部开采存在的问题及解决措施

地下开采矿山深部开采存在的问题及解决措施摘要:在矿山不断发展的过程中,要对矿山开采技术进行合理选择,技术的选择与应用会直接影响开采质量及效率。
井工矿深部开采是当前矿山在发展过程中重要的采矿形式,包含多种不同方式,能有效满足矿山高效生产需求。
在新时期背景下,矿山开采工作要在兼顾效率的同时提高安全性。
本文以矿山深部开采为主,分析现存问题并提出切实可行的应对措施。
关键词:地下开采;深部开采;原则;问题;策略引言当前中国对矿产资源的需求十分强劲,必须加大开发利用矿产资源力度以适应国家的发展需要。
然而,在发展矿产资源的过程中,虽然带动了经济社会的持续发展,但也对环境造成了严重损害和污染,对经济社会发展的可持续性产生了重大风险和影响。
由此产生的环境问题包括:在选矿和开采过程中产生大量有害、有毒气体、普通硅酸盐建筑材料、金属尾矿等,并伴随巨大噪音的危害,对附近的环境和土地造成了巨大的危害;尾矿库和废石堆占用了大量耕地等。
因此,对矿山工程的管理势在必行,基于此,需要对复杂地质条件下的矿山工程开采管理技术展开研究。
1矿山深部开采过程中存在的问题分析1.1安全设施不完善安全设施不完善是矿山安全问题的重要表现之一。
矿山由于历史原因、经济条件限制等原因,安全设施建设不到位,缺乏必要的安全设备和保障措施,导致矿工在生产过程中面临很高的安全风险。
例如,某些矿山可能缺乏必要的安全警示标志和设备,或者缺乏必要的防护措施,从而导致矿工在生产过程中面临很高的安全风险。
1.2严重影响生物的多样性无论是动物还是植物,它们的发育和繁殖都依赖于特定的自然环境。
矿山开采会导致区域环境的破坏,包括破坏森林资源、改变地区的气候和湿度条件等。
这些环境变化会导致动植物及其赖以生存的自然环境消失。
当动植物失去赖以生存的自然环境时,它们面临着灭绝的威胁,这对保护动植物多样性十分不利。
1.3土壤调查生态修复的目标是建植与周边环境相协调的植物群落,从而绿化、美化。
探讨深部开采面临的主要问题与对策

探讨深部开采面临的主要问题与对策摘要:随着我国国民经济发展,煤矿深部开采技术不断进步,国家加大对于深部开采的投入力度,而在深部开采过程中,由于深部多变、复杂的煤岩体特点,给身边开采造成一定困难。
本文主要探讨深部开采面临的主要问题,并提出一些针对性的对策。
关键词:深部开采;问题;对策针对矿井深部开采,开采的深度直接反映矿井的开采难度。
近年来,随着我国经济持续、稳定增长,对于能源需求量日益增多,使得矿井开采的延伸速度在不断加快。
目前,我国矿井开采已发展至深部开采阶段,同浅部开采对比,深部开采的成本较高,随着深度增加,也不利于采矿环境,给煤矿生产、安全造成极大问题。
笔者根据自身多年从业经验,对深部开采中面临的主要问题进行分析,并提出一些针对性的建议,现总结如下:1深部开采面临的主要问题首先,巷道围岩变形。
地应力随着开采深度的增加而增大,同时巷道周围的应力也随之增高。
处于浅部较硬的围岩,直到深部后形成工程软岩,主要表现应变软化、强烈扩容性特点,降低了巷道岩体的强度,严重破坏了支护与巷道。
按照相关统计显示,深部巷道的翻修比例在91%以上,显著增加了巷道维护成本,导致矿井生产系统不畅通,降低运输能力,以及风水电等一系列系统问题。
具体表现如下方面:其一,巷道的变形速度较快,底鼓较为严重,变形量较大,在深部高应力的条件下,岩体具备较高能量,对巷道开挖具有卸荷作用,短时间可释放岩体聚集能量,深部围岩最大应力和最小应力差呈上升趋势。
前掘后修已成为深部回采巷道施工的基础工作;其二,岩性显著影响了巷道的稳定性,对于浅部岩体而言,岩性变化几乎不影响巷道变形。
而到达深部之后,不同岩性围岩的变形差异逐渐增加,巷道位置取决于岩性主导因素,若同一巷道的岩性不同,采用非等强支护方法已成为主要的巷道围护方法;其三,掘进后,巷道持续流变和变形,是深部巷不变形的表现特征。
其次,矿井煤同瓦斯之间的冲击、突出地压。
其一,随矿井开采深度有所增加,煤层瓦斯压力随之增加,许多旧浅部属于非突出煤层,转变成突出煤层,随深度增加,其突出频度、强度也显著增大。
地下开采矿山深部开采的主要问题及应对措施

M ine engineering矿山工程地下开采矿山深部开采的主要问题及应对措施宫晓亮摘要:作为矿业开采的重要方式,井工矿多使用立井开拓、斜井开拓或综合开拓的方式进行矿产开采,开采过程具有环境复杂、专业技术要求高的特点。
本文在阐述井工矿深部开采特征的基础上,分析地下开采矿山常见问题,并结合新时期安全生产要求,指出地下开采矿山的相关开采问题及应对措施,期望能创建安全、高效的矿山开采环境,在保证矿产资源开采综合效益的前提下,促进采矿企业的可持续发展。
关键词:井工矿;开采问题;应对措施矿产资源在社会生产及经济发展中起到至关重要的作用,其能为多个行业的生产和业务实践提供动力支撑。
在矿企经营中,矿山开采技术的选择和应用对于采矿效率、质量和安全效益具有深刻影响。
井工矿深部开采是矿企采矿生产的重要形式,其不仅包含立井、斜井开拓方式的应用,而且在实际生产中,还会使用,平峒开拓或综合开拓等方式,有效地满足了矿山高效生产的需要。
新时期,在兼顾矿山生产效率的同时,考虑生产安全性是地下开采矿山深部开采的内在要求;基于此,有必要进行地下开采矿山深部开采问题和对策的深层次分析。
1 地下开采矿山深部开采特征矿企采矿生产中,井工矿深部开采是较为常用的开采方式,其能在考虑矿层分布情况的基础上,系统选择井工矿的开采方式,这满足了矿企高效采矿的需要。
结合采矿实际可知,井工矿采矿作业具有作业环境复杂、技术专业性强、安全性要求高的特点。
一方面,地下开采矿山深部采矿属于地下开采作用,从作业环境来看,其作业面受易燃气体、粉尘的影响较大,同时容易遭受水火侵袭,同时顶板陷落也会影响具体的采矿作业。
故而在采矿实际中,应通过矿井通风、井壁支护等方式,进行采矿作业环境的优化处理。
另一方面,除矿井开拓方式外,井工矿深部开采的工艺技术也具有多元性的特征,除钻爆开采工艺外,作业面综掘工艺的应用也较为普遍。
以综掘工艺为例,其需要在风镐破矿、掘锚机和综合掘进机割矿的基础上,借助混凝土搅拌机和混凝土喷射机进行工作面的支护,最后再借助管板转载机进行转载和带式输送机运送,完成矿产资源的输送。
探讨深部开采面临的主要问题与对策

探讨深部开采面临的主要问题与对策摘要:随着我国国民经济发展,煤矿深部开采技术不断进步,国家加大对于深部开采的投入力度,而在深部开采过程中,由于深部多变、复杂的煤岩体特点,给身边开采造成一定困难。
本文主要探讨深部开采面临的主要问题,并提出一些针对性的对策。
关键词:深部开采;问题;对策针对矿井深部开采,开采的深度直接反映矿井的开采难度。
近年来,随着我国经济持续、稳定增长,对于能源需求量日益增多,使得矿井开采的延伸速度在不断加快。
目前,我国矿井开采已发展至深部开采阶段,同浅部开采对比,深部开采的成本较高,随着深度增加,也不利于采矿环境,给煤矿生产、安全造成极大问题。
笔者根据自身多年从业经验,对深部开采中面临的主要问题进行分析,并提出一些针对性的建议,现总结如下:一.深部开采面临的主要问题首先,巷道围岩变形。
地应力随着开采深度的增加而增大,同时巷道周围的应力也随之增高。
处于浅部较硬的围岩,直到深部后形成工程软岩,主要表现应变软化、强烈扩容性特点,降低了巷道岩体的强度,严重破坏了支护与巷道。
按照相关统计显示,深部巷道的翻修比例在91%以上,显著增加了巷道维护成本,导致矿井生产系统不畅通,降低运输能力,以及风水电等一系列系统问题。
具体表现如下方面:其一,巷道的变形速度较快,底鼓较为严重,变形量较大,在深部高应力的条件下,岩体具备较高能量,对巷道开挖具有卸荷作用,短时间可释放岩体聚集能量,深部围岩最大应力和最小应力差呈上升趋势。
前掘后修已成为深部回采巷道施工的基础工作;其二,岩性显著影响了巷道的稳定性,对于浅部岩体而言,岩性变化几乎不影响巷道变形。
而到达深部之后,不同岩性围岩的变形差异逐渐增加,巷道位置取决于岩性主导因素,若同一巷道的岩性不同,采用非等强支护方法已成为主要的巷道围护方法;其三,掘进后,巷道持续流变和变形,是深部巷不变形的表现特征。
其次,矿井煤同瓦斯之间的冲击、突出地压。
其一,随矿井开采深度有所增加,煤层瓦斯压力随之增加,许多旧浅部属于非突出煤层,转变成突出煤层,随深度增加,其突出频度、强度也显著增大。
地下开采矿山深部开采存在的问题及解决措施

地下开采矿山深部开采存在的问题及解决措施摘要:随着矿业需求的持续增长,地下矿山深部开采成为了满足资源需求的关键途径。
然而,深部开采伴随着各种技术和环境挑战,包括复杂的地质条件、增大的地下压力、人员安全风险及对周边环境的潜在影响。
为确保深部开采的持续性、安全性及其对环境的最小影响,需要采用创新的管理策略、技术手段和环保措施。
此外,对矿工进行有效的培训、加强国际合作与交流,以及实施严格的环境监测,都是确保矿山开采成功的关键因素。
本文旨在深入探讨地下矿山深部开采中所面临的主要问题,并提出相应的解决策略和建议。
关键词:地下开采;矿山深部开采;问题;解决措施引言随着社会的快速发展和工业化进程的加速,矿产资源作为支撑现代生活和技术进步的重要物质基础,其重要性日益凸显。
地下矿山深部开采技术,作为矿业发展中的核心环节,承载着满足人们对资源需求的重要职责。
然而,伴随着这种深入地下的开采行为,诸多挑战和风险也随之而来,面对这些问题,仅仅依靠传统的矿业经验和方法是难以胜任的。
这就需要采用更先进、更科学的方法,结合多学科的研究,创新矿山管理和技术措施,来确保矿产资源的高效开发与利用,同时最大限度地保障矿工的安全与健康,以及对环境的保护与恢复。
1.地下矿山深部开采存在的问题1.1 地质条件问题地下矿山深部的开采面临的地质问题是多方面的,每一个地质构造都可能影响到开采的安全性。
例如,地层错动是一个复杂的地质现象,可能导致预测的矿石层位置出现差错,使得矿工在深部作业时遇到未预期的岩层。
断层是岩层断裂和错位的区域,它可能切断矿床,使得矿石丧失经济价值。
而岩溶则是由于地下水作用在可溶解的岩石上,如石灰岩,造成的空洞或洞穴。
这些空洞可能在矿工不知情的情况下突然坍塌。
而地下矿山深部的岩体稳定性问题更是不可忽视的。
由于深部的岩石承受的应力大,容易产生裂隙,进而发生变形或垮塌,这对矿山的开采、通风和安全都构成了巨大的威胁。
1.2 地下压力问题随着矿山的深度增加,地下的压力也在持续上升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Engineering 3 (2017) 432–433/10.1016/J.ENG.2017.04.0272095-8099/© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company.This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/).EditorialChallenges in the Mining and Utilization of Deep Mineral ResourcesMeifeng Cai a , Edwin T. Brown b ,caKey Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China bGolder Associates Pty. Ltd., Brisbane, QLD 4064, Australia cThe University of Queensland, Brisbane, QLD 4072, AustraliaAs Mote et al. [1] have noted in this journal, advances in the fields of engineering science and technology have played an indispensable role in shaping the social and economic development of humankind. However, the continuing development of science and technology, along with the world’s ever-growing population, is consuming the earth’s resources, including its mineral resources, at what may ul-timately prove to be unsustainable rates. After hundreds of years of mining, the more accessible shallow mineral resources are being depleted, and some have now been completely exhausted. This means that the economic exploitation of more of the earth’s deeper mineral resources is now required in order to meet society’s grow-ing demand for minerals. This demand is not only for the traditional metallic ores and energy sources, but also for minerals such as rare earths, which are being used at an increasing rate with the advent of new technologies in the fields of communication, power generation, and power storage, among others. The efficient mining and utiliza-tion of deep mineral resources is not one of the Grand Challenges for Engineering that were identified in recent years by the US National Academy of Engineering, the UK Royal Academy of Engineering, and the Chinese Academy of Engineering (CAE), as listed by Mote et al. [1]. However, it is clear that traditional and newer mineral resources will be required in order to develop solutions to most of the Grand Challenges that have been identified.Exploitable mineral resources exist at great depth in the form of a number of orebody types in a range of geological and geometrical settings. The current seven deepest mines in the world mine tabu-lar or stratiform gold deposits in the Witwatersrand Basin of South Africa. The deepest of these mines are now around 4 km deep. The next deepest mines in the world are two base metal mines in Cana-da, which are about 3 km deep. For the purpose of this discussion, deep mining is taken to involve mining at depths of more than 1 km. The effective development and extraction of deep mineral resources face a number of engineering challenges arising from factors such as high in situ and induced stresses, and the responses of variable rock masses to these stresses; high in situ temperatures, and the associated ventilation and cooling requirements; the dif-ficulty and cost of exploring deep, and sometimes blind, deposits; the complex and difficult mining conditions that are often encoun-tered; safety concerns leading to the desirability of developing non-entry methods of mining; and methods and costs of handling mined ore at depth and transporting it to the surface. In someextreme cases, new, low-cost, and non-traditional methods of ex-traction will be required.Against this background, deep mining has been identified as an important topic for research under China’s State Key Research and Development Program, with several State Key Laboratories hav-ing been established under that program. This special issue of the CAE’s journal, Engineering , focuses on Efficient Exploitation of Deep Mineral Resources; it follows on from a China Engineering Science and Technology Forum on the same topic that was held in Beijing in October 2016, and was sponsored by the CAE. The proceedings of that forum will be published by Higher Education Press, Beijing, in September 2017 [2].The Guest Editors are grateful to the CAE for this opportunity to assemble this special issue of Engineering ; we also offer our thanks to those who have provided contributions and to those who have taken part in the associated review and editorial processes. This special issue contains the following five papers by selected interna-tional and Chinese authors:(1) “Some challenges of deep mining,” by Charles Fairhurst: This stimulating paper by one of the world’s most distinguished mining engineers is written from the perspective of a reader who does not necessarily have a background in mining or rock engineering, and thus provides a valuable introduction to this special issue.(2) “Monitoring, warning, and control of rockburst in deep metal mines,” by Xia-Ting Feng and colleagues: As noted by Professor Fairhurst, the understanding and alleviation of rockbursts have long provided one of the major safety and rock engineering challenges fordeep mining. This paper reports on some recent advances made inContents lists available atScienceDirectjo ur n al h om e pag e: w w /locate/engEngineeringMeifeng Cai Edwin T. Brown433 M. Cai, E.T. Brown / Engineering 3 (2017) 432–433monitoring and controlling rockbursts in deep metalliferous mines.(3) “Opportunities and challenges in deep mining: A brief review,” by Pathegama G. Ranjith and colleagues: This paper discusses a num-ber of novel or non-traditional and high-technology approaches to deep mining, with an emphasis on non-entry extraction methods.(4) “The use of data mining techniques in rockburst risk assess-ment,” by Luis Ribeiro e Sousa, a distinguished Portuguese engi-neer, and colleagues: Like the second paper listed above, this paper addresses the important problem of rockbursts in deep mining; however, it does so using a range of modern data mining techniques, including Bayesian network classifiers.(5) “Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep Jinchuan nickel deposit,” by Zhiqiang Yang: Finally, this paper reports on the ap-proaches that have been successfully used to improve the exploita-tion and utilization of a major Chinese base metal resource now being mined at more than 1km below the surface.References[1] Mote CD Jr, Dowling DA, Zhou J. The power of an idea: The international im-pacts of the Grand Challenges for Engineering. Engineering 2016;2(1):4‒7. [2] Chinese Academy of Engineering. Proceedings of China Engineering Scienceand Technology Forum: High-efficient mining and utilization of deep mineral resources. Beijing: Higher Education Press; 2017. Chinese.Engineering 2 (2016) xxx–xxxEditorialContents lists available at ScienceDirectjo ur n al h om e pag e: w w /locate/engEngineering深部矿产资源开采与利用中的挑战蔡美峰a,Edwin T. Brown b,caKey Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, Chinab Golder Associates Pty. Ltd., Brisbane, QLD 4064, Australiac The University of Queensland, Brisbane, QLD 4072, Australia正如Mote等[1]在本刊中已经提到的那样,工程科技领域的进步对人类社会与经济的发展起到了不可或缺的作用。