(4)第四章 分离与富集
溶剂萃取(精)

1. 螯合物萃取体系
螯合物萃取是分析化学中应用最广泛的萃 取体系,所用的萃取剂为螯合剂。可用做萃取 剂的螯合剂与试样中的被萃取金属离子生成四 元、五元或六元环状螯合物很稳定,因而萃取 灵敏度很高,可用于萃取浓度很低的金属离子, 在分离同时达到富集的效果。
萃取过程
① 萃取剂在两相中分配平衡 ② 水相中萃取剂电离平衡 ③ 萃取剂与萃取离子络合平衡 ④ 内络盐在两相中分配平衡
(CH3)2N
S
N(CH3)2 +
[BF4] -
N
主要萃取条件:配位阴离子、酸性溶液和惰性溶剂
高分子量胺萃取
高分子量胺(本身是液体,有时溶在稀释剂中)
与酸反应生成的盐难溶于水,但易溶于有机溶剂
而被萃取。
质子加成反应
R3 N有机 H A R3 NH A有 机
因此,高分子胺可用于水溶液中酸的萃取。
V(有机)
)2
DV(有机) V(水)
经n次萃取后水相中剩余溶质质量:
mn
m0
(
V(有机)
)n
DV(有机) V(水)
n次萃取后的萃取效率E为:
E
1
(
V(水) DV(有机)
)n V(水)
以CCl4萃取20mL水溶液中的I2,已知 碘在水与CCl4的分配比为85,试比较用 20mL CCl4 一次萃取及每次用 10mL CCl4 分两次萃取的萃取效率。
D cA总 (有机) cA总 (水)
3.萃取百分率
萃取百分率:被萃取物在有机相中的量占 它在两相中的A在两相中的总量
100%
4.萃取效率
设:萃取体系中水相的体积为V水, 有机相的体积为V有,则萃取效率可从下 式计算:
分离与富集技术(膜分离)

3.1概论膜的定义:在一种流体相内或两种流体相之间有一薄层分散相物质把流体相分隔成两局部,这一薄层物质就是膜。
•膜分别:以固相膜作为选择障碍层,利用膜的选择性〔孔径大小〕,以膜的两侧存在的能量差作为推动力,对双组分或多组分的溶质和溶剂进展分别、分级、提纯和富集的方法。
1膜分别的进展史2膜分别的特点•操作在常温下进展;物理过程,不需参加化学试剂;•不发生相变化〔因而能耗较低〕;•在很多状况下选择性较高;•浓缩和纯化可在一个步骤内完成;•设备易放大,可以分批或连续操作。
3膜的分类•按孔径大小:微滤膜、超滤膜、反渗透膜、纳滤膜•按膜构造:对称性膜、不对称膜、复合膜•按材料分:自然膜、合成有机聚合物膜、无机材料膜•多孔膜与致密膜:前者具有多孔性构造,膜内孔径0.05-20μm,如微滤膜、超滤膜、纳滤膜,后者无多孔性构造,其通过速率主要取决于集中速率,如反渗透膜、渗透蒸发几种常见的膜:(1)对称膜:构造与方向无关的膜,孔径可全都,构造可不规章(2)不对称膜:由一个很薄但比较致密的分别层和多孔支撑层组成,此类膜具有高的传质速率和良好的机械强度,膜通量比对称膜高10-100 倍。
(3)复合膜:构造与不对称膜相像,其中选择性膜层〔活性膜层〕沉积于具有微孔的支撑层外表。
复合膜的性能不仅取决于具有选择性的外表薄层,而且受微孔支撑层的影响。
(4)无机膜:化学稳定性好、耐强酸、强碱、强氧化剂、化学溶剂;热稳定性好,耐高温;通量较大,污染少;机械强度高,使用周期长;允许条件苛刻的清洗操作(蒸汽灭菌、高压反冲洗等)常见膜分别方法•按分别粒子大小分类:透析〔Dialysis,DS〕微滤〔Microfiltration,MF〕超滤〔Ultrafiltration,UF〕纳滤〔Nanofiltration,NF〕反渗透〔Reverse osmosis,RO〕电渗析〔Electrodialysis,ED〕渗透气化〔Pervaporation,PV〕•依据截留分子量:微滤0.02~10μm超滤50nm~100nm或5000~50 万Dalton透析3000 Dalton~几万Dalton纳滤200~1000Dalton 或1nm反渗透200Dalton膜材料对于不同种类的膜根本要求:•耐压:一般膜操作的压力范围在0.1~0.5MPa,反渗透膜的压力更高,约为1~10MPa •耐高温:高通量带来的温度上升和清洗的需要•耐酸碱:防止分别过程中,以及清洗过程中的水解;•化学相容性:保持膜的稳定性;•生物相容性:防止生物大分子的变性•本钱低3.2膜分别方法1微孔过滤主要用于从液相物质中截留微粒、细菌、污染物到达净化、分别和浓缩的目的。
第四章膜分离过程原理汇总

4.2 以压力差为推动力的膜分离过程
• 微滤是指大于0.1μm的颗粒或可溶物 被截流的压力驱动型膜过程(MF)
• 超滤是指小于0.1μm大于2nm的颗粒 或可溶物被截流的压力驱动型膜过 程(UF)
• 反渗透是指高压下溶剂逆着其渗透 压而选择性透过的膜过程(RO)
• 纳滤是指小于2nm的颗粒或可溶物被 截流的压力驱动型膜过程(nF)
• 根据原水水质,可经过预过滤以去除大颗 粒防止膜过快堵塞,亦可视情况投加混凝 剂或粉末活性炭,以生产有机物含量低的 水。但在生产高质量水时,通常作为超滤、 反渗透或纳滤的预处理设施。
• 而在生产高纯水时,微滤常作为纯水或超 滤水生产时的末端处理, 以去除剩余在水 中的痕量杂质。
• 目前,市场上的微滤膜多为平板膜折叠式滤芯, 膜材料为聚丙烯(PP)或聚砜(PS)、尼龙等。聚砜 膜的孔径经常为0.45mm、0.2mm或更小,其 孔径分布均匀,水通量大,不易堵塞。而聚丙烯 膜的过滤精度范围广,价格便宜,但精度差。
• 深层过滤:在微滤过程中,膜孔的孔径大于被 滤微粒的粒径,流体中的粒子能进入膜的深层 并被除去。
4.2.4渗透气化与蒸汽渗透
• 1.渗透汽化及蒸汽渗透原理
渗透汽化是指液体混合物在膜两侧压差得作用,利用膜对被分 离混合物中某组分有优先选择性透过膜得特点,使料液侧优 先渗透组分渗透通过膜,在膜得下游侧汽化去除,从而达到 混合物分离提纯得一种新型膜分离技术。
MF
UF
RO
4.2.1 反渗透
渗透是在膜两侧的压力相等的情况下,在浓差作用 下溶剂水分子从低浓度向高浓度透过.
反渗透是利用外压将渗透过程逆转,达到分离物质的
反渗透原理
反渗透(Reverse Osmosis)分离过程是使溶 液在一定压力(10-100 atm)下通过一个多孔 膜,在常压和环境温度下收集膜渗透液。溶液中 的一个或几个组分在原液中富集,高浓度溶液留 在膜的高压侧。
课件-分离和富集

茨维特实验示意图
第六节 色谱分离法
二、色谱法的分类
1、按流动相的状态 流动相为气体: 气相色谱 流动相为液体: 液相色谱 流动相为超临界流体: 超临界流体色谱 2、按固定相的形式 柱色谱 平面色谱:包括纸色谱和薄层色谱 3、按原理 吸附色谱 分配色谱 离子交换色谱 体积排除色谱(凝聚色谱)
第六节 色谱分离法
>1
>99.9%
0.01-1
>99%
<0.01(痕量组分)
90-95
第一节 概述
2、对分离的要求 ① 分离要完全,即共存组分不干扰测定 ② 被测组分损失小至可忽略 ③ 分离方法简便,成本低易操作 ④ 分离效果好
第二节 沉淀与共沉淀分离法
一、定义
沉淀分离法是利用沉淀反应有选择地沉淀某些离子,而其它离子 则留于溶液中从而达到分离的目的。 在实际的操作中:在试液中加入适当的沉淀剂,依据生成物溶解 度的差别,使待测组分沉淀出来,或将干扰组分沉淀除去,从而达到 分离的目的。
第九章 分离和富集
第九章 分离和富集
第一节 第二节 第三节 第四节 第五节 第六节 概述 沉淀和共沉淀分离法 溶剂萃取分离法 离子交换分离法 膜分离法 色谱分离法
第一节 概述
一、分离和富集在分析化学中的意义
1、样品的基体组成非常复杂,并且干扰组分量相对比较大的条件下 ——分离 2、样品中待测组分的含量较低,而现有测定方法的灵敏度又不够高 ——富集或分离富集
二、类
沉淀法中主要包括:沉淀分离法和共沉淀分离法 。 两种方法的区别主要是:沉淀分离法主要使用于常量组分的分离 ;而共沉淀分离法主要使用于痕量组分的分离和富集。
第二节 沉淀与共沉淀分离法
三、常用的沉淀试剂及分离方法
1、常用的沉淀试剂: ① 无机沉淀剂 氢氧化物、硫化物、其它沉淀剂等。 ② 有机沉淀剂 草酸、铜试剂、铜铁试剂等。 2、常用的分离方法: ① 氢氧化物沉淀分离法 ② 硫化物沉淀分离法 ③ 共沉淀分离法 ④ 均相沉淀分离法
分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点?答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。
(2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。
(32.3.答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。
4.阐述浓缩、富集和纯化三个概念的差异与联系?答:富集:通过分离,使目标组分在某空间区域的浓度增大。
浓缩:将溶剂部分分离,使溶质浓度提高的过程。
纯化:通过分离使某种物质的纯度提高的过程。
根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分:(方法被分离组分的摩尔分数)富集<0.1;浓缩0.1-0.9;纯化>0.9。
5.回收因子、分离因子和富集倍数有什么区别和联系?答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。
(2A SA,B ≈(3第二章分离过程中的热力学2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。
试分析吸附物质的吸附平衡常数K与该气体物质在气相的分压p需满足什么条件才能使朗格缪尔吸附等温线近似为直线。
答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。
在低压时,p K q q p K A A max 1=,《。
第三章 分离过程中的动力学1.相比可2.在无流和有流情况下,溶质分子的迁移分别用什么公式描述?对公式的物理意义做简单的阐述。
答:无流时:22dx c d D dx dc Y dt dc +-=,有流时:22)(dxx d D dx dc v Y dt dc +'+-= 物理意义:(参考费克第一定律物理意义的形式自己描述)3.费克扩散定律描述的是什么样的特殊条件下溶质分子的迁移?答:费克第一定律dxdy A x J dx dc D J -=-=)(或,是假设溶质浓度c 在扩散方向上不随时间变化,其物理意义为:扩散系数一定时,单位时间扩散通过截面积的物质的量(mol )与浓度梯度成正比,负号表示扩散方向与浓度梯度方向相反。
样品的分离,富集和纯化

待测组分洗脱入分析柱中分离检测
52
SPME-HPLC
53
SPME-SFC
54
固相微萃取、吹扫捕集与经典顶空法检测限比较
化合物 二氯甲烷
最小检测限(g/L)
直接进样 顶空 固相微萃取 吹扫捕集
80
0.7
12
0.05
氯仿 苯 甲苯 间二甲苯
240
1.5
8.6
0.04
17
0.1
0.3
质,而基质中的高盐份和其他内源性干扰物如磷脂等完全未 被去除。
分析柱寿命较短,LC/MS系统常需停机进行离子源清洗 导致样品稀释, 不适合用于超痕量分析场合 进样前可能需要进行溶剂蒸发以获得足够的灵敏度(若无
内标,分析重现性不佳)
11
2. 液液萃取 (Liquid Liquid Extraction)
是决定性的步骤
4
二、 样品前处理技术分类
样品形态 样品和杂质的性质 目标任务
5
样品形态 固态
液态
气态
索氏提取 微波辅助萃取 超临界萃取
液液萃取 固相萃取 吹扫捕集
固体吸附剂法 全量空气法
分类
6
状态和性质
• 固体颗粒
离心 过滤
• 样品和杂质化学 性质的差异
沉淀 液液萃取 固相提取 离子交换 蒸馏挥发
根据分析物在互不相溶的两相中的溶解度差异来将分析物 从一相提取至另一相中。
步骤:
有机层 水层
12
特点:
装置简单 操作容易 常被认定为成本低廉 费时费力 常因乳化效应使相间分层不彻底
导致重复性较差
消耗大量的有机溶剂。
13
3. 固相萃取 (Solid Phase Extraction)
硒的分离与富集

科研训练题目硒的分离与富集学生姓名闫骁所在院系化学化工系专业班级09级化学工程与工艺专业二班学号 2009223436 指导教师(职称)王永伟日期二零一三年一月硒的分离与富集闫骁(安康学院化学化工系,陕西安康,725000)摘要硒是一种稀散元素,不仅广泛应用于化工、冶金、建材、电子等工业部门,而且具有重要的药用价值,是一种强抗氧化剂,为人体所必需。
硒矿物多为铜、铅、银、汞、铋等的硒化物如硒铜矿(Cu。
Se)、硒铜银矿[(CuAg)。
Se3]、硒银铅矿l-(Ag。
Pb)Se3、辉汞矿1-Hg(SeS)等然而,这些矿石的硒品位均很低,工业开采价值不大。
因此,硒主要从电解精炼铜时所获的阳极泥中提取回收,也可以从汞矿冶炼过程中富集回收,或从硫酸厂的烟道灰、酸泥等废料中回收,而如何去分离与富集硒也成了人们更加关注的问题。
[关键字]硒硒的性质分离与富集IThe separation and enrichment of seleniumYanXiao(Ankang college chemistry department,shan`xi,an kang,725000)AbstractSelenium is a rare element, not only widely used in chemical industry, metallurgy, building materials, electronics and other industries, and have important medicinal value, is a strong antioxidant, necessary for human body. Selenium minerals for copper, lead, silver, mercury, bismuth, selenium compounds such as selenium copper ( Cu. Se ), eucairite[ ( CuAg ). Se3, l ( Ag selenium silver galena. Se3Pb ),1-Hg ( SeS ), mercury, etc. However, these ores se grade are very low, industrial exploitation of little value. Therefore, selenium mainly from the electrolytic refining of copper anode mud by extraction, can also be made from mercury ore smelting process of enriching and recovering, or from the sulfuric acid plant flue dust, mud and other waste acid recovery, and how to go to the separation and enrichment of selenium also became people to pay more attention to the problem.[Keywords]The nature of separation and enrichment of seleniumII目录硒的分离与富集 (I)摘要 (I)Abstract (II)前言 (1)1硒的性质 (2)2分离富集硒的方法 (2)2.1铜阳极泥的硒提取回收 (2)2.2硫酸工业酸泥的硒提取 (3)2.3:H2O2氧化法 (3)2.4萃取法 (4)2.5天然有机硒的提取 (4)3结论 (4)参考文献 (5)前言硒(Se)是地球上的一种稀少的元素 ,在地壳中呈分散状态 ,常与天然硫共生 ,主要以重金属的硒化物存在。
化学中常用的分离和富集方法

分析化学中常用的分离和富集方法1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。
换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。
在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。
样品组分含量越低,对回收率要求也降低。
2.常用哪些方法进行氢氧化物沉淀分离?举例说明。
答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。
因此,采用控制溶液中酸度可使某些金属离子彼此分离。
在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。
常用的沉淀剂有:a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。
b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。
c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。
d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。
3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全?答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其胶团浓度等于CMC。
溶液中的疏水性物质与表面活性剂的疏水基团结合, 被萃取进入表面活性剂相,而亲水性物质仍留在水相中, 再经两相分离,就可将样品中的物质分离出来。
(二)浊点萃取在痕量金属元素分析中的应用
金属元素的浊点萃取的操作步骤简单:样品→加螯 合剂→加表面活性剂→加添加剂→水浴加热至浊点→离 心→冷却→分离。但为了达到定量的分离和高富集率及 后续的检测,其实验条件必须进行优化。 (1)表面活性剂 (2)表面活性剂浓度
离子交换剂可分为无机离子交换剂和有机离子交换 剂,目前广泛应用的是有机离子交换剂,即离子交换树 脂。具体分类如下:
强酸型阳离子交换树脂 R-SO3H 阳离子交换树脂 弱酸型阳离子交换树脂 R-COOH 强碱型阴离子交换树脂 R-N(CH3)3Cl 离子交换树脂 阴离子交换树脂 弱碱型阴离子交换树脂 R-NH2 CH2COOHH 螯合型树脂 R-CH2N CH2COOH
2、阴离子交换树脂
活性基团为碱性集团,常见的有:
强碱性基团,如季铵基-N(CH3)3+X-基团,其中
X-为OH-、Cl-、NO3-等;
弱碱性基团,如伯胺基-NH2、仲胺基=NH和 叔胺基≡N。 其中强碱性树脂应用较广。
3、螯合型离子交换树脂
活性基团为螯合功能团,如巯基型螯合树 脂就是 将巯基接在天然纤维大分子或树脂的骨 架上而制得的, 螯合型离子交换树脂具有良好 的选择性吸附能力。 应用较广,例如: 测定天然水中K+、Na+、Ca2+、Mg2+、SO42-、Cl-等 组分,可取数升水样,分别流过阳、阴离子交换柱,再 用几十至一百毫升稀盐酸溶液洗脱阳离子,用稀氨液洗
分配比D是指溶质A在有机相中各种存在形 式的总浓度(CA)有与在水相中各种存在形式的总 浓度(CA)水之比:
A D A
c A 有 = c A 水 水
有
当萃取过程中没有副反应发生时,分配系
数KD与分配比D是一样的,此时KD=D。
当有副反应发生时,分配比大,指被萃溶
共沉淀现象可以使一些不析出沉淀的痕量组 分夹杂于沉淀之中,载带下来,从而为测定它 们创造良好条件。 该法在分离和富集痕量组分中用得较多。
举例:
测1ug/L Pb,浓度低,难直接测定,可采用 共沉淀法富集。 取1000 mL水,将其调至微酸性。加Hg2+,通 入H2S气体,生成HgS沉淀,将Pb共沉淀下来,然 后用2mL酸将沉淀溶解后测定,此时,Pb浓度提 高了500倍,HgS称为载体也叫捕集剂。 共沉淀方法的成功与否主要取决于载体的选择。
这种类型的共沉淀现象,在形式上相似于 溶剂萃取,只是把液相换成为固体,也称之为 “固体萃取”。
4、共沉淀法的特点 操作简单,易于掌握,用于大批量
试样分析;
富集倍数高,可达103。
缺点需过滤,洗涤等操作、比较费
时。
第三节 溶剂萃取法
(Liquid-liquid Extraction,LLE)
三、浊点萃取法
(cloud point extraction,简称CPE) (一)浊点萃取的原理 1、表面活性剂胶束溶液体系
许多表面活性剂的性质只有在CMC 以后才明显表
现出来,如加溶作用。 表面活性剂在水中的溶解度随温度变化的规律因表
面活性剂的类型不同而异。一般,离子表面活性剂的溶
解度随温度升高而加大,至一定温度以后,溶解度增加 很快。非离子表面活性剂的情形则大不相同,它们一般 在温度低时易与水混溶,温度升至一定高度后,则表面 活性剂析出、分层。
第三类:惰性载体即本身不参加反应的载体。 采用这类载体时,痕量组分先形成螯合物,它 们可随着加入的惰性载体析出时被共沉淀下来。 8-羟基喹啉可与20多个元素如Fe、Co、Ni、Mn、 Zn、Cu、Pb、Cd.Hg、Bi、Sb、Mo、V、W、 Ga、Ag、Pt等形成螯合物而被共沉淀下来、用 少量盐酸将沉淀溶解后即可用原于吸收光谱测 定,回收率达93%一98%。
质A在有机相的浓度高,水相中的浓度小。
萃取分离中,一般要求分配比>10。分配
比反映萃取体系达到平衡时的实际分配情况,
具有较大的实用价值。
但分配比不能直接表示萃取的完全程度。 为了从量的角度反映被萃取物转移进入了有机 相的比例,引入萃取效率(%):
A在有机相中的含量 D E% 100% A在两相中的含量 D V水 100%
最常用的液-固萃取是索氏萃取(Soxhlet),主要适 用于固体样品的萃取分离。索氏萃取装置见图4-1。
同时萃取多个样品的全自动索氏萃取仪(图4-3)。
图4-3 全自动索氏萃取仪 图4-1 索氏萃取装置
1-冷凝管;2-冷却水入口;3-样品和硫酸钠; 4-提取管和套管;5-烧瓶;6-溶剂
第四节 离子交换法
如果β=1,即DA=DB,表明A和B不能分离; 如果β>1或β<1,即DA>DB或DA<DB,表明A 和B可以分离,β值越大或越小,分离效果越好。
常用萃取剂: 二硫化碳、四氯化碳、氯仿、 二氯甲烷、己烷、苯、甲苯、甲基异丁酮、乙 酸乙酯等。 溶剂萃取简便、快速,既可用于痕量金属 元素的萃取,也可用于痕量有机物的萃取。分 离后的组分可直接测定(如用SP、AAS、GC 等),或蒸去有机溶剂后测定(如AES、 ECM)。 水质监测中应用较广,美国EPA推荐为水 中有机污染物分离富集的标准方法之一,对114 种优先监测有机污染物,除可气提化合物外, 绝大部分用LLE进行提取。
RT QT QT
0
100 %
式中, QT0为富集前待测物的量;
QT为富集后待测物的量。
痕量分析的回收率达到90%~l10%即可
2、富集倍数(F)
富集倍数为富集后待测组分的回收率与基体物 质的回收率之比
R Q / QT F T T 0 RM QM / QM
0
式中,QM0-富集前基体的量;QM-富集后基体的量. 对F的要求 ① 待测组分的浓度与基体的比值。比值小, 要求F大 ② 测定方法的灵敏度。灵敏度低,要求F大
沉淀条件选择的原则是:使相当量的主要干 扰组分沉淀完全,而后继测定的痕量组分不会 因为共沉淀而损失。 如: 使主要成分铅与痕量组分Ag、As、Cd、Cr、 Cu等分离(加硫酸)。 高纯银中痕量组分Co、Ni、Cd、Cu分离 (加硝酸)
二、共沉淀法
在含有痕量物质和另一常量物质的溶液中, 当常量物质沉淀时,痕量物质自溶液转移到固 相的现象,称为共沉淀现象。
二、连续液-液萃取
在液-液萃取中,萃取次数过多,消耗大量 有机溶剂,且萃取合并液体积太大,灵敏度下 降。 连续液-液萃取采用比水重的有机溶剂萃取, 萃取溶剂不断被加热蒸馏,在冷凝管中冷凝, 经过待萃取的水相,富集水相中待萃取物后回 流至烧瓶中。 有机溶剂可反复使用,多次萃取,提高富集 倍数,具有无需人工操作、溶剂用量少、效率 高的优点。但在蒸馏过程中高挥发性化合物可 能损失,热不稳定化合物也可能降解。
一、液-液萃取法 是基于物质在互不相溶的两种溶剂中分配系 数不同,而达到组分的富集与分离。物质在水 相-有机相中的分配系数(KD)可用分配定律表示:
KD
A有 A水
KD与溶质A和溶剂的特性以及温度等有关。 式中[A]有、[A]水分别代表溶质A在有机相中和水 相中的平衡浓度。
分配定律只适用于副反 应过程的情况。 实际上这种情况几乎不存在,此时可用分配 比来描述溶质在两相中的分配。
最后用0.05mol/LHCl洗脱Zn2+。
4、离子交换树脂的性质
高分子量的有机聚合物,具有下列特性:
(3)pH
(5)添加剂
(4)平衡温度和时间
(6)离子强度
(7)离心时间
(8)粘度对检测信号的影响
四、液-固萃取(索氏萃取)
用一种适宜溶剂浸取固体混合物的方法。所选溶 剂对此有机物有很大的溶解能力,有机物在固-液两相 间以一定的分配系数从固体转向溶剂中。这种简单的 液-固萃取只能用于十分容易萃取的组分,其萃取效率 较低,加热时溶剂也易损失。
3、简单、快速、与测定步骤连接 4、方法 方法的选择性或特效性 5、组成 待测痕量组分的玷污和损失小
第二节 沉淀分离法
根据溶度积原理、利用沉淀反应进行分离的方 法。包括沉淀、共沉淀两种方法。
一、沉淀法 常量组分的分离 ① 将欲测组分与其他组分分离、将沉淀过滤、 洗涤、烘干,称重,算含量,即重量分析法; ② 将干扰组分以微溶化合物的形式沉淀出来与 待测组分分离。 痕量分析中沉淀法仅用于常量—痕量组分的分 离,即除去对痕量组分有干扰的样品主要成分。
第四章 痕量物质的 分离与富集
第一节 概述
一、痕量物质分离与富集的必要性
待测物浓度低于方法检出限
样品中存在大量干扰物质
通过分离富集,可将待测痕量组分与干扰组 分分开,将待测物的浓度提高,降低检出限,
提高分析结果的精密度、准确度,扩大测定技术 的应用范围。
二、分离富集方法的评价与选用
1、待测物回收率(RT)
V有
式中,V水、V有-水相、有机相的体积。
若要求E大于90%,则D必须大于9。增加萃 取的次数,可提高萃取效率,但这将增大萃取 操作的工作量,在很多情况下是不现实的。
为了达到分离的目的,不仅要求目标物质A 具有高的萃取效率,而且要求与共存组分间具 有良好的分离效果,用分离系数β表示:
DA DB
离子交换法是利用离子交换剂与水样中的离 子(阳离子或阴离子)发生交换反应来进行分 离的方法。 R—H + Na+ = R—Na + H+ R—OH + Cl- = R—Cl + OH 几乎可用来分离所有的无机离子,也能用于 许多结构复杂、性质相似的有机化合物的分离。 在水样前处理中常用作超微量组分的分离和浓 集。缺点是工作周期较长。