湖南省保靖县民族中学2020-2021学年高二数学上学期期中考试 理 新人教A版

合集下载

2020-2021学年湖南湘西高二上数学月考试卷

2020-2021学年湖南湘西高二上数学月考试卷

2020-2021学年湖南湘西高二上数学月考试卷一、选择题1. 已知集合A ={x|x +1<4},B ={x|x (x −8)<0},则A ∩B =( ) A.(0,8) B.(0,3) C.(−∞,8) D.(−∞,3)2. 已知命题p :∀x ∈R ,3x 2+2>0,则¬p 是( ) A.∃x ∈R ,3x 2+2≤0 B.∀x ∈R ,3x 2+2≤0 C.∃x ∈R ,3x 2+2<0 D.∃x ∈R ,3x 2+2>03. 已知空间向量a →=(4,−3,6),b →=(1,2,−5),则a →⋅b →=( ) A.40 B.32 C.−40 D.−324. 已知x =1.20.2,y =0.91.2 ,z =log 2532,则( )A.x >z >yB.y >z >xC.x >y >zD.y >x >z5. 已知tan θ=3,则sin 2θ1+cos 2θ=( ) A.97B.911C.72D.1196. 已知m >0,则“m =4”是“椭圆x 2m 2+y 27=1的焦距为6"的( )A.充要条件B.充分不必要条件C.既不充分也不必要条件D.必要不充分条件7. 函数f (x )=sin x ln x 2的大致图象为( )A. B.C. D.8. 蹴鞠(如图所示),又名“蹋鞠”“蹴球”“蹴圆”“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家级非物质文化遗产名录.已知某“鞠”表面上的四个点A ,B ,C ,D 满足AB =CD =14cm ,BD =AC =8cm ,AD =BC =12cm ,则该“鞠”的表面积为( )A.101√202π cm 2B.101√202π3cm 2C.202π3cm 2 D.202π cm 2二、多选题已知x >0,y >0,且x +4y −xy =0,若不等式a ≤x +y 恒成立,则a 的取值可能是( ) A.8 B.10 C.7 D.9数学家华罗庚曾说:“数缺形时少直观,形少数时难人微.”事实上,很多代数问题可以转化为几何问题加以解决,例如,与√(x −a )2+(y −b )2相关的代数问题,可以转化为点A (x,y )与点B (a,b )之间的距离的几何问题.结合上述观点,可得方程|√x 2+4x +5−√x 2−4x +5|=2的解为( ) A.−2√33B.2√33C.−√36D.√36已知函数f (x )=√3sin ωx −cos ωx (ω>0),下述四个结论,其中正确的有( ) A.若将f (x )的图象向左平移π3个单位长度,所得图象关于y 轴对称,则ω的最小值为1 B.当f (x )的最小正周期为π时,直线x =π3是f (x )图象的一条对称轴C.若函数g (x )=f (x )+1在[0,π]上恰有2个零点,则实数ω的取值范围是[43,2)D.若f (x )在(π2,π)上单调递减,则实数ω的取值范围是[43,103]已知f (x )是定义在R 上的奇函数,且f (1+x )=f (1−x ),当0≤x ≤1时,f (x )=x ,关于函数g (x )=|f (x )|+f (|x|),下列说法正确的是( ) A.g (x )在[2016,2020]上恰有三个零点 B.g (x )为偶函数 C.g (x )的最大值为2 D.g (x )在(1,2)上单调递增 三、填空题已知向量a →=(3m −2,3),b →=(3,−m ),若a →⊥b →,则|a →+b →|=________.在三棱柱ABC −A 1B 1C 1中,AB →=a →,AC →=b →,AA 1→=c →.点M 在棱BC 上,且BM =2MC ,N 为AA 1的中点,若以a →,b →,c →为基底,则MN →=________.有两个质地均匀的正方体玩具,每个正方体的六个面分别标有数字1,2,3,⋯,6.随机抛掷两个这样的正方体玩具,得到面朝上的两个数字,则这两个数字的乘积能被3整除的概率为________.已知A (1,12),B (−1,12),直线AM 的斜率与直线BM 的斜率之差是1,则点M 的轨迹C 的方程是________.若点F 的坐标为(0,12),P 是直线l:y =−12上的一点,Q 是直线PF 与轨迹C 的交点,且FP →=4FQ →,则|QF|=________. 四、解答题在①b +c =√3a ,②c −a cos B =(2a −b )cos A ,③sin A tan B (2−cos C )=sin 2C2+12这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足A =π3,________,请判断△ABC 的形状.注:如果选择多个条件分别解答,按第一个解答计分.如图,在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AB//CD ,AB ⊥AD ,AB =AD =PA =2,CD =4,E ,F 分别是PC ,PD 的中点.(1)证明:EF//平面PAB ;(2)求直线PC 与平面ABEF 所成角的正弦值.如图,三棱锥A −BCD 的底面BCD 是以BD 为斜边的等腰直角三角形,BC =2,AB =AD =3,cos ∠ABC=13.(1)证明:平面ABD ⊥平面BCD ;(2)求二面角B −AC −D 的余弦值.某企业为了检查生产A 产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的产品中各抽取100件产品作为样本,测出它们的某一项质量指标值.若该项质量指标值落在[80,100]内,则该产品为优等品;若该项质量指标值落在[60,80)内,则该产品为合格品.甲流水线样本的频数分布表和乙流水线样本的频率分布直方图分别如下图所示(乙流水线分组为[70,75),[75,80),⋯,[90,95),[95,100]).(1)求甲流水线的平均数(假设同一组中的每个数据可用该组区间的中点值代替)和中位数;(2)甲、乙两条流水线生产出来的优等品每件分别可获利润40元和35元,生产出来的合格品每件分别可获利润10元和5元,比较在甲、乙两条流水线生产出来的各100件产品获得的利润谁更多.设数列{a n}满足:2a1+2a2+2a3+⋯+2a n−1+2a n=2n+1−2(n∈N∗).(1)设b n=a n⋅2a n,数列{b n}的前n项和为T n,求T n;(2)设c n=4n+(−1)n−1λ⋅2a n+1(n∈N∗),问:是否存在非零整数λ,使数列{c n}为递增数列?若存在,求出λ的值;若不存在,说明理由.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,上顶点为M,直线FM的斜率为−√3,且坐标原点到直线FM的距离为√32.(1)求椭圆C的标准方程;(2)已知过点F的直线l与椭圆C交于A,B两点,直线x=4与x轴交于点P,以线段AP为直径的圆与直线x=4的另一个交点为Q(点P与点Q为不同的两点),试探究:直线BQ是否恒过一定点?若是,求出该定点的坐标;若不是,请说明理由.参考答案与试题解析2020-2021学年湖南湘西高二上数学月考试卷一、选择题1.【答案】此题暂无答案【考点】交集根助运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】命正算否定【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】空根向惯块涉的坐标表示【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】指数表、对烧式守综合员较【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】三角函表的综简求值【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】椭圆较标准划程必要条水表综分条近与充要条件的判断【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】函表的透象函数奇三性的判刺【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】球内较多面绕球的表体积决体积【解析】此题暂无解析【解答】此题暂无解答二、多选题【答案】此题暂无答案【考点】基本常等式簧最母问赤中的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】双曲表的烧用双曲三定定义点到直使的距离之式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】正弦函因的周激性函数y射Asi过(ω复非φ)的图象变换正弦函较的对盛性正弦函射的单调长正弦函明的政偶性函验立零点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】奇偶性与根调性的助合函数水因期性函验立零点【解析】此题暂无解析【解答】此题暂无解答三、填空题【答案】此题暂无答案【考点】向量常长至计算数量积常断换个平只存量的垂直关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】向量因滤性线算性吨及几何意义棱柱三实构特征【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】古典因顿二其比率计算公式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】抛物线正算准方程抛物常的铝义轨表方擦【解析】此题暂无解析【解答】此题暂无解答四、解答题【答案】此题暂无答案【考点】正因归理余于视理两角和与表擦正弦公式二倍角三余弦公最同角正角测数解的当本关系【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】用空射向空求直式与夏面的夹角平面与平水表直的性质直线与平三平行要性质直线与平三平行定判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平面与平明垂钾的判定用空根冬条求才面间的夹角【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】众数、中正数、平均测频率都着直方图【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】数使的种和等差数来的通锰公式数列体函硫特性【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆锥曲三的综合度题直线与椭常画位置关系椭圆较标准划程【解析】此题暂无解析【解答】此题暂无解答。

湖南省湖湘教育三新探索协作体2023-2024学年高二上学期11月期中联考数学试题(附解析版)

湖南省湖湘教育三新探索协作体2023-2024学年高二上学期11月期中联考数学试题(附解析版)

湖南省湖湘教育三新探索协作体2023-2024学年高二上学期
11月期中联考数学试题
三、填空题
四、解答题
17.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足
()sin sin sin b c C b B a A -=-.
(1)求角A 的大小;
(2)若2a =,2c b =,求ABC 的面积.
五、未知
18.“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员,面向全社会的优质平台.某市宣传部门为了解市民利用“学习强国”学习国家政策的情况,从全市抽取100人进行调查,统计市民每周利用“学习强国”的时长,并按学习时间(单位:小时)的长短分成以下6组:[)10,15,[)15,20,[)20,25,[)25,30,[)30,35,[]35,40,统计结果如图所示:
(1)试估计这100名市民学习时间的中位数(同一组中的数据用该组区间中点值代表,结果保留两位小数);
(2)现采用分层抽样的方法在学习时长位于[)30,35和[]35,40的市民中共抽取5人参加学习心得交流会,再从这5人中选2人发言,求发言者中恰有1人是学习时长在[]35,40上的概率.
六、解答题
(1)证明:BC AD ⊥;。

核心素养练-湖南省保靖县民族中学高二数学上学期期中考试 文 新人教A版

核心素养练-湖南省保靖县民族中学高二数学上学期期中考试 文 新人教A版

保靖民中年秋学期高二数学期中试卷(文科)时量:120分钟 满分:150分 第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分Q在每小题给出的四个选项中,只有一项是符合题目要求的Q1Q若a b >且c R ∈,则下列不等式中一定成立的是 ( )A Qa cbc +>+ B Q22a b > C Qac bc > D Q22ac bc >2Q已知数列1…,是这个数列的 ( ) A Q第10项 B Q第11项 C Q第12项 D Q第13项3Q在等差数列{}n a 中,156a a +=,则3a = ( )A Q2 B Q3 C Q4 D Q64Q关于x 的不等式x x x 352>--的解集是 ( )AQ{}|51x x x ≥≤-或 B Q {}|5x x ≤≤-1C Q {}|5x x <<-1D Q{}|51x x x ><-或5Q若ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且22()4,120a b c C -=-=,则ab的值为 ( )A Q4 BQ23 C Q43DQ8-6Q在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bB A=,则ABC ∆的形状一定是 ( ) A Q等腰三角形 B Q直角三角形C Q等腰三角形或直角三角形 D Q等腰直角三角形7Q数列{}n a 中,11222,3,(*,3)n n n a a a a n N n a --===∈≥,则2011a 等于 ( )AQ12 B Q23 C Q32D Q2 8Q设[]x 表示不超过实数x 的最大整数,如[0.3]0=,[0.4]1-=-,则在坐标平面内满足方程22[][]25x y +=的点(,)x y 所构成的图形的面积为 ( )A Q100π B Q13 C Q25π D Q12第Ⅱ卷(非选择题,共110分)二、填空题:本大题共7小题,每小题5分,共35分Q把答案填在答题卡的相应位置Q9Q若x 是2和8的等比中项,则x = Q10Q 已知关于x 的不等式101ax x -<+的解集是112,()-,则a = Q11Q数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于 Q12Q已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若::1:2:3A B C =,则::a b c =Q13Q如图,海平面上的甲船位于中心O 的南偏西030,与O 相距10海里的C 处,现甲船以30海里/小时的速度沿直线CB 去营救位于中心O 正东方向20海里的B 处的乙船,甲船需要 小时到达B 处Q14Q已知变量,x y 满足约束条件012x y x y -≤⎧⎪≥⎨⎪≤⎩,若该不等式组表示的平面区域被直线0x y m ++=分成面积相等的两部分,则m 的值为 Q15Q设点M 为ABC ∆内部(不含边界)任意一点,MBC ∆、MAC ∆和MAB ∆的面积分别为x 、y 、z ,映射:(,,)f M x y z →使得点M 对应有序实数组(,,)x y z ,记作()(,,)f M x y z =Q若30BAC ∠=,43AB AC ∙=且1()(,,)2f M x y =,则14x y+的最小值为 Q三、解答题:本大题共6小题,共75分Q解答时应写出文字说明,证明过程或演算步骤Q16Q(本题满分12分)已知数列}{n a 的通项公式*26()n a n n N =-∈Q(Ⅰ)求2a ,5a ;(Ⅱ)若2a ,5a 分别是等比数列{}n b 的第1项和第2项,求数列{}n b 的通项公式Q17Q(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos C 是方程2210x x +-=的一个根,求:(Ⅰ)角C 的度数;(Ⅱ)若2,4a b ==,求ABC ∆的周长Q18Q(本题满分12分)已知数列{}n a 的前n 项和为2(*)n S n n n N =+∈Q(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若2n a n b n =,求数列{}n b 的前n 项和nT Q19Q(本题满分13分)在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且不等式2cos 4sin 60x C x C ++≥对一切实数x 恒成立Q(Ⅰ)求:角C 的最大值;(Ⅱ)若角C 取得最大值,且c =ABC ∆的面积的最大值Q20Q(本题满分13分)某厂花费50万元买回一台机器,这台机器投入生产后每天要付维修费Q已知第(*)n n N ∈天应付维修费为1(1)5004n -+元,机器从投产到报废共付的维修费与购买机器费用的和平均分摊到每一天,叫做每天的平均损耗,当平均损耗达到最小值时,机器应当报废Q(Ⅰ)求前n 天维修费用总和;(Ⅱ)将每天的平均损耗y (元)表示为投产天数n 的函数;(Ⅲ)求机器使用多少天应当报废?21Q(本题满分13分)已知数列{}n a 的前n 项和为n S ,且(1)(1)(0,*)n n a S a a a n N -=->∈Q(Ⅰ)求证数列{}n a 是等比数列,并求{}n a 的通项公式;(Ⅱ)已知集合{}2|(1)A x x a a x =+≤+,问是否存在实数a ,使得对于任意的*n N ∈都有n S A ∈?若存在,求出a 的取值范围;若不存在,请说明理由Q保靖民中年秋学期期中考试试题高二数学(文科)参考答案满分150分 时量120分钟一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:(本大题共7小题,每小题5分,满分35分)9、 4±; 10、2; 11、56; 12、2;13、3; 14、3-; 15、6Q三、解答题:(本大题共6小题,共75分Q解答应写出文字说明、证明过程或演算步骤Q)16Q(本题满分12分)解:(Ⅰ)22262a =⨯-=-52564a =⨯-= ……………6分(Ⅱ)由题意知:122,4b b =-= 所以等比数列{}n b 的公比212b q b ==- ……………9分 ∴数列{}n b 的通项公式为:12(2)(2)n n n b -=-⨯-=- (*n N ∈)Q……………12分17Q(本题满分12分)解:(Ⅰ)解方程2210x x +-=得:121,12x x ==- ……………2分 因为(0,)C π∈,所以1cos 2C =……………4分 60C ∴= ……………6分18Q(本题满分12分)所以1314499n n n T +-=⋅+ ……………12分19Q(本题满分13分)解:(Ⅰ)当cos 0C =即90C =时:不等式460x +≥对x R ∈不恒成立,不符合题意……………2分当cos 0C ≠时:要使不等式2cos 4sin 60x C x C ++≥对一切实数x 恒成立,须有:2cos 016sin 24cos 0C C C >⎧⎨-≤⎩解得1cos 2C ≥ ……………5分 又因为(0,)C π∈,所以03C π<≤故角C 的最大值为3πQ…………7分(Ⅱ)由(Ⅰ)得:3C π=,由余弦定理得:2211222a b ab+-=,即2212a b ab +-=…………9分20Q(本题满分13分)解:(Ⅰ)设1(1)5004n a n =-+,则{}n a 为等差数列,且首项为500,公差为14……2分所以前n 天维修费用总和21500(1)500413999288n n n S n n ⎡⎤⎢⎥⎣⎦+-+==+,(n ∈*N )……4分 (Ⅱ)211399950000039995000008888n y n n n n ⎛⎫ ⎪⎝⎭=++=++,(n ∈*N ) ………9分(Ⅲ)5000008n n+≥500, 当且仅当5000008n n=,即2000n =时,y 取到最小值 答:机器使用到2000天时应到报废Q…………13分21Q(本题满分13分)解:(Ⅰ)当1n =时,∵(a -1)1S =1(1)a a -,∴1a a =(a >0); ………1分 当2n ≥时,∵(1)(1)(0,*)n n a S a a a n N -=->∈ ,∴11(1)(1)(0)n n a S a a a ---=-> ∴ 1(1)()n n n a a a a a --=- ,变形得:1(2),nn a a n a -=≥ ∴数列是以1a a =为首项,a 为公比的等比数列 ………… 4分 其通项公式为(*)n n a a n N =∈ …………5分(Ⅱ)1当1a =时:A ={}1,n S n =,只有1n =时,n S A ∈,∴1a =不合题意;……………7分2当1a >时:{}|1A x x a =≤≤,222,S a a a S A =+>∴∉,∴1a >时不存在满足条件得实数a ; ……………9分3当01a <<时:{}|1A x a x =≤≤, 23(1)[,)11n n n a a Sa a a a a a a a =++++=-∈--,………… 11分。

2020-2021学年高二上学期期中考试数学(文)试卷

2020-2021学年高二上学期期中考试数学(文)试卷

2020—2021学年度上学期期中考试高二数学(文)试卷一、选择题 (每小题5分,共60分)1.经过点()1,4A -且在x 轴上的截距为3的直线方程是( ) A .3y x =--B .3y xC .3y x =-+D .5y x =-+2.已知()2,0A ,()1,2B -,则以AB 为直径的圆的方程为( )A .()2233124x y ⎛⎫-+-= ⎪⎝⎭ B .()2233124x y ⎛⎫-++= ⎪⎝⎭C .()2235124x y ⎛⎫-+-= ⎪⎝⎭ D .()2235124x y ⎛⎫-++= ⎪⎝⎭3.两条平行直线3450x y +-=与6890x y +-=间的距离等于( )A .110B .15C .45D .4104.已知点,点Q 是直线l :上的动点,则的最小值为 A .2B .C .D .5.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4,左焦点F 到C 的一条渐近线的距离为3,则C 的方程为( )A .22123x y -=B .22143x y -=C .22149x y -=D .221169x y -= 6.已知圆()22:22440C x y x my m m R ++---=∈,则当圆C 的面积最小时,圆上的点到坐标原点的距离的最大值为( ) A .5 B .6C .51-D .51+7.若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( ) A .2个B .至多一个C .1个D .0个8.与圆221x y +=及圆22870x y x +-+=都外切的圆的圆心在( ). A .一个圆上 B .一个椭圆上 C .双曲线的一支上 D .抛物线上 9.过点作圆(x+1)2+(y-2)2=169的弦,其中弦长为整数的弦共有( ) A .16条 B .17条 C .32条 D .34条10.已知斜率为k (0)k >的直线l 过抛物线2:2(0)C x py p =>的焦点F ,与抛物线C 交于A ,B 两点,又直线l 与圆222304x y py p +--=交于C ,D 两点.若||3||AB CD =,则k 的值为( ) A .2B .22C .4D .811.点P 为双曲线()222210,0x y a b a b-=>>右支上的一点,其左、右焦点分别为12,F F ,若12PF F ∆的内切圆I 与x 轴相切于点A ,过2F 作PI 的垂线,垂足为,B O 为坐标原点,那么OAOB的值为( ) A .1B .2C .b aD .a b12.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与F 在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则以下四个关系①1122a c a c ->-,②1212c c a a >,③a 1+c 2=a 2+c 1,④1212c ca a <中正确的是( ) A.①②B.①④C.②③D.③④二、填空题(每小题5分,共20分)13.直线()2120mx m y ++-=和直线310x my ++=垂直,则实数m 的值为_______.14.若圆()2244x y -+=与双曲线C :()222210,0y x a b a b-=>>的渐近线相切,则双曲线C 的离心率为_______.15.若过点(01)-,的直线l 与抛物线22y x =有且只有一个交点,则这样的直线l 共有_____条. 16.已知直线y=-x+1与椭圆)0(12222>>=+b a b y a x 相交于A ,B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率13,22e ⎡⎤∈⎢⎥⎣⎦,则a 的最大值为___________.三、解答题(共70分)17.(10分)设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程; (2)若与两坐标轴围成的三角形的面积为1,求a 的值.18.(12分)在平面直角坐标系xoy 中,已知中心在原点,焦点在x 轴上的双曲线C 的离心率为2,且双曲线C 与斜率为2的直线l 相交,且其中一个交点为P (﹣3,0).(1)求双曲线C 的方程及它的渐近线方程;(2)求以直线l 与坐标轴的交点为焦点的抛物线的标准方程.19.(12分)已知抛物线E :x 2=2py (p >0)的焦点为F ,直线x=2与x 轴的交点为M ,与抛物线E 的交点为N ,且4|FN|=5|MN|.(1)求p 的值;(2)若直线y=kx+2与E 交于A ,B 两点,C (0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,求证:k 12+k 22-2k 2为定值. 20.(12分)已知直线:(1)2530()l k x y k k R --+-=∈恒过定点P ,圆C 经过点(4,0)A 和点P ,且圆心在直线-2 10x y +=上.(1)求定点P 的坐标与圆C 的标准方程;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点(0, )M m ,使得PMQ ∆为直角三角形,若存在,求出m 的值,若不存在,请说明理由.21.(12分)已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.(1)求椭圆的标准方程; (2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.22.(12分)已知F 为抛物线()21:201C y px p =<<的焦点,E 为圆()222:41C x y -+=上任意点,且EF 最大值为194. (1)求抛物线1C 的方程;(2)若()()000,24M x y y ≤≤在抛物线1C 上,过M 作圆2C 的两条切线交抛物线1C 于A 、B (A 、B 异于点M ),求AB 中点D 的纵坐标的取值范围.高二期中考试数学(文)试卷参考★答案★1.经过点()1,4A -且在x 轴上的截距为3的直线方程是( ) A .3y x =-- B .3yx C .3y x =-+ D .5y x =-+【★答案★】C 【详解】根据题意,所求直线过点()1,4A -,故可设为()41y k x -=+,0k ≠ ,令0y =,得134kx =--=,即1k =-,即所求直线的方程为3y x =-+.故选C.2.已知()2,0A ,()1,2B -,则以AB 为直径的圆的方程为( )A .()2233124x y ⎛⎫-+-= ⎪⎝⎭ B .()2233124x y ⎛⎫-++= ⎪⎝⎭ C .()2235124x y ⎛⎫-+-= ⎪⎝⎭ D .()2235124x y ⎛⎫-++= ⎪⎝⎭ 【★答案★】D【详解】由()2,0A ,()1,2B -,且AB 为直径, 所以圆的圆心为,A B 的中点,即为3,12⎛⎫- ⎪⎝⎭, 又()()2221025AB =-++=,所以522AB r ==, 所以以AB 为直径的圆的标准方程为()2235124x y ⎛⎫-++= ⎪⎝⎭,故选:D3.两条平行直线3450x y +-=与6890x y +-=间的距离等于( ) A .110B .15C .45D .410【★答案★】A 【详解】直线6890x y +-=方程可化为:93402x y +-=, 由平行直线间距离公式可知所求距离2295211034d ⎛⎫--- ⎪⎝⎭==+.故选:A . 4.已知点,点Q 是直线l :上的动点,则的最小值为 A .2B .C .D .【★答案★】B 解:点,点Q 是直线l :上的动点, 的最小值为点Q 到直线l 的距离, 的最小值为.故选:B .5.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4,左焦点F 到C 的一条渐近线的距离为3,则C 的方程为( )A .22123x y -=B .22143x y -=C .22149x y -=D .221169x y -=【★答案★】C 【详解】因为实轴长24a =,所以2a =,(),0F c -,由对称性,双曲线的一个焦点到两条渐近线的距离相等,不妨取渐近线为by x a=,即0bx ay -=, 点(),0F c -到渐近线的距离()220b c bcd b c a b⋅--===+,所以3b =,所以C 的方程为22149x y -=,故选:C.6.已知圆()22:22440C x y x my m m R ++---=∈,则当圆C 的面积最小时,圆上的点到坐标原点的距离的最大值为( ) A .5 B .6 C .51- D .51+【★答案★】D 【详解】由2222440x y x my m ++---=得()()222145x y m m m ++-=++,因此圆心为()1,C m -,半径为()2245211r m m m =++=++≥,当且仅当2m =-时,半径最小,则面积也最小;此时圆心为()1,2C --,半径为1r =, 因此圆心到坐标原点的距离为()()22125d r =-+-=>,即原点在圆C 外,根据圆的性质,圆上的点到坐标原点的距离的最大值为51d r +=+.故选:D.7.若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( )A .2个B .至多一个C .1个D .0个【★答案★】A 【详解】直线2244mx ny x y +=+=和圆没有交点,故40242222<+<∴>+n m n m ,点P(m,n)在以原点为圆心,半径为2的圆内,故圆22m n +=2内切于椭圆,故点P(m,n)在椭圆内,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为2个8.与圆221x y +=及圆22870x y x +-+=都外切的圆的圆心在( ).A .一个圆上B .一个椭圆上C .双曲线的一支上D .抛物线上【★答案★】C 【详解】设动圆的圆心为P ,半径为r ,而圆221x y +=的圆心为(0,0)O ,半径为1;圆22870x y x +-+=的圆心为(4,0)F ,半径为3.依题意得3,1PF r PO r =+=+,则()()312PF PO r r FO -=+-+=<, 所以点P 的轨迹是双曲线的一支(除(1,0)). 故选C . 9.过点作圆(x+1)2+(y-2)2=169的弦,其中弦长为整数的弦共有( ) A .条 B .条 C .条 D .条 【★答案★】C 【解析】试题分析:圆的标准方程是:,圆心,半径,过点的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为的各2条,所以共有弦长为整数的条.选C .10.已知斜率为k (0)k >的直线l 过抛物线2:2(0)C x py p =>的焦点F ,与抛物线C 交于A ,B两点,又直线l 与圆222304x y py p +--=交于C ,D 两点.若||3||AB CD =,则k 的值为( ) A .2B .22C .4D .8【★答案★】A 【详解】设直线l 的方程为2p y kx =+代入抛物线2:2(0)C x py p =>消去x , 整理得:222(2)04p y p pk y -++=,则2122y y p pk +=+,所以2212||222AB y y p p pk p p pk =++=++=+,圆22222230()42px y py p x y p +--=⇒+-=, 圆心为(0,)2p,半径为p , 因为直线过圆心,所以||2CD p =,因为||3||AB CD =,所以22262p pk p k +=⇒=.故选:A.11.点P 为双曲线()222210,0x y a b a b-=>>右支上的一点,其左、右焦点分别为12,F F ,若12PF F ∆的内切圆I 与x 轴相切于点A ,过2F 作PI 的垂线,垂足为,B O 为坐标原点,那么OAOB的值为( ) A .1B .2C .b aD .a b【★答案★】A 【解析】F 1(−c ,0)、F 2(c ,0),内切圆与x 轴的切点是点A ∵|PF 1|−|PF 2|=2a ,及圆的切线长定理知, |AF 1|−|AF 2|=2a ,设内切圆的圆心横坐标为x , 则|(x +c )−(c −x )|=2a ∴x =a ; 即|OA |=a ,在三角形PCF 2中,由题意得,它是一个等腰三角形,PC =PF 2, ∴在三角形F 1CF 2中,有:OB =12CF 1=12 (PF 1−PC )=1 2 (PF 1−PF 2)=1 2×2a =a , ∴|OB |=|OA |,所以1OAOB=,故选A.12.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与F 在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则以下四个关系①1122a c a c ->-,②1212c c a a >,③a 1+c 2=a 2+c 1,④1212c ca a <中正确的是( )A.①②B.①④C.②③D.③④【★答案★】C【详解】由图可知,11a c PF -=,22a c PF -=,故①不正确; 由①可得1122a c a c -=-,则1221a c a c +=+,故③正确;由③可得()()221221a c a c +=+,则22221212212122a c a c a c a c ++=++,即22221112222122a c a c a c a c -+=-+,所以2211222122b a c b a c +=+,因为12b b >,所以1221a c a c <,则1212a a c c <,所以1212c c a a >,故②正确,④错误. 故★答案★为:C13.直线()2120mx m y ++-=和直线310x my ++=垂直,则实数m 的值为_______. 【★答案★】-2或0【详解】因为直线()2120mx m y ++-=和直线310x my ++=垂直,所以()3210m m m ++=, 即()240m m +=,解得0m =或2-.14.若圆()2244x y -+=与双曲线C :()222210,0y x a b a b-=>>的渐近线相切,则双曲线C 的离心率为_______. 【★答案★】2 【详解】设双曲线的一条渐近线为ay x b=,即0ax by -= 因为其与圆()2244x y -+=相切,故2242a a b=+ 整理可得223b a =,故离心率为2212?b e a=+=.15.若过点(01)-,的直线l 与抛物线22y x =有且只有一个交点,则这样的直线l 共有_______条. 【★答案★】3解:(1)当过点(01)-,的直线斜率不存在时,显然0x =与抛物线22y x =有且只有一个交点, (2)①当过点(01)-,且直线抛物线22y x =的对称轴平行,即斜率为0时,显然1y =-与抛物线22y x =有且只有一个交点,②当直线过点(01)-,且斜率存在,且与抛物线相切时,直线与抛物线只有一个交点,设直线方程为1y kx =-,代入到抛物线方程 22y x =,消y 得:222(1)10k x k x -++=,由已知有0k ≠,则224(1)40k k ∆=+-= ,解得:12k =-,即直线线方程为112y x =--,综上可得:过点(01)-,的直线l 与抛物线22y x =有且只有一个交点的直线l 共有3条, 16.已知直线1y x =-+与椭圆)0(12222>>=+b a b ya x 相交于A ,B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率13,22e ⎡⎤∈⎢⎥⎣⎦,则a 的最大值为___________.【★答案★】102解:设()()1122,,,A x y B x y ,由222211y x x y ab =-+⎧⎪⎨+=⎪⎩,消去y ,可得()()222222210a b x a x a b +-+-=, ∴则()2221212222212,a b a x x x x a b a b-+==++, 由()()()2222222410a a a b b ∆=--+->,整理得221a b +>.()()()12121212111y y x x x x x x ∴=-+-+=-++.OA OB ⊥(其中O 为坐标原点),可得0OA OB ⋅=, 12120x x y y ∴+=,即()()1212110x x x x +-+-+=,化简得()1212210x x x x -++=.()222222212210a b a a b a b -∴⋅-+=++.整理得222220a b a b +-=. 222222b a c a a e =-=-,∴代入上式,化简得221211a e=+-, 2211121a e ⎛⎫∴=+ ⎪-⎝⎭. 13,22e ⎡⎤∈⎢⎥⎣⎦,平方得21344e ≤≤, 213144e ∴≤-≤,可得 241431e≤≤-, 因此2227175215,3162a a e ≤=+≤≤≤-,可得2a 的最大值为52, 满足条件221a b +>,∴当椭圆的离心率32e =时,a 的最大值为102. 故★答案★为:102. 17.设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程; (2)若与两坐标轴围成的三角形的面积为1,求a 的值. 【★答案★】(1)30x y +=或20x y ++=(2)37a =± 【详解】(1)由题意知,当直线过原点时,该直线在两条坐标轴上的截距都为0, 此时2a =,直线的方程为30x y +=; 当直线不过原点时,由截距相等,得221a a a --=+,则0a =, 直线的方程为20x y ++=,综上所述,所求直线的方程为30x y +=或20x y ++=. (2)由题意知,直线在x 轴,y 轴上的截距分别为21a a -+、2a -, ()122121a a a -⨯-=+,解得37a =±.18.在平面直角坐标系xoy 中,已知中心在原点,焦点在x 轴上的双曲线C 的离心率为2,且双曲线C 与斜率为2的直线l 相交,且其中一个交点为P (﹣3,0). (1)求双曲线C 的方程及它的渐近线方程;(2)求以直线l 与坐标轴的交点为焦点的抛物线的标准方程.【★答案★】(1)22199x y -=,y x =±;(2)y 2=﹣12x ,x 2=24y. 试题解析:(1)由题意,设双曲线的方程为()222210,0x y a b a b-=>>,∵点P (﹣3,0)在双曲线上,∴a=3.∵双曲线C 的离心率为:2,∴32c =,∵c 2=a 2+b 2,∴b=3,∴双曲线的方程为:22199x y -=,其渐近线方程为:y=±x . (2)由题意,直线l 的方程为y=2(x+3),即y=2x+6,直线l 与坐标轴交点分别为 F 1(﹣3,0),F 2(0,6),∴以F 1为焦点的抛物线的标准方程为y 2=﹣12x ; 以F 2为焦点的抛物线的标准方程为x 2=24y.19.已知抛物线E :x 2=2py (p >0)的焦点为F ,直线x=2与x 轴的交点为M ,与抛物线E 的交点为N ,且4|FN|=5|MN|. (1)求p 的值;(2)若直线y=kx+2与E 交于A ,B 两点,C (0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,求证:k 12+k 22-2k 2为定值. 【★答案★】(1)P=1;(2)见解析 【详解】(1)设N (2,y 0),代入x 2=2py ,得02y p =,而M (2,0),则2MN p =.又p F 02⎛⎫⎪⎝⎭,,0p 2p NF y 2p 2=+=+,由4|FN|=5|MN|,得8102p p p+=,则p=1,(2)设点A (x 1,y 1)、B (x 2,y 2),由2x 2yy kx 2⎧=⎨=+⎩,得x 2-2kx-4=0.由韦达定理可得x 1+x 2=2k ,x 1x 2=-4.△=4k 2+16>0,2222121212y 2y 2k k ()()x x +++=+=22122212(kx 4)(kx 4)x x +++=222211222212k x 8kx 16k x 8kx 16x x +++++ =222121211112k 8k 16x x x x ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭=()212212122212128k x x (x x )2x x 2k 16x x x x ++-++⋅ =2k 2-4k 2+4k 2+8=2k 2+8,因此,22212k k 2k 8+-=.20.已知直线:(1)2530()l k x y k k R --+-=∈恒过定点P ,圆C 经过点(4,0)A 和点P ,且圆心在直线-2 10x y +=上.(1)求定点P 的坐标与圆C 的标准方程;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点(0, )M m ,使得PMQ ∆为直角三角形,若存在,求出m 的值,若不存在,请说明理由. 【★答案★】(1)(3,1),22(7)(4)25x y -+-=;(2)存在,5m =或653. 【详解】(1)由(1)2530k x y k --+-=得,(3)(25)0k x x y --+-=, 令30250x x y -=⎧⎨+-=⎩,得31x y =⎧⎨=⎩,即定点P 的坐标为(3,1). 设圆C 的方程为220x y Dx Ey F ++++=,由条件得1640913021022D F D E F D E ⎧⎪++=⎪⎪++++=⎨⎪⎛⎫⎛⎫⎪---+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得14840D E F =-⎧⎪=-⎨⎪=⎩.所以圆C 的方程为22148400x y x y +--+=,所以化为标准方程为22(7)(4)25x y -+-=.(2)设点(3,1)P 关于圆心(7,4)的对称点为()00,x y ,则有0031418x y +=⎧⎨+=⎩,解得011x =,07y =,故点Q 的坐标为(11,7).因为M 在圆外,所以点M 不能作为直角三角形的顶点,若点P 为直角三角形的顶点,因为413734CP k -==-则有131,5034m m -⋅=-=-, 若点Q 是直角三角形的顶点,则有73651,01143m m -⋅=-=-, 综上,5m =或653. 21.已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.(1)求椭圆的标准方程; (2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.【★答案★】(1)(2)的最小值为()恒成立,只需,即的最小值为.试题解析:(1)依题意,,,解得,,∴椭圆的标准方程为.(2)设,,所以,当直线垂直于轴时,,且,此时,,所以.当直线不垂直于轴时,设直线:, 由整理得,所以,,所以. 要使不等式()恒成立,只需 ,即的最小值为.22.已知F 为抛物线()21:201C y px p =<<的焦点,E 为圆()222:41C x y -+=上任意点,且EF 最大值为194. (1)求抛物线1C 的方程;(2)若()()000,24M x y y ≤≤在抛物线1C 上,过M 作圆2C 的两条切线交抛物线1C 于A 、B (A 、B 异于点M ),求AB 中点D 的纵坐标的取值范围. 【★答案★】(1)2y x =;(2)42,5⎡⎤--⎢⎥⎣⎦.【详解】(1)抛物线1C 的焦点为,02p F ⎛⎫⎪⎝⎭,圆2C 的圆心为()24,0C ,半径为1, 所以,2max1914124p EF FC =+=-+=,01p <<,解得12p =, 因此,抛物线1C 的方程为2y x =;[],即在时当两条切线的斜率都存;得,的方程:,得由)即(的方程:设),,(的斜率不存在,则不妨设),(时,则,另一条切线斜率存在当一条切线斜率不存在5y ,453-y 25-y 5-x 552y 5-x 552y 552k 11554d ,0555-x k 5-y 5-55516,4)2(022200≠=⇒=⎪⎩⎪⎨⎧===∴==++-==+--=∈=DB xy MB k k k k y kx MB A MA M y x设点()11,A x y 、()22,B x y ,设过点M 的圆2C 的切线方程为()200y y k x y-=-,则()22411y k y k-+=+,整理得()()42222000008152410y y k y y k y -++-+-=,设两切线的斜率分别为1k 、()212k k k ≠,则1k 、2k 是上述方程的两根,由韦达定理得()()20012420024815y y k k y y -+=-+,201242001815y k k y y -=-+, 将方程()200y y k x y -=-代入抛物线2C 的方程得()2200y y k y y -=-, 整理得()()0010y y ky ky -+-=,所以,1011y y k =-,2021y y k =-, 线段AB 中点D 的纵坐标为012121202120001123312221y y y y k k k k y y k k y y y +-++===-=-=---)5(0≠y ,函数()1f x x x=-在区间[][]4,55,2⋃上为增函数,.54)(453453)(2,415)(554554)(23-≤<--<≤-∴≤<<≤x f x f x f x f 或或因此,线段AB 的中点D 的纵坐标的取值范围是42,5⎡⎤--⎢⎥⎣⎦.感谢您的下载!快乐分享,知识无限!。

2021年高二上学期期中测试数学理试题 含答案

2021年高二上学期期中测试数学理试题 含答案

2021年高二上学期期中测试数学理试题含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、抛物线的准线方程为A、B、C、D、2、若直线与直线平行,则实数的值为A、B、C、1 D、或13、命题“”的否定是A、B、C、D、4、双曲线的焦点坐标为A、B、C、D、5、已知原命题:若,则,则它的否命题为A、若,则B、存在,使C、若,则D、若,则6、过点的直线与双曲线有且只有一个公共点,这样的直线共有A、1条B、2条C、3条D、4条7、过点的直线被圆所截得的弦长最短时,直线的斜率为A、1B、C、D、8、已知点,抛物线的焦点为,直线与抛物线在第一象限交于点,,为坐标原点,则的面积为A、1B、C、D、9、已知曲线的方程分别为,则“”是“点是曲线的交点”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件10、已知双曲线的左、右焦点分别为、,为其右支上一点,连接交轴于点,若为等边三角形,则双曲线的离心率为A、B、C、2 D、11、已知某椭圆经过点和点,且是它的一个焦点,则该椭圆的另一焦点的轨迹是A、圆的一部分B、椭圆的一部分C、双曲线的一支D、抛物线12、已知点在以为左焦点的双曲线上运动,点满足,则点到原点的最近距离为A、1B、C、D、2第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分。

13、抛物线上的点到其焦点的距离为1,则点到轴的距离为____________。

14、已知椭圆的左、右焦点分别为、,为该椭圆上异于顶点的一点,且是等腰三角形,则的面积为____________。

15、已知双曲线的左、右焦点分别为、,由向双曲线的一条渐近线作垂线,垂足为,若的面积为,则双曲线的渐近线方程为____________。

16、已知椭圆的左焦点为,、、是该椭圆上不同的三点,若是的重心,则____________。

三、解答题:解答应写出文字说明,证明过程或演算步骤。

2023-2024学年湖南省张家界市民族中学高二(上)期中数学试卷【答案版】

2023-2024学年湖南省张家界市民族中学高二(上)期中数学试卷【答案版】

2023-2024学年湖南省张家界市民族中学高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5B .8C .10D .142.已知S n 是等差数列{a n }的前n 项和,a 4+a 5+a 6=12,则S 9=( ) A .20B .28C .36D .43.已知向量a →=(1,0,√3),单位向量b →满足|a →+2b →|=2√3,则a →,b →的夹角为( ) A .π6B .π4C .π3D .2π34.若直线l 1的斜率为−23,l 2经过点A (1,1),B(0,−12),则直线l 1和l 2的位置关系是( ) A .平行 B .垂直C .相交不垂直D .重合5.椭圆x 25+y 29=1上的一点到两个焦点的距离之和为( )A .2√5B .4C .6D .186.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点,过点F 1作双曲线的一条渐近线的垂线,垂足为M .若|MF 2|=√3b ,则双曲线C 的离心率为( ) A .√3B .√33C .3D .√57.已知A ,B ,C 是抛物线y 2=12x 上三个动点,且△ABC 的重心为抛物线的焦点F ,若B ,C 两点均在x 轴上方,则BC 的斜率恒有k BC >m ,则m 的最大值为( ) A .1 B .√2C .√3D .1968.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=( ) A .25B .√302C .35D .√352二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .直线的倾斜角α取值范围是0≤α<πB .若直线的斜率为tan α,则该直线的倾斜角为αC .平面直角坐标系中的任意一条直线都有倾斜角,但不一定有斜率D .直线的倾斜角越大,其斜率就越大10.已知直线l :kx ﹣y +2k +1=0和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,1)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .直线l 被圆O 截得的最短弦长为2√2 11.下列命题中正确的是( )A .双曲线x 2﹣y 2=1与直线x +y ﹣2=0有且只有一个公共点B .平面内满足||P A |﹣|PB ||=2a (a >0)的动点P 的轨迹为双曲线C .若方程x 24−t+y 2t−1=1表示焦点在y 轴上的双曲线,则t >4D .已知双曲线的焦点在y 轴上,焦距为4,且一条渐近线方程为y =√3x ,则双曲线的标准方程为y 2−x 23=112.已知抛物线C :y 2=2px (p >0)的准线为l :x =﹣1,焦点为F ,过点F 的直线与抛物线交于P (x 1,y 1),Q (x 2,y 2)两点,PP 1⊥l 于P 1,则下列说法正确的是( ) A .若x 1+x 2=5,则|PQ |=7 B .以PQ 为直径的圆与准线l 相切C .设M (0,1),则|PM|+|PP 1|≥√2D .过点M (0,1)与抛物线C 有且仅有一个公共点的直线至多有2条 三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 的一个方向向量为d →=(1,﹣2,0),平面α的一个法向量为n →=(m ,3,6),且l ∥α,则m = .14.已知等差数列{a n }的前n 项和为S n ,若S 4=6,S 8=18,则S 12= . 15.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n+1n+2,则a 8b 8= .16.已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一个焦点,O 为坐标原点,M 是双曲线C 上一点,若△MOF 是等边三角形,则双曲线C 的离心率等于 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知圆O :x 2+y 2=4,P (2,3),求过点P 且与⊙O 相切的直线方程. 18.(12分)已知数列{a n }的前n 项和公式为S n =2n 2﹣30n . (1)求数列{a n }的通项公式a n ; (2)求S n 的最小值及对应的n 值.19.(12分)在四棱锥P ﹣ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,侧面P AB ⊥底面ABCD ,P A =PB =AD =12BC =2,且E ,F 分别为PC ,CD 的中点. (1)证明:DE ∥平面P AB ;(2)若直线PF 与平面P AB 所成的角为60°,求平面P AB 与平面PCD 所成锐二面角的余弦值.20.(12分)已知圆C 1:(x +3)2+y 2=9,C 2:(x −3)2+y 2=1,动圆M 与圆C 1,C 2均外切,记圆心M 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线l 过点C 2,且与曲线C 交于A ,B 两点,满足AC 2→=3C 2B →,求直线l 的方程.21.(12分)设{a n }是首项为1的等比数列,数列{b n }满足b n =nan 3,已知a 1,3a 2,9a 3成等差数列. (1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和,求S n 和T n . 22.(12分)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是√53,点A (﹣2,0)在C 上. (1)求C 的方程;(2)过点(﹣2,3)的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.2023-2024学年湖南省张家界市民族中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5B .8C .10D .14解:∵在等差数列{a n }中a 1=2,a 3+a 5=10, ∴2a 4=a 3+a 5=10,解得a 4=5,∴公差d =a 4−a14−1=1,∴a 7=a 1+6d =2+6=8 故选:B .2.已知S n 是等差数列{a n }的前n 项和,a 4+a 5+a 6=12,则S 9=( ) A .20B .28C .36D .4解:等差数列{a n }中,a 4+a 5+a 6=3a 5=12,解得a 5=4,则S 9=a 1+a 92×9=9a 5=36. 故选:C .3.已知向量a →=(1,0,√3),单位向量b →满足|a →+2b →|=2√3,则a →,b →的夹角为( ) A .π6B .π4C .π3D .2π3解:因为a →=(1,0,√3),故|a →|=2,因此|a →+2b →|=2√3,故|a →+2b →|2=12即a →2+4a →⋅b →+4b →2=12, 故4+4a →⋅b →+4=12即a →⋅b →=1,故cos〈a →,b →〉=12×1=12, 而〈a →,b →〉∈[0,π], 故a →,b →的夹角为π3.故选:C .4.若直线l 1的斜率为−23,l 2经过点A (1,1),B(0,−12),则直线l 1和l 2的位置关系是( ) A .平行 B .垂直C .相交不垂直D .重合解:因为直线l 2经过点A (1,1),B(0,−12), 所以直线l 2的斜率为:−12−10−1=32,又因为32×(−23)=−1, 所以两直线垂直. 故选:B . 5.椭圆x 25+y 29=1上的一点到两个焦点的距离之和为( )A .2√5B .4C .6D .18 解:椭圆x 25+y 29=1,可知a =3,由椭圆的定义可知:椭圆x 25+y 29=1上的一点到两个焦点的距离之和为:2a =6. 故选:C .6.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点,过点F 1作双曲线的一条渐近线的垂线,垂足为M .若|MF 2|=√3b ,则双曲线C 的离心率为( ) A .√3B .√33C .3D .√5解:F 1(﹣c ,0),在Rt △MOF 1中,cos ∠OF 1M =|MF 1||OF 1|=bC ,在△MF 1F 2中,由余弦定理得|MF 2|2=|F 1F 2|2+|MF 1|2−2|F 1F 2||MF 1|cos∠OF 1M , 即3b 2=4c 2+b 2−4cb ⋅bc =4c 2−3b 2, 所以2c 2=3b 2=3(c 2﹣a 2),所以c 2=3a 2, 所以e =ca =√3. 故选:A .7.已知A ,B ,C 是抛物线y 2=12x 上三个动点,且△ABC 的重心为抛物线的焦点F ,若B ,C 两点均在x 轴上方,则BC 的斜率恒有k BC >m ,则m 的最大值为( )A .1B .√2C .√3D .196解:依题意,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),由B ,C 在x 轴上方,故y 2,y 3>0, ∵抛物线为y 2=12x ,所以F (3,0),则y 22=12x 2,y 32=12x 3,∴(y 2﹣y 3)(y 2+y 3)=12(x 2﹣x 3),则k BC =y 2−y3x 2−x 3=12y 2+y 3,注意到x 1+x 2+x 3=9,故y 12+y 22+y 3212=9,即y 12+y 22+y 32=108,又y 1=﹣(y 2+y 3),代入可得y 22+y 32+y 2y 3=54,故(y 2+y 3)2=54+y 2y 3≤54+(y 2+y 3)24,即34(y 2+y 3)2≤54,解得y 2+y 3≤6√2,当且仅当y 2=y 3=3√2时,等号成立,而y 2≠y 3,故等号不成立, 因而k BC =12y 2+y 3126√2=√2,故m ≤√2,则m 的最大值为√2.故选:B .8.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则|PO |=( ) A .25B .√302C .35D .√352解:已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,则c =√9−6=√3,又O 为原点,P 为椭圆上一点, 设|PF 1|=m ,|PF 2|=n , 不妨m >n , 可得m +n =6,①结合余弦定理可得:4c 2=m 2+n 2﹣2mn cos ∠F 1PF 2, 又cos ∠F 1PF 2=35,即12=m 2+n 2−65mn ,② 结合①②可得mn =152,m 2+n 2=21, 又PO →=12(PF 1→+PF 2→),可得|PO|2=14(PF 1→2+PF 2→2+2PF 1→⋅PF 2→)=14(m 2+n 2+2mncos∠F 1PF 2)=14(m 2+n 2+65mn)=14(21+65×152)=152. 可得|PO|=√302.故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .直线的倾斜角α取值范围是0≤α<πB .若直线的斜率为tan α,则该直线的倾斜角为αC .平面直角坐标系中的任意一条直线都有倾斜角,但不一定有斜率D .直线的倾斜角越大,其斜率就越大 解:A :直线倾斜角α范围为0≤α<π,正确;B :当直线斜率为tan α,则该直线的倾斜角为[0,π)内正切值为tan α的角,错误;C :平面内所有直线都有倾斜角,当倾斜角为90°时没有斜率,正确;D :倾斜角为锐角时斜率为正,倾斜角为钝角时斜率为负,错误. 故选:AC .10.已知直线l :kx ﹣y +2k +1=0和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,1)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .直线l 被圆O 截得的最短弦长为2√2解:对于A ,由kx ﹣y +2k +1=0可得,k (x +2)﹣y +1=0,令x +2=0,即x =﹣2,此时y =1,所以直线l 恒过定点(﹣2,1),A 错误;对于B ,因为直线l 0:x ﹣2y +2=0的斜率为12,所以直线l 的斜率为﹣2,即k =﹣2,此时直线l 与直线l 0垂直,满足题意,B 正确;对于C ,因为定点(﹣2,1)到圆心的距离为√4+1=√5<2√2,所以定点(﹣2,1)在圆内,所以直线l 与圆O 相交,C 正确;对于D ,设直线l 恒过定点A (﹣2,1),圆心到直线l 的最大距离为|OA|=√5, 此时直线l 被圆O 截得的弦长最短为2√8−5=2√3,D 错误. 故选:BC .11.下列命题中正确的是( )A .双曲线x 2﹣y 2=1与直线x +y ﹣2=0有且只有一个公共点B .平面内满足||P A |﹣|PB ||=2a (a >0)的动点P 的轨迹为双曲线C .若方程x 24−t+y 2t−1=1表示焦点在y 轴上的双曲线,则t >4D .已知双曲线的焦点在y 轴上,焦距为4,且一条渐近线方程为y =√3x ,则双曲线的标准方程为y 2−x 23=1 解:对于A ,解方程组{x 2−y 2=1x +y −2=0得唯一解{x =54y =34,所以双曲线x 2﹣y 2=1与直线x +y ﹣2=0有且只有一个公共点,所以A 对;对于B ,当|AB |=2a 时,满足||P A |﹣|PB ||=2a 的动点P 的轨迹为两条射线,不是双曲线,所以B 错; 对于C ,若方程x 24−t+y 2t−1=1表示焦点在y 轴上的双曲线,则4﹣t <0且t ﹣1>0,解得t >4,所以C 对; 对于D ,设双曲线标准方程为y 2a 2−x 2b 2=1(a >0,b >0),由2c =4,则c =2,渐近线方程为y =√3x ,即a b =√3,由c 2=a 2+b 2,解得b =1,a =√3,∴双曲线的标准方程为y 23−x 2=1,所以D 错.故选:AC .12.已知抛物线C :y 2=2px (p >0)的准线为l :x =﹣1,焦点为F ,过点F 的直线与抛物线交于P (x 1,y 1),Q (x 2,y 2)两点,PP 1⊥l 于P 1,则下列说法正确的是( ) A .若x 1+x 2=5,则|PQ |=7 B .以PQ 为直径的圆与准线l 相切C .设M (0,1),则|PM|+|PP 1|≥√2D .过点M (0,1)与抛物线C 有且仅有一个公共点的直线至多有2条解:由题意,抛物线C :y 2=2px (p >0)的准线为l :x =﹣1,所以p =2, 所以抛物线C 的方程为C :y 2=4x ,焦点为F (1,0),过Q 作QQ 1⊥l 于Q 1, 则由抛物线的定义,可得|PQ |=|PF |+|QF |=|PP 1|+|QQ 1|=x 1+x 2+p =5+2=7,故A 正确;|PQ |=x 1+x 2+2,则以PQ 为直径的圆的半径r =x 1+x 22+1, 线段PQ 的中点坐标为(x 1+x 22,y 1+y 22), 则线段PQ 的中点到准线的距离为x 1+x 22+p 2=x 1+x 22+1=r ,所以以PQ 为直径的圆与准线l 相切,故B 正确;抛物线C :y 2=4x 的焦点为F (1,0),|PM|+|PP 1|=|PM|+|PF|≥|MF|=√2, 当且仅当M ,P ,F 三点共线时取等号,所以|PM|+|PP 1|≥√2,故C 正确; 对于D ,当直线斜率存在时,设直线方程为y =kx +1, 联立{y =kx +1,y 2=4x ,消去x ,并整理得ky 2﹣4y +4=0,当k ≠0时,则Δ=16﹣16k =0,解得k =1,当k =0时,方程的解为y =1,此时直线与抛物线只有一个交点; 当直线斜率不存在时,直线方程为x =0,与抛物线只有一个交点,综上所述,过点M (0,1)与抛物线C 有且仅有一个公共点的直线有3条,故D 错误. 故选:ABC .三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 的一个方向向量为d →=(1,﹣2,0),平面α的一个法向量为n →=(m ,3,6),且l ∥α,则m = 6 .解:∵直线l 的一个方向向量为d →=(1,﹣2,0), 平面α的一个法向量为n →=(m ,3,6),且l ∥α,∴n →⋅d →=m ﹣6=0,解得m =6. 故答案为:6.14.已知等差数列{a n }的前n 项和为S n ,若S 4=6,S 8=18,则S 12= 36 . 解:因为{a n }是等差数列,所以S 4,S 8﹣S 4,S 12﹣S 8是等差数列, 则2(S 8﹣S 4)=S 4+S 12﹣S 8, 即2×(18﹣6)=6+S 12﹣18, 解得S 12=36. 故答案为:36.15.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n+1n+2,则a 8b 8=3117.解:根据题意,等差数列{a n },{b n }中,若S n T n =2n+1n+2,则S 15T 15=(a 1+a 15)×152(b 1+b 15)×152=(a 1+a 15)(b 1+b 15)=a 8b 8=3117;故答案为:3117.16.已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一个焦点,O 为坐标原点,M 是双曲线C 上一点,若△MOF 是等边三角形,则双曲线C 的离心率等于 1+√3 . 解:设F (c ,0),由△MOF 是边长为c 的等边三角形, 可设M 为双曲线第一象限上的点, 可得M (12c ,√32c ), 代入双曲线的方程可得c 24a 2−3c 24b 2=1,由e =ca 及b 2=c 2﹣a 2, 可得e 2−3e 2e 2−1=4, 即为e 4﹣8e 2+4=0,解得e 2=4+2√3(4﹣2√3舍去), 可得e =1+√3. 故答案为:1+√3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知圆O:x2+y2=4,P(2,3),求过点P且与⊙O相切的直线方程.解:由x2+y2=4可知,该圆的的圆心为O(0,0),半径为2,当过点P(2,3)且与圆C相切的直线不存在斜率时,方程为x=2,此时直线x=2与圆O:x2+y2=4相切,符合题意;当过点P(2,3)且与圆C相切的直线存在斜率时,设为k,则直线方程为y﹣3=k(x﹣2),即kx﹣y﹣2k+3=0,所以22=2⇒k=512,则直线方程为y−3=512(x−2)⇒5x−12y+26=0,综上,圆C相切的直线方程为x=2或5x﹣12y+26=0.18.(12分)已知数列{a n}的前n项和公式为S n=2n2﹣30n.(1)求数列{a n}的通项公式a n;(2)求S n的最小值及对应的n值.解:(1)当n=1时,a1=2﹣30=﹣28;当n≥2时,a n=S n﹣S n﹣1=2n2﹣30n﹣[2(n﹣1)2﹣30(n﹣1)]=4n﹣32,当n=1时上式也成立,∴a n=4n﹣32.(2)S n=2n2﹣30n=2(n−152)2−2252.当n=7或8时,S n取得最小值,为﹣112.19.(12分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AD⊥AB,侧面P AB⊥底面ABCD,P A=PB=AD=12BC=2,且E,F分别为PC,CD的中点.(1)证明:DE∥平面P AB;(2)若直线PF与平面P AB所成的角为60°,求平面P AB与平面PCD所成锐二面角的余弦值.证明:(1)取PB中点M,连接AM,EM,∵E为PC的中点,∴ME ∥BC ,ME =12BC ,又∵AD ∥BC ,AD =12BC , ∴ME ∥AD ,ME =AD , ∴四边形ADEM 为平行四边形: ∴DE ∥AM ,∵DE ⊄平面P AB ,AM ⊂平面P AB , ∴DE ∥平面P AB ;解:(2)∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,BC ⊂平面ABCD ,BC ⊥AB ,∴BC ⊥平面P AB ,取AB 中点G ,连接FG ,∴FG ∥AD ,FG ⊥平面P AB ,∴∠GPF =60°,GF =3, ∴tan60°=3PG⇒PG =√3,∴AG =GB =1,AB =2, 如图建系,∴P(0,0,√3),C (1,4,0),D (﹣1,2,0),∴PC →=(1,4,−√3),CD →=(−2,−2,0),设平面PCD 的一个法向量n 1→=(x ,y ,z),∴{n 1→⋅PC →=0n 1→⋅CD →=0⇒{x +4y −√3z =0−2x −2y =0⇒n 1→=(−1,1,√3),平面P AB 的一个法向量n 2→=(0,1,0),设平面P AB 与平面PCD 所成锐二面角为θ, ∴cosθ=|n 1→⋅n 2→|n 1→||n 2→||=1√5=√55. 20.(12分)已知圆C 1:(x +3)2+y 2=9,C 2:(x −3)2+y 2=1,动圆M 与圆C 1,C 2均外切,记圆心M 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线l 过点C 2,且与曲线C 交于A ,B 两点,满足AC 2→=3C 2B →,求直线l 的方程.解:(1)由题意可知:圆C 1的圆心C 1(﹣3,0),半径r 1=3,圆C 2的圆心C 2(﹣3,0),半径r 2=3, 由条件可得|MC 1|﹣3=|MC 2|﹣1,即|MC 1|﹣|MC 2|=2<|C 1C 2|,则根据双曲线的定义可知,点M 是以C 1,C 2为焦点,以2为实轴长的双曲线的右支, 则a =1,c =2,可得b 2=c 2﹣a 2=8,所以曲线C 的方程为x 2−y 28=1(x ≥1).(2)由(1)可知:双曲线的渐近线方程为y =±2√2x ,即x =±√24y , 由于C 2(3,0)且直线AB 的斜率不等于0,不妨设l :x =my +3(|m|<√24),A (x 1,y 1),B (x 2,y 2), 则AC 2→=(3−x 1,−y 1),C 2B →=(x 2−3,y 2), 由AC 2→=3C 2B →可得y 1=﹣3y 2,联立方程{x =my +3x 2−y 28=1,消去x 得(8m 2﹣1)y 2+48my +64=0,则Δ>0,由韦达定理可得{y 1+y 2=−48m8m 2−1y 1y 2=648m 2−1, 由{y 1+y 2=−48m 8m 2−1y 1=−3y 2,解得{y 1=−72m8m 2−1y 2=24m8m 2−1, 代入y 1y 2=648m 2−1可得24m 8m 2−1×(−72m 8m 2−1)=648m 2−1,解得m 2=135<18,即m =±√3535, 因此直线l :x =±√3535y +3,即y =±√35(x −3).21.(12分)设{a n }是首项为1的等比数列,数列{b n }满足b n =nan 3,已知a 1,3a 2,9a 3成等差数列. (1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和,求S n 和T n . 解:(1)设数列{a n }的公比为q ,则a n =q n−1, 由a 1,3a 2,9a 3成等差数列,得6a 2=a 1+9a 3, 所以9q 2﹣6q +1=0,解得q =13, 所以{a n }的通项公式是a n =13n−1,{b n }的通项公式是b n =n 3n . (2)由(1)知,S n =1−13n1−13=32(1−13n ); T n =13+232+333+⋯+n3n ,所以13T n =132+233+334+⋯+n−13n +n 3n+1,两式相减得,23T n =13+132+133+⋯+13n−n 3n+1=13(1−13n )1−13−n 3n+1=12(1−13n)−n 3n+1=12−2n+32×3n+1,所以T n =34−2n+34×3n. 22.(12分)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是√53,点A (﹣2,0)在C 上. (1)求C 的方程;(2)过点(﹣2,3)的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.解:(1)因为椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是√53, 所以e =ca =√53,①因为点A (﹣2,0)在C 上, 所以(−2)2b 2=1,②又a =√b 2+c 2,③联立①②③,解得a =3,b =2,c =√5, 所以椭圆方程为y 29+x 24=1;(2)证明:易知直线PQ 的斜率存在,不妨设直线PQ 的方程为y =k (x +2)+3,P (x 1,y 1),Q (x 2,y 2),联立{y =k(x +2)+3y 29+x 24=1,消去y 并整理得(4k 2+9)x 2+8k (2k +3)x +16(k 2+3k )=0,此时Δ=64k 2(2k +3)2﹣64(4k 2+9)(k 2+3k )=﹣1728k >0, 解得k <0,由韦达定理得x 1+x 2=−8k(2k+3)4k 2+9,x 1x 2=16(k 2+3k)4k 2+9,因为A (﹣2,0),此时直线AP :y =y1x 1+2(x +2),令x =0,解得y =2y 1x 1+2,即M(0,2y1x 1+2),同理得N(0,2y2x 2+2),此时2y 1x 1+2+2y2x 2+22=[k(x 1+2)+3]x 1+2+[k(x 2+2)+3]x 2+2=[kx 1+(2k+3)](x 2+2)+[kx 2+(2k+3)](x 1+2)(x 1+2)(x 2+2) =2kx 1x 2+(4k+3)(x 1+x 2)+4(2k+3)x 1x 2+2(x 1+x 2)+4=32k(k 2+3k)4k 2+9−8k(4k+3)(2k+3)4k 2+9+4(2k+3)16(k 2+3k)4k 2+9−16k(2k+3)4k 2+9+4=3,故线段MN 的中点为定点,定点为(0,3).。

湖南省保靖县民族中学2020┄2021届高三全真模拟考试 英语试题

湖南省保靖县民族中学2020┄2021届高三全真模拟考试 英语试题

Conversation 11. What did the two speakers do just now?A. Played tennis together.B. Watched a tennis game.C. Joined the tennis team.2. When will they play tennis together?A. This Thursday.B. This Saturday.C. This Sunday. Conversation 23. What is the man asking about?A. The way to the zoo.B. The time of the bus.C. The position of the zoo.4. Which bus will the man take probably?A. No. 36 bus.B. No. 301 bus.C. No. 30 bus. Conversation 35. Where does the conversation take place?A. In a furniture store.B. In a coffee house.C. In the girl’s room.6. What doesn’t the girl care about?A. The color of the table.B. The design of the table.C. The price of the table.Conversation 47. What are they talking about?A. A car accident.B. A surgery.C. Two lucky men.8. What’s wrong with the second driver?A. His legs were injuredB. His arms were injured.C. His head was injured.9. What was the condition of the first driver this morning?A. Hopeless.B. Very good.C. Serious.Conversation 510. What is the probable relationship between the two speakers?A. Boss and employee.B. Clerk and customer.C. Wife and husband.11. How many kinds of vegetables will be on the list?A. Four.B. Three.C. Seven.12. How will they pay?A. By credit card.B. By cash.C. By check. Conversation 613. What is the original price of the sofa?A. 1,150 yuan.B. 2,300 yuan.C. 4,600 yuan.14. What is the woman’s suggestion?A. Buying one floor lamp.B. Buying two floor lamps.C. Buying two desk lamps.15. What do we know about the man?A. He chose a leather sofaB. His living-room is small.C. He came here for the first time.Section B (7.5 marks)Directions:In this section, you will hear a short passage. Listen carefully and then fill in the numbered blanks with the information you have heard. Fill in each blank with NO MORE THAN THREE WORDS.You will hear the short passage TWICE.Part II Language Knowledge (45 marks)Section A (15 marks)Directions:For each of the following unfinished sentences there are four choices marked A, B, C and D. Choose the one that best completes the sentence.24. — W hat’s wrong with your phone?— I ________ all the morning but I can’t get through.A. calledB. have been callingC. callD. am calling25. T om went to the doctor’s this morning for a check up ________he met up with an old friend.A. whenB. whichC. whomD. where26. — I will come to attend your lecture at 10:00 tomorrow.—I’m sorry, by then my lecture will have ended and I ________ in my office.A. am workingB. will workC. will be workingD. will have worked27. If you _________ harder last year, you _________ so upset today.A. worked; would not beB. had worked; would not have beenC. worked; would not have beenD. had worked; would not be28. I’m going to buy my daughter my daughter another interesting novel, _________ she would like to read.A. thatB. whatC. oneD. it29. He drank up the whole bottle of milk, not _________ even a drop to his little brother.A. leaveB. leavingC. leftD. to leave30. — Is it real that my father will come back from America tonight t celebrate my birthday?— Yes, of course. There ________!A. comes heB. he does comeC. does he comeD. he comes31. ________ people think the show is funny, it doesn't matter who tells the jokes.A. Even thoughB. As long asC. As ifD. In order that32. There is no doubt that ________ a goal, one needs not only knowledge but also good personalities.A. realizesB. realizingC. being realizedD. to realize33. — I came across the next-door boy in the countryside. Do you still remember him?— Of course, he ________to help us whenever we had a problem.A.would comeB. comesC. has comeD. had come34. He has donated some money to those who________ in poverty, which _______ of great help.A. live, areB. lives, areC. live, isD. lives, is35. Wherever you prefer to work after graduation, _________ close contacts with your family members.A. keepB. keepingC. to keepD. keptSection B (18 marks)Directions:For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.Peter was a US Navy fighter pilot in Vietnam. On his 75th mission, his fighter was 36 and he was forced to eject(弹射出去). The only thing between him and imminent(逼近的)deathwas his parachute(降落伞)that he prayed would open. The parachute did open and Peter made it down to the ground alive, but he was 37 alive and spent 6 years in a Vietnamese prison camp.One day, many years after returning to his homeland, Peter and his wife were sitting in a little restaurant in Kansas City 38 he noticed a guy who kept looking at him.Peter looked back but didn’t recognize him, but he kept catching this guy 39 him. Finally the guy stood up and walked over to Peter’s 40 and said, “You’re Peter.” Peter looked up at him and said, “Yes.” The guy said, “You’re a 41 pilot, part of that ‘Top Gun’ outfit. You launched from the aircraft carrier Kitty Hawk, you parachuted into enemy territory and you spent six years as a 42 of war.”43 surprised, Peter looked up at the guy and asked, “How in the world did you know all that?” The man laughed and said, “Because I 44 your parachute.”Peter was 45 . The man grabbed Peter’s hand and pumped his arm and said, “I guess it wo rked,” and walked off.Think about this for yourself. How many times in life do you 46 the people who help you out the most? The people who come out of the far 47 of your life just when you need them the most and pack your parachutes for you?36. A. hurt B. spoiled C. injured D. destroyed37. A. caught B. held C. taken D. removed38. A. while B. as C. when D. once39. A. staring at B. glaring at C. glancing at D. glimpsing at40. A. desk B. table C. house D. restaurant41. A. helicopter B. fighter C. plane D. warship42. A. friend B. pilot C. soldier D. prisoner43. A. Somewhat B. Somewhere C. Anyhow D. Anyway44. A. picked B. put C. installed D. packed45. A. worthless B. speechless C. careless D. priceless46. A. walk B. go C. pass D. wander47. A. grounds B. camps C. corners D. fieldsSection C (12 marks)Directions:Complete the following passage by filling in each blank with one word that best fits the context.Some robbers dug their way into the basement of a bank and emptied almost 200 private safes(保险箱).They entered the Credit Lyonnais branch using building equipment to dig holes and destroy walls.48. Saturday night, they tied up a security guard and spent 49. next nine hours robbing the bank.One investigator described the robbery 50. a “professional job”. The robbers came in at about 22:00 on Saturday 51. left at 7:00 on Sunday. They entered through the basements of the neighboring building, digging through a series of tunnels and making a hole into a wall of 80 cm thick to get into the bank, 52. was having building works at the time.When 53. left, the robbers set the place on fire to remove any trace of evidence, switching on the anti-fire system and flooding the building. Fortunately, the guard escapedunharmed.54. is difficult to estimate the total value of 55. was stolen because only the bank’s clients(储户) know the content of their private safes.Part III Reading Comprehension (30 marks)Directions:Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage.APreviously, I heard a story about a mother who had two daughters. She loved them very much, but two girls would fight with each other from their earliest years. As they grew older, they became total strangers. They had no contact with each other when they were adults.This caused the mother great pain. Then, later, she had an idea. She decided to write a letter to them. In this letter, she told them how much she loved them, and how she wanted them to love each other in this way. She also gave them news of herself, and some guidance on how they might live happier lives.When the letter was ready, she wrote out one copy for each daughter, but these copies were special. Each copy contained only every second sentence of the original letter. The copy for one daughter had only the even(偶数的)sentences, and the other daughter’s copy contained only the odd sentences. Neither copy made sense on its own. Neither contained the fullness of the mother’s message.When the two daughters received their letters, they were puzzled. If they really wanted to know what the letters said, they would have to put the two letters together, and read them asone. That meant they must approach one another again in mutual(彼此的) love and respect.For a long time, the mother waited in vain. Both daughters tried to understand the half-letter, but they each blamed the other for not helping them. Each daughter thought she knew her mother better.Then one day, when the mother had almost given up hope, there was a knock at the door. There they stood, together. “We’ve come home,”they said at the same time. “We’ve finally put our letters together, and we’ve come to say how much we love you, Mum.” Then she hugged them both, tears of joy streaming down her cheeks, and welcomed them back home.56. When the two daughters were young, they____.A. had no contact with each otherB. disliked each otherC. showed deep love for each otherD. did not love their mother57. Why did the mother give her daughters incomplete letters?A. She wanted to tell them her good news and bad news.B. She hoped they would ask her for more information.C. She hoped they would approach each other and make up.D. She thought she could change their attitude towards her.58. What did the two daughters do soon after they received their letters?A. They blamed each other again as usual.B. They made peace with each other quickly.C. They realized the mistakes they had made.D. They apologized to their mother.59. It can be inferred from the passage that _____.A. love can neither be bought nor soldB. faults are thick when love is thinC. without respect, love can’t go farD. love can help enemies become friends60. What is the best title for this passage?A. An Unusual LetterB. A Mother’s Endless LoveC. Special DaughtersD. Deep Love from DaughtersBSchouten University is a highly respected online education provider offering officially-recognized degree programs across the globe. Our mission is to provide students with a high-quality mixed learning MBA program and personal coaching to help them to become world-class managers.MBA with Unique Skills & Personal Development ProgramStudents will benefit from 30 years of soft skills training experience from Schouten & Nielsen, the leading soft skills training institute in Europe. To become an effective manager, theory alone is not enough, and being able to put theory into practice is more important today than ever before. With the Schouten University MBA program you will have the uniqueopportunity to develop such soft skills as influencing skills, leadership skills, communication skills and motivational skills.International Network + 2 Residential Study weeks in Cambridge & ShanghaiAt Schouten University, students, tutors and coaches meet each other online. But there is also the opportunity for students to study face to face by way of the two Residential(居住的)Study weeks. One week will be held in Shanghai (China) and the other week at Cambridge (UK). Shanghai is the commercial and industrial center of the world’s leading economy. Cambridge is home to some of Europe’s oldest and best universities. Residential weeks will b e held several times a year. Therefore, you can choose when to participate, depending on the progress of your study. In the residential weeks cooperation between students will be an important element. Students will work together on real company cases. During the residential week students will be supervised by a professional trainer.*Residentials are an obligatory (必须的)part of the program and the costs of the residential weeks are covered by your tuition.*The fee includes the study weeks’ housing, food an d participation but not the costs of travel.Maximum FlexibilitySchouten University introduces a new way of learning:Study 2. 0. Students will study online through my and interact via rich social media. It allows busy working professionals like you to study a world class MBA degree anytime, anywhere at any pace.Great SupportAccess to the University’s virtual learning environment (VLE)24/7, and your study coach, tutors are all here to give you strong personal support to ensure your success.61. Most graduates of Schouten University will work in the field of ________.A. educationB. militaryC. medicineD. business62. According to the advertisement, which of the following DOESN’T belong to soft skills?A. Leadership skills.B. Communication skills.C. Driving skills.D. Motivational skills.63. The time to participate the residential weeks is ________.A. flexibleB. fixedC. unnecessaryD. inconvenient64. If you attend the two Residential Study weeks, you will have to pay for ________ besides your tuition.A. housingB. participation feesC. mealsD. travel costs65. The advertisement is probably intended for ________.A. full-time college studentsB. working businessmenC. studying teenagersD. retired managersCThere is some unwelcome news for students preparing for exams and officers putting in long hours-----you don’t need the break as much as y ou may think that makes you feel less tired.Scientists have long assumed that willpower (意志力)is a limited resource, which is why you feel the need to have a rest, have a snack and come back to a task when you're feeling better. They argued that the only way to restore willpower was by rest, food or entertainment.But psychologists have challenged this theory, saying weak willpower is all in your head. They found that people’s beliefs in willpower determine how long and how well they'll be able to work on a tough mental exercise. “If you think of willpower as something that’s limited, you're more likely to be tired when you perform a difficult task," said Prof. Veronika Job. “But if you think of willpower as something that is not easily used up, you can go on and on.”.The researchers designed four experiments to test students'-beliefs in willpower. After a tiring task, those, who believed or were led to believe that willpower is a limited resource, performed worse on standard concentration tests than those who thought of willpower as something they had more control over. They also found that leading up to final exam week, students who believed the limited resource theory ate junk food 24 percent more often than those who believed they had more control in resisting temptation (诱惑).Mr. Job said. “The theory that willpower is a limited resource is interesting, but it has had unintended consequences. Students who may already have trouble studying are being told that their power of concentration is limited, and they need to take frequent breaks. But a belief in willpower as a non-limited resource makes people stronger in their ability to work through challenges.”The findings could help people who are battling temptation. Willpower isn’t driven by a biologically based process as much as we used to think. The belief in it is what influences your behavior.66. The theory that willpower is limited supports that _________.A. people must eat snacks when they feel tiredB. people do need a break to restore their willpowerC. there’s no way to strengthen people’s willpowerD. weak willpower doesn’t affect people’s life much67. What have the scientists long believed regarding willpower?A. It is in the charge of people.B. It is a limited resource.C. There is no way to restore willpower.D. It doesn’t easily run out.68. Which of the following best helps the students to prepare better for their exams?A. Push themselves even if they want to take a break.B. Don’t eat fast fo od while studying.C. Remind themselves willpower is not limited.D. Stay in a comfortable and quiet place.69. The following groups can benefit from the findings except _______.A. patients following strict dietsB. children liking to watch TVC. smokers trying to give up smokingD. employees facing a new but well-paid task70. What’s the best title for the passage?A. A new theory about willpowerB. How to build strong willpowerC. The great influence of willpowerD. Willpower doesn’t last longPart IV Writing (45 marks)Section A (10 marks)Directions:Read the following passage. Fill in the numbered blanks by using the information from the passage.Write NO MORE THAN THREE WORDS for each answer.Do you know “credit cards”? They are very popular today. People use credit card to go shopping on the Internet, check into a hotel, rent a car, or dine out. People can buy now and pay later. A credit card may have a number of costs. First, there is the interest charge on purchase, known as the annual percentage rate. Second, Cardholders may have to pay cash advance fees if they withdraw money from credit cards.Compared to checks, a credit card allows small short – term loans to be quickly made to a customer who need not calculate a balance remaining before every transaction(交易、业务). Additionally there is no need for a customer to carry any cash for most purposes. Credit cards also offer consumers an easy way to track expenses.Credit cards are very convenient to use. But people who use credit cards irresponsibly can soon find themselves heavily in debt. Cardholders borrow money from a bank each time they charge something. They avoid interest charges if they pay their bill in full each month. But if they only make the minimum payment, it may take years to pay off a debt. Interest is continually charged on the unpaid balance.And that is not they only danger. Information security is a major issue these days. Recently there have been several incidents in which many people had financial information either lost or stolen. The cardholder suffered great losses. Now, major banks in China get more cautions inissuing caused by the card overdrafts(透支).Measures can be taken to avoid the problems. A lost or stolen card can be canceled in time, which will greatly limit the fraud. European banks require a cardholder’s security code he entered for purchases with the card. In July, 2009, The China Banking Regulatory Commission forbade the issuing of credit cards to under 18–year–old age group.Title:71._______________Section B (10 marks)Directions:Read the following passage. Answer the questions according to theinformation given in the passage.I’m Bob. My first full-time job after high school was selling vacation packages via telephone for a well-known company. One day, the dialer (接线员) connected me to a man who answered the phone and sounded a bit out of breath. I started with my normal tone, and expecting to hear the normal response, “I don’t want any”, and be hung up on.Instead he spoke in a weak voice and began to tell me how he wished he could take a vacation like the one I was offering, but he couldn’t because he was dying of emphysema. He explained how he was on oxygen, and it took almost all his energy just to get to the phone to answer the call. I apologized to him for that. He asked me if I smoked and then begged me to stop. He told me smoking is what was killing him. He told me to spend every day with my loved ones, and tell them all the time how much I love them. At this point, I was in tears, and couldn’t control myself, and he could tell. We ended the call, and I put my phone on hold to prevent another call from coming in so I could collect myself.After a few moments, I decided to write down his name and address, and just send him a card telling him that I appreciated his advice and that I would pray for him and his family. Shortly after, I received a nice letter back from Frank, along with a picture of him and his wife. We continued to write back and forth over the next few months, and became very fond of each other. He was old enough to be my grandfather, and in many ways, I felt as if he was.About a year later I received a letter from his wife. When I read it, my eyes were filled with tears. She told me how Frank’s battle with the disease had finally come to an end, and he passed away shortly before Christmas. She wanted to thank me for the letters, and then explained how Frank touched many lives over the years. At his funeral, they read the first letter Ihad written to Frank to show how he affected a 19-year-old he had never even met.81. What would the customer normally do when the phone was connected?(no more than 13 words)(3 marks)82. What did Frank beg Bob to do?(no more than 7 words)(2 marks)83. What happened after Bob and Frank wrote to each other for a few months?(no more than 8 words)(2 marks)84. Why was Bob’s letter read at Frank’s funeral?(no more than 11 words)(3 marks)Section C (25 marks)Directions:Write an English composition according to the instructions given below.随着科技的发展,越来越多的中学生拥有iPad。

【高二】湖南省州民中2021-2021学年高二上学期期中考试数学(理)试卷

【高二】湖南省州民中2021-2021学年高二上学期期中考试数学(理)试卷

【高二】湖南省州民中2021-2021学年高二上学期期中考试数学(理)试卷试卷说明:州民中2021年上学期期中考试高二(理科)数学试卷命题人:向兴红审题人:李万春时量 120分钟满分 120分一、选择题(每小题分,共分,在小题给出的四个选项中,只有一项是符合要求的)设集合M={x(x+3)(x-2)bc,则a>b B.若a2>b2,则a>b C.若a>b,c0,b>0,a+b=1则ab的最大值是____________13. 在等差数列中,已知=16,则=中,若,则的形状一定是____________15.已知数列是一个等差数列,且,。

则数列前n项和的最大值为__________.三、解答题:(本大题共6小题,共60分.写出文字说明、证明过程或演算步骤)16、(本小题满分8分)△ABC的内角A、B、C的对边分别为a、b、c,.求B;的两个根都在上;命题q:对任意实数,不等式恒成立,若命题“p∧q”是真命题,求的取值范围。

s18. (本小题满分10分)已知,(I)当时,解不等式;(II)若,解关于x 的不等式。

19.(本小题满分10分)某种汽车,购车费用是12万元,每年使用的保险费与汽油费共计0.88万元,年维修费用第一年是0.24万元,以后每年递增0.24万元,问这种汽车使用多少年时,它的年平均费用最少?20.(本小题满分10分)在平面直角坐标系中,动点到两点、的距离之和等于4.设点的轨迹为.(I)C的方程;(II)设直线与交于两点,若,求的值.21. (本小题满分12分)等比数列的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(Ⅰ)求r的值;(Ⅱ)当时,记求数列的前项和. 12. 13。

16 14。

直角三角形 15。

三.16.解:(1) a2+c2-ac=b2.由余弦定理得b2=a2+c2-2accos B. .…………分故cos B=,因此B=45°. ……………………分得或∴当命题p为真命题时,且∴…………4分,不等式恒成立”即抛物线图像在轴上方或者与轴只有一个交点,∴△= ∴ …………8分即的取值范围是…………10分时,有不等式,∴,∴不等式的解为:…………4分当时,有,∴不等式的解集为;…………6分时,有,∴不等式的解集为;…………8分时,不等式的解集为{ 1 }…………10分年时,汽车的年平均费用(万元)最少,依题意有:…………5分当且仅当,即时取得最小值3.4 …………10分解:()设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦距,长半轴长为2的椭圆.它的短半轴故曲线C的方程为. …………5分()设,其坐标满足,消去y并整理得―3=0,(*) …………7分若即则…………8分化简得…………分所以满足(*)中,故为所求. …………分解: (Ⅰ)因为对任意的,点,均在函数且均为常数)的图像上.所以得,,,,为等比数列,.从而解得.…………分(Ⅱ)当时,由(Ⅰ)知,.当时,满足上式,所以其通项公式为.…………分所以,………………(1)……(2)…………分,得:.所以.…………分每天发布最有价值的高考资源每天发布最有价值的高考资源每天发布最有价值的湖南省州民中2021-2021学年高二上学期期中考试数学(理)试卷感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

保靖民中2020-2021学年秋学期高二数学期中试卷含答案(理科)时量:120分钟 满分:150分 第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列0,0,…,0,… ( ) A .既是等差数列又是等比数列 B .是等差数列但不是等比数列 C .是等比数列但不是等差数列 D .既不是等差数列又是不等比数列2.若a b >且c R ∈,则下列不等式中一定成立的是 ( ) A .22a b > B .ac bc > C .22ac bc > D .a c b c +>+ 3.若ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且222a b c bc =+-,则角A 的大小为 ( ) A .6π B .3π C .32π D .3π或32π4.在等差数列{}n a 中,1910,a a +=则5a 的值是 ( )A .5B .6C .8D .105.已知点()3,1和()4,6-在直线 320x y a -+=的两侧,则实数a 的取值范围是 ( ) A .724a a <->或 B .247a a <->或 C .724a -<< D .247a -<< 6.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bB A=,则ABC ∆的形状一定是 ( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形7.已知数列{}n a 满足10a =,()12n n a a n n N *+=+∈,那么a 2011的值是 ( )A .2 0112B .2 012×2 011C .2 009×2 010D .2 010×2 011 8.设[]x 表示不超过实数x 的最大整数,如[0.3]0=,[0.4]1-=-,则在坐标平面内满足方程22[][]25x y +=的点(,)x y 所构成的图形的面积为 ( ) A .12 B .13 C .25π D .100第Ⅱ卷(非选择题,共110分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡的相应位置. 9.在△ABC 中,045,30,2A B b ===,则a 边的值为 . 10.数列{}n a 中,11,111+==-n n a a a ,则=4a .11.4和16的等比中项是 .12.设变量x 、y 满足条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为 .13.已知不等式250ax x b -+>的解集为{|32}x x -<<,则a b +的值是 .14.某船在海面A 处测得灯塔C 与A 相距310海里,且在北偏东030方向;测得灯塔B 与A 相距615海里,且在北偏西075方向。

船由A 向正北方向航行到D 处,测得灯塔B在南偏西060方向。

这时灯塔C 与D 相距 海里. 15.设集合{}22,A x x x nx x N *=-<∈,集合A 中元素的个数为na,数列{}n a 的前n 项和为n S ,则10S = .三、解答题:本大题共6小题,共75分.解答时应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)若等比数列{}n a 中,3412,8a a ==(Ⅰ)求首项1a 和公比q ; (Ⅱ)求数列{}n a 的前8项和8S .17.(本小题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列. (Ⅰ)角B 的大小;(Ⅱ)若2,a =ABC ∆的面积23S =,求b 、c 的长及ABC ∆外接圆半径.18.(本小题满分12分)已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .19.(本小题满分13分)某动物园要围建一个面积为2360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x (单位:元) .(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.20.(本小题满分13分)已知2()2f x kx kx =-+(Ⅰ)若x R ∈时,()0f x >恒成立,求实数k 的取值范围; (Ⅱ)若k R ∈,解关于x 的不等式()2f x x ≤.xa21.(本小题满分13分)已知非零数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b 中,11b =,点()1,n n P b b +在直线02=+-y x 上. (Ⅰ)求数列{}n a ,{}n b 的通项n a 和n b ;(Ⅱ)设n n n c a b =,数列{}n c 的前n 项和为n T ,若不等式26nn nT a n >+对任意的n N *∈恒成立, 求实数a 的取值范围.保靖民中2011年秋学期期中考试试题高二数学(理科)参考答案满分150分 时量120分钟一、选择题:本大题共8小题,每小题5分,共40分二、填空题:(本大题共7小题,每小题5分,满分35分)922. 10、8311、8± 12、313、25 14、103 15、 110三、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题满分12分)解:(Ⅰ)4382123a q a === 又 231a a q = 即 212123a ⎛⎫= ⎪⎝⎭得 127a =所以 127a =,23q =(Ⅱ)()881822711325663058121818113a q S q ⎡⎤⎛⎫-⎢⎥⎪-⎝⎭⎢⎥⎣⎦===-=--17.(本题满分12分)由余弦定理有 22222cos21622cos1233b ac ac ππ=+-=+-⨯⨯=∴23b =18.(本题满分12分)解:(Ⅰ)由题设知公差d ≠0,由11,3,91,a a a a =成等比数列得1218112d d d ++=+,解得d =1,d =0(舍去), 故{}n a 的通项1(1)1n a n n =+-⨯=. (Ⅱ)11111(1)1n n a a n n n n +==-⋅++,1111111()()()11223111n n S n n n n ∴=-+-++-=-=+++ 19.(本题满分13分)解:(Ⅰ)如图,设矩形的另一边长为am 则 45180(2)1802y x x a =+-+⋅225360360x a =+-由已知 360xa =,得360a x=, 所以2360225360(2)y x x x==+-> xa(II)∵2x > ∴ 22360225222536010800x x+≥⨯=20.(本题满分13分)解:(Ⅰ),()0x R f x ∈>恒成立, 即220kx kx -+>恒成立⑴ 若0k =,则有20>恒成立; ⑵ 若0k ≠,由题意有{0k >∆<,即{2080k k k >-<⇒08k <<综上 08k ≤<⑴ 若0k =,则不等式()*2(1)0x ⇔--≤解得1x ≥ ⑵ 若0k >,则不等式()*2()(1)0x x k⇔--≤若2k =,则21k=,上不等式解得1x =; 若2k >,则21k<,上不等式解得21x k ≤≤;若02k <<,则21k>,上不等式解得21x k ≤≤.⑶ 若0k <,则不等式()*2()(1)0x x k⇔--≥得 2x k≤或1x ≥.综上所述当2k ≥时,原不等式解集{}2|1x x k≤≤;当02k <<时,原不等式解集{2|1x x k ⎫≤≤⎬⎭;21.(本题满分13分)解:(Ⅰ)∵a n 是S n 与2的等差中项∴ S n =2a n -2从而 S n-1=2a n-1-2 又S n —S n-1=a n ,*),2(N n n ∈≥∴ a n =2a n -2a n-1 ∵ a n ≠0, ∴*),2(21N n n a a n n∈≥=-, 即 数列{a n }是等比数列, 又由 a 1=S 1=2a 1-2,解得 a 1=2∴ 2nn a =∵点P(b n ,b n+1)在直线x-y+2=0上, ∴b n -b n+1+2=0, ∴b n+1-b n =2, 即 数列{b n }是等差数列,又b 1=1, ∴ b n =2n-1,(Ⅱ)由(Ⅰ)知()212n n n n c a b n =⋅=-⋅∴()2312123252212n n n T c c c n =+++=⋅+⋅+⋅++-⋅∴()23412123252212n n T n +=⋅+⋅+⋅++-⋅∴()23112(222222)212n n n T n +-=⋅+⋅+⋅++⋅--⋅∴()12326n n T n +=-⋅+从而 26n n nT a n >+ 即 ()1232626n nn n a n +⎡⎤-⋅+>+⎣⎦亦即246a n n <-恒成立。

相关文档
最新文档