湖南省保靖县民族中学2014届高三全真模拟考试数学(文)试题 Word版含答案

合集下载

湖南省重点高中2014届高三高考仿真模拟测试数学文4

湖南省重点高中2014届高三高考仿真模拟测试数学文4

俯视图正视图 侧视图图2湖南省重点高中2014届高三高考仿真模拟测试数学文4一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1ii-(i 为虚数单位)的模等于 AB .2C D .122.某教辅书店有四类高考复习用书,其中语文类、数学类、文科综合类及英语类分别有20种、10种、40种、30种,现从中抽取一个容量为20的样本进行检测.若采用分层抽样的方法抽取样本,则抽取的数学类与文科综合类书籍种数之和是A .4B .6C .8D .103.已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为 A .56 B .42 C .28 D .14 4.执行右边的程序框图1,输出的T=A .6B .8C .10D .155.下面四个命题中的真命题是A .命题“∀x ∈R ,均有x 2−3x −2≥0”的否定是:“∃x ∈R ,使得x 2−3x −2≤0”B .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”C .已知平面向量a →=(2, −1),b →=(x , 3),则a →//b →的充要条件是x=−6D .“命题p ∨q 为真”是“命题p ∧q6.已知一个几何体的三视图如图2所示,则该几何体的体积为 A.p + B .p +C .4p + D .4p +7.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A ,B ,C ,D 的距离都大于1的概率为A .16pB .4p C D .14p-8.当2x >时,不等式21270x a x a -+++…()恒成立,则实数a 的取值范围是A .39轾-臌,B .(9ù- û,C .3- (,]D .9+ [,)9.若规定[]x ()x R Î表示不超过x 的最大整数,{}[]x x x =-如:[ 1.2]2,[2.3]2-=-=,{}1.2 1.2(2)0.8-=---=,则函数()sin {}f x x x =-在区间[,]p p -内零点的个数是A .3B .4C .5D .7二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡中对应题号后的横线上.10.若函数2(0)()1()(0)2x x x f x x ìï<ïï=íïïïî…,则()f x 的值域为 . 11.若实数x ,y 满足约束条件3123x y x y x y ì+ïïï--íïï-ïïî……?3, 则目标函数2z x y =+的最小值为______.12.已知圆C 的参数方程为2x y qq ìï=ïíï=+ïîcos sin q (为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为21r q r q +=cos sin , 则直线被圆所截得的弦长是 .13.在△ABC 中,已知5,3,120a b C === ,则sin B 的值是 .14.已知椭圆22135x y m n +=和双曲线22123x y m n-=有公共的焦点,那么双曲线的渐近线方程是 .15.将含有3n 个正整数的集合M 分成元素个数相等且两两没有公共元素的三个集合A 、B 、C ,其中12{,,,}n A a a a =,12{,,,}n B b b b =,12{,,,}n C c c c =,若A 、B 、C中的元素满足条件:12n c c c <<<,k k k a b c +=,k =1,2,…,n ,则称M 为“完并集合”.(1)若{1,,3,4,5,6}M x =为“完并集合”,则x 的一个可能值为 .(写出一个即可)(2)对于“完并集合”{1,2,3,4,5,6,7,8,9,10,11,12}M =,在所有符合条件的集合C 中,其元素乘积最小的集合是 .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2()(2cos sin 2)(0)f x a x x b a =++> (Ⅰ)求)(x f 的最小正周期T ;(Ⅱ)若[0,]4x pÎ时,)(x f的值域是[1,,求实数a 、b 的值.17.(本小题满分12分)某学校研究性学习课题组为了研究学生的数学成绩优秀和物理成绩优秀之间的关系,随(Ⅰ)根据上表完成下面的2×2列联表,并说明能否有99%的把握认为学生的数学成绩(Ⅱ)记数学、物理成绩均优秀的6名学生为A 、B 、C 、D 、E 、F ,现从中选2名学生进行自主招生培训,求A 、B 两人中至少有一人被选中的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++AB CA 1B 1C 118.(本小题满分12分)如图3,三棱柱111ABC A B C -的底面边长和侧棱长都是a ,侧面11BB C C ^底面ABC ,且160B BC? . (Ⅰ)求证:1AB BC ^;(Ⅱ)求直线1AC 与平面ABC 所成角的正弦值.19.(本小题满分13分)已知抛物线21:2(0)C x py p =>,圆222:8120C x y y +-+=的圆心M 到抛物线1C 的准线的距离为92,点P 是抛物线1C 上一点,过点P 、M 的直线交抛物线1C 于另一点Q ,且||2||PM MQ =,过点P 作圆2C 的两条切线,切点为A 、B .(Ⅰ)求抛物线1C 的方程;(Ⅱ)求直线PQ 的方程及PA PB ×的值.20.(本小题满分13分)某企业生产一种特种电线,年成本为100万元,2012年年产量为40万米,售价为5元/米.根据市场调查估计,从2013年开始的若干年(不少于10年)内,该种电线每年的售价将比上年增加1元/米,在这样的市场前景下,假设不新增投资,该企业的年产量将可维持不变;若决定2013年初新增投资400万元,引进一套先进的生产设备,该设备引进后,第xyO PQMAB 图3图4一年可使该特种电线年产量在2012年产量的基础上增加10万米,但由于设备的逐渐损耗,从第二年开始,每年相对于2012年产量的增加量只有前一年相对于2012年产量的增加量的80%.(Ⅰ)到2020年时,此特种电线的售价为多少?如果引进新设备,求出2013年至2020年8年中,该企业生产此特种电线的产量总和.(Ⅱ)若新引进的设备只能使用10年,试分析该企业2013年初是否应该新增投资引进该设备?(附:70.80.21»,90.80.13»)21.(本小题满分13分)已知实数0a >,函数1()2ln f x ax x x =--,23()(1)(01)2g x ax a x x =-++剟. (Ⅰ)求函数()f x 单调区间;(Ⅱ)若()f x 在区间[1,2]上为增函数,且对任意1[1,2]x Î,总存在2[0,1]x Î,使()f x 在1x x =处的导数12()()f xg x ¢=成立,求实数a 的取值范围.参考答案一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.A 2.D 3.C 4.C 5.C 6.A 7.D 8.B 9.B二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡中对应题号后的横线上.10. (0,1] 11.4 12. 14..y x = 15.(1)7,9,11 中任一个 (2){6,10,11,12}三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) (Ⅰ)解:∵()(cos2sin 21)f x a x x b =+++……………………………………2分cos(2)4x a b p-++ ………………………………………4分 ∴ 22T pp ==.………………………………………6分(Ⅱ)∵04x p # ,∴2444xpp p-? ,cos(2)14x p………………………………………8分∵)(x f 的值域是, ∴max ()()8f x f a b p==++=min ()(0)21f x f a b ==+=,………………………………………10分 解得1,1a b ==-………………………………………12分17.(本小题满分12分)(Ⅰ)表格为分根据上述列联表求得220(61022)2456.80681281236k ? == 创 6.635> 所以有99%的把握认为:学生的数学成绩优秀与物理成绩优秀之间有关系. ……………………………………………………………………………………6分 (Ⅱ)从A 、B 、C 、D 、E 、F 这6名学生中选2人,有(A,B ),(A,C ),(A,D), (A,E), (A,F),(B,C), (B,D), (B,E), (B,F), (C,D), (C,E), (C,F), (E,D), (D,F),(E,F),共15ABCA 1B 1C 1D E个基本事件,……………………………………………………………………………9分其中A 、B 两人中至少有一人被选中有(A,B ),(A,C ),(A,D), (A,E), (A,F), (B,C), (B,D), (B,E), (B,F),共9个基本事件 P=915=35…………………………………………………………………………12分 18.(本小题满分12分) 解:(Ⅰ)设BC 的中点为D ,连结AD ,1B D ,1B C .由题设知,ABC D 和1BB C D 都是等边三角形, 因此1,BC AD BC B D ^^………4分BC \^平面1AB D ,1BC AB \^.……………………6分(Ⅱ)作1C E BC ^,垂足是E ,连结AE平面11BB C C ^平面ABC ,1C E \^平面ABC1C AE \ 就是直线1AC 与平面ABC 所成的角 ………………………8分160B BC?,1C C //1B B111160,,2C CE C C a C E CE a\?=\==又, 在1,,,1202ACE AC a CE a ACEAE D ==?\=中……………………10分 1AC\= 因此111sin C E C AEAC ?=…………………………12分即直线1AC 与平面ABC .19.(本小题满分13分)解析:(Ⅰ)222:(4)4C x y +-=,∴(0,4)M , …………………………1分抛物线21:2C x py =的准线方程是2py =-,依题意: 9422p +=,∴1p =,…………………………3分 ∴抛物线1C 的方程为:22x y =.…………………………4分(Ⅱ)设PQ 的方程:4y kx =+2242802y kx x kx x yì=+ïï?-=íï=ïî,设1122(,),(,)P x y Q x y , 则11(,4)PM x y =--,22(,4)MQ x y =-,∵||2||PM MQ =,∴2PM MQ =,122x x ∴-=…① 又122x x k +=…②,128x x =-…③, 由①②③得1k = , ∴PQ 的方程为:4y x=? ………………………………………………………9分xy O PQMAB取PQ 的方程:4y x =+,和抛物线22x y =联立得P 点坐标为P (4,8)∴||PM =,AM BM ,||||PA PB PM ==设APMa ?,则sinAM PM a ==, ……………………………11分∴||||cos2PA PB PA PB a ?=228(12sin )a ?=21.…………………13分20.(本小题满分13分) 解:(Ⅰ)依题意,设从2013年开始的若干年(不少于10年)内,该种电线的售价为一个以a 1=6为首项,d= 1为公差的等差数列{a n }.故到2020年时,此特种电线的售价为a 8,即为13元/米. 工协作 ………………………………………………3分如果引进新设备,则2013年至2020年8年中,该企业生产此特种电线的产量总和为40⨯8+(10+10⨯0.8+10⨯0.82+…+10⨯0.87)=361.6(万米)………………6分(Ⅱ)引进新设备后的10年内,设增加产量带来的收入增加量为S ,由题意有:S=10a 1+10×0.8×a 2+…+10×0.89×a 10=10×(6+7×0.8+8×0.82+…+15×0.89)…………………………………① …………………………………8分0.8S=10×(6×0.8+7×0.82+8×0.83+…+15×0.810) ……………………………②①—②得,0.2S=10×(6+0.8+0.82+0.83+…+0.89-15×0.810)∴S=50(10-16×0.89)=50×7.92=396, ………………………………………12分 ∵S<400,故该企业2013初不应新增投资引进该设备.……………………………………13分 21.(本小题满分13分)解:(Ⅰ)2221() (0)ax x f x x x-+¢=>…………………………………………1分 当1a ³时,440a D =- ,()0f x ¢\ 恒成立.故()f x 在(0,)+ 上为增函数;……………3分当01a <<时,由()0f x x ¢^0()f x ∴的递减区间为,递增区间为)+ ……………………………6分 (Ⅱ)∵()f x 在区间[1,2]上为增函数,∴2221()0ax x f x x -+¢= ,[1,2]x Î恒成立, 即2210ax x -+ 恒成立, 即:221a x x?. 11[1,2] [,1]2x x 蝄无22211(1)11x x x-=--+1a \ ……………………………………………………………………8分 222313(1)()(1)()2224a a g x ax a x a x a a++=-++=-+-,当1a ³时,11122a a +< ,2min 13(1)()()224a a g x g a a ++\==-,max 3(0)2g g ==, 所以函数()g x 的值域为23(1)3[,]242a M a +=-.…………………………10分 又11[1,2] [,1]2x x 蝄 2222113()(1)1[1,]4ax x f x a a a x x -+¢?=+--?-, 故函数()f x ¢值域为3[1,]4N a a =-- …………………­………………11分依题意应有N M Í23(1)192443342a a a a a ìï+ï-?ïïï\íïï- ïïïî或0a < …………12分又1a ³,故所求为9]4a Î…………………………………………13分。

湖南省2014届高三·十三校联考第二次考试 数学(文)试题 含答案

湖南省2014届高三·十三校联考第二次考试 数学(文)试题 含答案

湖南省2014届高三·十三校联考第二次考试数学(文)试题(含答案)总分:1 50分时量::1 20分钟注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和本试题卷的封面上,并认真核对答题卡条形码上的姓名、准考证号和科目。

2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上题无效。

考生在答题卡上按如下要求答题:(1)选择题部分请按题号用2 B铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;(2)非选择题部分请按题号用O.5毫米黑色墨水签字笔书写,否则作答无效;(3)请勿折叠答题卡。

保持字体工整、笔迹清晰、卡面清洁。

3.本试题卷共6页。

如缺页,考生须及时报告监考老师,否则后果自负。

4.考试结束后,将本试题卷和答题卡一并交回。

1.复数(1+i)2的虚部是A.0 B.2 C.一2 D.2ia}的前规项和为S n,S3=6,公差d=3,则a4=2.等差数列{nA.8 B.9 C.’11 D.123.“In x>1”是“x>l"的A.充要条件B.必要非充分条件C.充分非必要条件D.既不充分也不必要条件4.向等腰直角三角形ABC(其中AC=BC)内任意投一点M,则AM小于AC的概率为5、设平面向量等于6、阅读右边的程序框图,则输出的S等于A、14B、20C、30D、557.过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为A、30°B、45°C、60°D、90°8、某几何体的三视图如图所示,则该几何体的体积的最大值为A 、12B 、14C 、32D 、349、在△ABC 中,若a 、b 、c 分别为角A ,B ,C 的对边,且cos2B+cosB+cos (A -C )=1,则有A .a 、c 、b 成等比数列B .a 、c 、b 成等差数列C .a 、b 、c 成等差数列D .a 、b 、c 成等比数列10、已知f (x ),g (x )都是定义在R 上的函数,任取正整数k (1≤k ≤10),则前k 项和大于的概率是二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.11.已知下列表格所示的数据的回归直线方程为多ˆ4yx a =+,则a 的值为 .12、设实数x ,y 满足条件,则z =2x -y 的最大值是____13、直线(极轴与x 轴的非负半轴重)合,且单位长度相同),若直线l 被圆C ,则实数a 的值为 . 14.P 是椭圆上一定点,F 1,F 2是椭圆的两个焦点,若∠PF 1 F 2=60°,∠PF 2F 1=30°,则椭圆的离心率为 ..三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.(1)随机调查了24名笔试者的成绩如下表所示:请你预测面试的录取分数线大约是多少?(2)公司从聘用的四男a、b、c、d和二女e、f中选派两人参加某项培训,则选派结果为一男一女的概率是多少?17.(本小题满分12分)如图四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是平行四边形,∠ACB=90°,AB PA=BC=1,F是BC的中点。

2014高三第三次质量检查数学(文)试卷含答案

2014高三第三次质量检查数学(文)试卷含答案

2014届高三毕业班第三次质检考试数学(文)试题考试时间:120分钟 试卷满分:150分第Ⅰ卷(选择题 共60分)一、选择题:( 每小题5分,共60分. 在给出的A 、B 、C 、D 四个选项中,只有一项符合题目要求,在答题纸的相应区域内作答) 1. 函数)13lg(13)(2++-=x xx x f 的定义域是A .),31(+∞-B . )1,31(- C . )31,31(-D . )31,(--∞2.“4πθ=”是“sin 21θ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若a ,b 是任意实数,且b a >,则A .22b a > B .1<abC .()0>-b a lgD .ba ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛21214. 设向量=→a(1,0)a =,=→b 11(,)22b =,则下列结论中正确的是 A .→→=b a B .22=⋅→→b aC .→→-b a 与→b 垂直D .→→b a //5.“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的A .充分必要条件B .充分而不必要条件C ..必要而不充分条件D .既不充分也不必要条件 6.若方程()02=-x f 在()0,∞-内有解,则()x f y =的图象是7.设f :A →B 是集合A 到B 的映射,下列命题中是真命题的是A. A 中不同元素必有不同的象B. B 中每个元素在A 中必有原象C. A 中每一个元素在B 中必有象D. B 中每一个元素在A 中的原象唯一 8. 设曲线2y ax =在点(1,)a 处的切线与直线260x y --=平行,则a =A .-1B .12C .12-D .19.函数)1ln()(2+=x x f 的图象大致是A .B .C .D .10. 1sin()63πα+=,则2cos(2)3πα-的值等于A. 59-B. 79-C.D.11. 已知函数()|lg |f x x =,若a b ≠且()()f a f b =,则a b +的取值范围是A.(1,)+∞B. [1,)+∞C. (2,)+∞D.[)+∞,212. 已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,双曲线12222=-y x 的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为A .12822=+y xB .161222=+y xC .141622=+y xD .152022=+y x第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置.13.计算:=+-ii21____________. 14.等比数列}{n a 的前n 项和为n S ,若4,184==S S , 则=+++16151413a a a a __________.15.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围 为16. 对于函数 ①f(x)=lg(|x-2|+1), ②f(x)=(x-2)2, ③f(x)=cos(x+2), 判断如下三个命题的真假: 命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是 _________ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得 03030BDC CD ∠==,米,并在点C 测得塔顶A 的仰角为060,(1)若测得015BCD ∠=,求塔高AB ;(2)若BCD ∠=,θ且15105︒<θ<︒,求AB 的范围.18.(本小题满分12)已知各项不为零数列{a n }满足a 1=23,且对任意的正整数m ,n 都有a m +n =a m ·a n ,求:(1)a n a 1n 的值;(2)201420122010422014201220104220132011200931a a a a a ...a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值.19.(本小题满分12分)已知函数 ()22sin 2sin cos 3cos f x x x x x =++. (1)求函数()f x 图象的对称中心的坐标;(2)求函数()f x 的最大值,并求函数()f x 取得最大值时x 的值; (3)求函数()f x 的单调递增区间.20. (本小题满分12分)过点Q(-2)作圆O:x 2+y 2=r 2(r>0)的切线,切点为D ,且|QD|=4.(1)求r 的值.(2)设P 是圆O 上位于第一象限内的任意一点,过点P 作圆O 的切线l ,且l 交x 轴于点A ,交y 轴于点B ,设OM OA OB =+,求OM 的最小值(O 为坐标原点).21.(本小题满分12分)设直线:54l y x =+是曲线:C 321()23f x x x x m =-++的一条切线,2()223g x ax x =+-.(Ⅰ)求切点坐标及m 的值;(Ⅱ)当m Z ∈时,存在[0,)x ∈+∞()()f x g x ≤使成立,求实数a 的取值范围.22.(本小题满分14分)设()()1122,,,A x y B x y 是椭圆()222210y x a b a b +=>>的两点,11,x y m b a ⎛⎫= ⎪⎝⎭,22,x y n b a ⎛⎫= ⎪⎝⎭,且0m n ⋅=,椭圆离心率e =2,O 为坐标原点。

数学_2014年湖南省某校高考数学三模试卷(文科)(含答案)

数学_2014年湖南省某校高考数学三模试卷(文科)(含答案)

2014年湖南省某校高考数学三模试卷(文科)一、单项选择题(本大题共10个小题,每小题5分,共50分)1. 已知集合A={3, a2},B={0, 1, a+1},若A∩B={1},则A∪B=()A {0, 1, 3}B {0, 1, 2, 3}C {0, 2, 3}D {0, 1, 3, 4}2. 下列说法中,不正确的是()A “|x|=|y|”是“x=y”的必要不充分条件B 命题p:∀x∈R,sinx≤1,则¬p:∃x∈R,sinx>1C 命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y不是偶数,则x+y不是偶数” D 命题p:所有有理数都是实数,q:正数的对数都是负数,则(¬p)∨(¬q)为真命题3. 冬日,某饮料店的日销售收入y(百元)与当天的平均气温x(∘C)之间有下列5组样本数据:根据散点图可以看出,这组样本数据具有线性相关关系,则其回归方程可能是()A ŷ=x+2.6B ŷ=−x+2.6C ŷ=x+2.8D ŷ=−x+2.84. 执行如图所示的程序框图,若输入x=3,计算机输出的y值为13,则图中①处的关系式可以是()A y=x3B y=x−3C y=3xD y=3−x5. 设等差数列{a n}的前n项和为S n,若a1=1,a2+a4=10,则使S n>527成立n的最小值是()A 16B 17C 22D 236. 若抛物线y2=ax经过不等式组{x−y−2≥0,x+2y−8≤0,y≥1表示的平面区域,则抛物线焦点的横坐标的取值范围是()A [124, 14] B [112, 12] C [16, 1] D [14, 32]7. 如图,将边长为2的正方形ABCD沿对角线BD折起得到一个三棱锥C−ABD,已知该三棱锥的正视图与俯视图如图所示,则其侧视图的面积为()A 1B 2C √3D 2√38. 如图,在矩形ABCD中,AB=3,过点A向∠BAD所在区域等可能任作一条射线AP,已知事件“射线AP与线段BC有公共点”发生的概率为13,则BC边的长为()A 1B √3C 3D 3√39. 设F 1、F 2分别为双曲线x 2a 2−y 2b 2=1(a, b >0)的左、右焦点,动点P 满足PF 1→⋅PF 2→=0,若直线l:3x −4y −10=0与点P 的轨迹有且只有一个公共点,则下列结论正确的是( ) A a 2+b 2=2 B a 2−b 2=2 C a 2+b 2=4 D a 2−b 2=410. 已知定义在(0, +∞)上的函数f(x)满足:对任意正实数a ,b ,都有f(ab)=f(a)+f(b)−2,且当x >1时恒有f(x)<2,则下列结论正确的是( )A f(x)在(0, +∞)上是减函数B f(x)在(0, +∞)上是增函数C f(x)在(0, 1)上是减函数,在(1, +∞)上是增函数D f(x)在(0, 1)上是增函数,在(1, +∞)上是减函数二、填空题(本大题共5个小题,每小题5分,共25分)11. 已知z 为纯虚数,且满足(2−i)z =4−bi ,则实数b =________.12. 已知圆C 的极坐标方程为ρ=2cosθ,直线l 的参数方程为{x =5−√3ty =t (t 为参数),设A ,B 分别为圆C 和直线l 上的动点,则|AB|的最小值为________.13. 如图,已知|OA →|−1,|OB →|=2,∠AOB =∠BOC =60∘,若OC →=λOA →+OB →,则λ=________.14.如图,在△ABC 中,D 为BC 边上一点,已知AB =6,AD =5,CD =2,B =30∘,∠ADB 为锐角,则: (1)sin∠ADB =________; (2)AC 边的长为________.15. 设x 1=2t +i t−1×2t−1+i t−2×2t−2+i t−3×2t−3+...i 2×22+i 1×21+i 0×20. x 2=2t +i 0×2t−1+i t−1×2t−2+i t−2×2t−3+...+i 3×22+i 2×21+i 1×20. x 3=2t +i 1×2t−1+i 0×2t−2+i t−1×2t−3+...+i 4×22+i 3×21+i 2×20.x 4=2t +i 2×2t−1+i 1×2t−2+i 0×2t−3+i t−1×2t−4+...+i 5×22+i 4×21+i 3×20,… 以此类推构造无穷数列{x n },其中i t =0或l(k =0, 1, 2,…,t −1, t ∈N ∗),若x 1=110,则 (1)x 2=________.(2)满足x n =x 1(n ∈N ∗, n ≥2)的n 的最小值为________.三、解答题(共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 已知函数f(x)=√3sin2ωx +6cos 2ωx −3(ω>0)在一个周期内的图象如图所示,其中A 为图象的最高点,B 、C 为图象与轴的交点,且△ABC 为正三角形. (1)求ω的值; (2)若f(x 0)=6√35,且x 0∈(23, 83),求f(x 0+1)的值.17.今年5月,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估,将各连锁店的评估分数按[60, 70],[70, 80],[80, 90],[90, 100]分成4组,其频率分布直方图如图所示,集团公司还依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示:(1)估计该商业集团各连锁店评估得分的众数和平均数;(2)从评估分数不少于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.18. 如图,四棱锥P−ABCD的底面是边长为2的正方形,PD⊥底面ABCD,PD=CD,E为PB的中点.(1)求异面直线PA与DE所成的角;(2)在底边AD上是否存在一点F,使EF⊥平面PBC?证明你的结论.19. 某地区电力成本为0.3元/kw⋅ℎ,上年度居民用电单价为0.8元/kw⋅ℎ,用电总量为akw⋅ℎ(a为正常数),本年度计划将居民用电单价适当下调,且下调后单价不低于0.5元/kw⋅ℎ,不高于0.7元/kw⋅ℎ.经测算,若将居民用电单价下调为x元/kw⋅ℎ,则本年度居民用电总量比上年度增加0.2ax−0.4kw⋅ℎ.(1)当用电单价下调为多少时,电力部门本年度的收益最低?(精确到0.01元/kw⋅ℎ,参考数据:√2≈1.414)(2)若保证电力部门本年度的收益比上年度增长20%以上,求下调用电单价的定价范围.20. 如图,设椭圆中心在原点,焦点在x轴上,A、B分别为椭圆的左、右顶点,F为椭圆的右焦点,已知椭圆的离心率e=√32,且AF→⋅BF→=−1.(1)求椭圆的标准方程;(2)若存在斜率不为零的直线l与椭圆相交于C、D两点,且使得△ACD的重心在y轴右侧,求直线l在x轴上的截距m的取值范围.21. 已知函数f(x)=1x+1.(1)设g(x)=f(x)⋅1nx,判断函数g(x)在(0, +∞)上是否存在极大值,并说明理由.(2)如图,曲线y=f(x)在点Q(0, 1)处的切线与x轴交于点P1,过点P1作x轴的垂线交曲线于点Q1;曲线在点Q1处的切线与x轴交于点P2,过点P2作x轴的垂线交曲线于点Q2;依次重复上述过程得到点列:P1,P2,P3,…,P n(n∈N∗),设点P n的坐标为(a n, 0),求数列{a n}的通项公式,并证明:1a1+1a2+...+1a n≥32−12n.2014年湖南省某校高考数学三模试卷(文科)答案1. B2. C3. D4. C5. D6. A7. A8. B9. C10. A11. −812. 113. −214. 分别为:35,3√5.15. 87、7.16. 解:(1)函数f(x)=√3sin2ωx+6cos2ωx−3=√3sin2ωx+3cos2ωx=2√3sin(2ωx+π3).由于△ABC为正三角形,故高线的长为2√3,故边长为BC=4,故周期为8,即2π2ω=8,求得ω=π8.(2)由以上可得,f(x)=2√3sin(π4x+π3),由f(x0)=2√3sin(π4x0+π3)=6√35,可得sin(π4x0+π3)=35.结合x0∈(23, 83),可得π4x0+π3∈(π2, π),∴ cos(π4x0+π3)=−45.求f(x0+1)=2√3sin[π4(x0+1)+π3]=2√3sin[(π4x0+π3)+π4]=2√3[sin(π4x0+π3)cosπ4+cos(π4x0+π3)sinπ4]=2√3(35×√22−45×√22]=−√65.17. 解:(1)∵ 最高小矩形下底边的中点值为75,∴ 估计评估得分的众数为75;∵ 从左至右第一、三、四个小矩形的面积分别为0.28,0.16,0.08,∴ 第二个小矩形的面积为1−0.28−0.16−0.08=0.48;∴ x¯=65×0.28+75×0.48+85×0.16+95×0.08=75.4,即估计该商业集团各连锁店评估得分的平均数为75.4;(2)∵ A等级的频数为25×0.08=2,B等级的频数为25×0.16=4,∴ 从6家连锁店中任选2家,共有6×52=15种选法,其中选1家A等级和1家B等级的选法有2×4=8种,选2家A等级的选法有1种,∴ P=8+115=35,即至少选一家A等级的概率是35.18. 解:(1)取AB的中点G,连结EG、DG,∵ E是PB的中点,∴ EG // PA,∴ ∠DEG为所求的角,由已知得BD=2√2,PD=2,则PB=2√3,∴ DE=12PB=√3,又EG=12PA=√2,DG=√AD2+AG2=√5,∴ DG2=DE2+EG2,∴ ∠DEG=90∘,∴ 异面直线PA与DE所成角为90∘.(2)存在点F为AD的中点,使EF⊥平面PBC.证明如下:取PC的中点H,连结DH,EH,∵ PD=CD,∴ DH⊥PC,①∵ PD⊥底面ABCD,∴ PD⊥BC,∵ 底面ABCD是正方形,∴ CD⊥BC,∴ BC⊥平面PCD,∴ BC⊥DH.②结合①②知DH⊥平面PBC,∵ E,F分别是PB、AD的中点,∴ FD= // 12BC,EH= // 12BC,∴ FD= // EH,∴ 四边形EFDH 是平行四边形,∴ EF // DH , ∴ EF ⊥平面PBC .19. 解:(1)设电力部门本年度的收益为y 元,则y =(a +0.2a x−0.4)(x −0.3),x ∈[0.5, 0.7],∴ y =[(x −0.4)+0.02x−0.4+0.3]a ≥(2√0.02+0.3)a , 当且仅当x −0.4=0.02x−0.4,即x =0.4+0.1×√2≈0.54时取等号,故用电单价下调为0.54元/kw ⋅ℎ时,电力部门本年度的收益最低; (2)令(a +0.2ax−0.4)(x −0.3)>0,5a(1+20%),即x 2−1.1x +0.3>0, ∴ x <0.5或x >0.6, ∵ 0.5≤x ≤0.7, ∴ 0.6<x ≤0.7,∴ 下调用电单价的定价范围是(0.6, 0.7].20. 解:(1)设椭圆的标准方程为:x 2a 2+y 2b 2=1(a >b >0). A(−a, 0),B(a, 0),F(c, 0). AF →=(c +a, 0),BF →=(c −a, 0). ∵ AF →⋅BF →=−1,∴ c 2−a 2=−1, 又ca =√32,a 2=b 2+c 2,联立解得b 2=1,a 2=4,c 2=3. ∴ 椭圆的标准方程为x 24+y 2=1.(2)设直线l 的方程为x =ty +m ,联立{x 2+4y 2=4x =ty +m ,化为(t 2+4)y 2+2mty +m 2−4=0, 设C(x 1, y 1),D(x 2, y 2),则y 1+y 2=−2mt t 2+4.∵ △ACD 的重心在y 轴右侧, ∴x 1+x 2−23>0,即x 1+x 2>2,∴ t(y 1+y 2)+2m >2, ∴−2mt 2t 2+4+2m >2,即4m >t 2+4.∵ 直线l 与椭圆相交,则△=4m 2t 2−4(m 2−4)(t 2+4)>0,化为t 2+4>m 2, ∴ 4m >m 2,解得0<m <4,又t 2≥0,∴ 4m >t 2+4≥4,解得m >1, ∴ m 的取值范围是(1, 4).21. 解:(1)g(x)=f(x)⋅1nx =lnxx+1(x >0),g′(x)=1(x+1)2(x+1x−lnx).设ℎ(x)=x+1x −lnx =1+1x−lnx .ℎ′(x)=−1x 2−1x=−1+x x 2<0,∴ ℎ(x)在(0, +∞)上单调递减, ∵ ℎ(e)=1e >0,ℎ(e 2)=1e 2−1<0,∴ ℎ(x)在区间(e, e 2)内存在唯一零点,即存在x 0∈(e,e 2),使得ℎ(x 0)=0.∴ 当0<x <x 0时,ℎ(x)>0,从而g′(x)>0;当x >x 0s 时,ℎ(x)<0,从而g′(x)<0. ∴ g(x)在区间(0, x 0)上是增函数,在区间(x 0, +∞)上是减函数, ∴ x 0为函数g(x)的极大值点.故函数g(x)在(0, +∞)上存在极大值. (2)∵ f′(x)=−1(x+1)2,则f′(0)=−1,∴ 切线QP 1的方程为:y =−x +1.令y =0,则x =1. ∴ a 1=1.由已知可得Q n−1(a n−1,1a n−1+1),则切线Q n−1P n 的方程为y −1a n−1+1=−1(a n−1+1)2(x −a n−1).令y =0,则x =2a n−1+1,∴ a n =2a n−1+1(n ≥2).∵ a n +1=2(a n−1+1)(n ≥2),则数列{a n +1}是首项为2,公比为2的等比数列. ∴ a n +1=2n ,即a n =2n −1.因此∑1ain i=1=1+122−1+⋯+12n −1≥1+122+...+12n =1+14(1−12n−1)1−12=32−12n .。

2014湖南师大附中高考模拟卷数学文试题和答案.

2014湖南师大附中高考模拟卷数学文试题和答案.

湖南师大附中2014届高三高考模拟卷(一)数学(文)试题命题:朱海棠 舒玻 洪利民 审题:高三文科数学备课组(考试范围:高中文科数学全部内容)本试题卷包括选择题、填空题和解答题三部分,共6页。

时量120分钟。

满分150分。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z=1a ii+-(a ∈R, i 为虚数单位),若z 为纯虚数,则a=( ) A . -1B .0C . 1D .22.已知全集U={1,2,3,4,5},集合A={2,3},B={3,4},设集合M={a ,b},若(U M A B ⊆U ð,则a+b 的最大值为( )A .6B .7C .8D .93.已知直线l 1:2(1)(3)750m x m y m ++-+-=和l 2:(3)250m x y -+-=,若l 1⊥l 2,则( ) A .m= -2 B .m=3 C .m=-1或3 D .m=3或-24.已知某几何的三视图如图所示,则该几何体的体积为( ) A .83 B .8C D .5.设命题p :∃x 0>0,使20x +2x 0+a=0(a 为实常数),则p ⌝为假命题的一个充分不必要条件是( ) A .a <0 B .a ≤-1 C .a<l D .a>-2 6.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,右图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50, 70),[70,90) ,[90,110),[110 ,130),[130,150].已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数不小于70个且小于130个的人数是 A .60 B .66 C .90 D .135 7.已知函数f (x )=Asin (x ωϕ+)(A>0,ω>0,2πϕ≤)在一个周期内的图象如图所示,则()6f π的值为A .2B CD .18.已知函数f (x )=2x,设g (x )=(),()22,()2f x y x f x ≥⎧⎨<⎩,则函数g (x )的单调递减区间是 ( )A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,-1]9.设点P 是椭圆222516x y +=1上的动点,F 1为椭圆的左焦点,M (6,4)为定点,则|PM|+|PF 1|的最大值是( ) A .15B .C .10D .10.设A ,B ,C 为圆O 上三点,且AB=3,AC=5,则AO uuu r ·BC =u u ur ( )A . -8B .-1C .1D .8二、填空题:本大题共5个小题,每小题5分,共25分,把各题答案的最简形式写在题中的横线上。

湖南省保靖县民族中学高三数学全真模拟考试试题 理 新

湖南省保靖县民族中学高三数学全真模拟考试试题 理 新

湖南省保靖县民族中学2014届高三数学全真模拟考试试题 理 新人教A 版.1.若(4)a i i b i -=-,(,a b R ∈,i 为虚数单位),则复数z a bi =+在复平面内的对应点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.某厂生产A 、B 、C 三种型号的产品,产品数量之比为3:2:4,现用分层抽样的方法抽取一个样本容量为180的样本,则样本中B 型号的产品的数量为A .80B .60C .40D .207.函数在22ππ8.已知F 是双曲线2221x a b2y -=(a >0,b >0)的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,点E 在以AB 为直径的圆内,则该双曲线的离心率e 的取值范围为A .(1,+∞)B .(1,2)C .(1,12D .)2+∞(, 9.已知数列{}n a 满足n n a n p =⋅(*n N ∈,01p <<),下面说法正确的是( )①当12p =时,数列{}n a 为递减数列; 2π-Oxy2π2π-AOxy2π2π-B Oxy 2πC Oxy2π2π-D②当112p<<时,数列{}n a不一定有最大项;③当12p<<时,数列{}n a为递减数列;④当1pp-为正整数时,数列{}n a必有两项相等的最大项A.①②B.③④C.②④D.②③(二)必做题14.为了落实大学生村官下乡建设社会主义新农村政策,将5名大学生村官分配到某个镇的3个村就职,每镇至少1名,最多2名,则不同的分配方案有种.15.设函数22(0)()log(0)x xf xx x⎧≤=⎨>⎩,函数[]()1y f f x=-的零点个数为 .16.对于集合M,定义函数1,,()1,.Mx Mf xx M-∈⎧=⎨∉⎩对于两个集合M,N,定义集合{()()1}M NM N x f x f x∆=⋅=-. 已知{2,4,6,8,10}A=,{1,2,4,8,16}B=.(1)用列举法写出集合A B∆= ;(2)用()Card M表示有限集合M所含元素的个数,当()()Card X A Card X B∆+∆取最小值时集合X 的可能情况有种。

湖南省保靖县民族中学2014届高三全真模拟考试语文试题 Word版含答案

湖南省保靖县民族中学2014届高三全真模拟考试语文试题 Word版含答案

1.下列词语中字形,读音全都正确..的一组是()A.靓.妆(jìng)简截挑.大梁(tiāo)屈意逢迎B.包扎.(zhā)宵夜国子监.(jiàn)要言不繁C.沏.茶(qì) 遨翔拗.脾气(niù)反唇相稽D.金钏.(chuàn)佳宾一爿.店(pán)两全其美2.下列成语运用正确的一项是()A.日本首相安倍晋三对外宣称钓鱼岛国有化,此种危言危行....严重伤害中日两国的正常的外交关系。

B.光盘行动,是一项主题为“从我做起,今天不剩饭”的公益活动,倡议市民“光盘”离开,如此上行下效....,逐步形成节俭的好风气。

C.范曾泼墨人物画的出现,使几成绝响的梁楷泼墨人物画,于八百年之后,再次奏出黄.钟大吕...般的华美乐章。

D.在社会转型时期,很多复杂的社会问题单靠某一部门、某一行业的力量很难解决,需要大家群策群力....。

3.下列句子中没有语病的一项是()A.2014年3月28日,437具中国人民志愿军烈士遗骸运抵沈阳抗美援朝烈士陵园。

当日12时50分许,40余辆军用卡车驶进沈阳抗美援朝烈士陵园,车上悬挂着印有“烈士业绩永载史册”、“祖国和人民永远铭记你们”等字样的条幅。

B.在过去的50年里,中法两国人民共同培育了独立自主、相互理解、高瞻远瞩、合作共赢的精神,对我们开创中法关系更加美好的未来具有重要指导意义。

C.尽管价格昂贵,但近年来,找美国人代孕,已渐渐成为部分中国富人的一种选择。

这种选择的背后,还是有美国国籍捆绑的利益诱惑的原因在作怪。

D.中华书局经过论证与调研,认为原教材所承载的中华文化内容乃是中华传统文化中的经典内容,具有广泛的共通性与普适性。

4.下列选项中的标题和诗句填入画横线处,最恰当的一项是()花开不并百花丛,独立疏篱趣未穷。

,何曾吹落北风中。

A.秋菊惟愿常开香不败B.寒菊宁可枝头抱香死C.残菊无畏风霜花枝傲D.奇菊但见花枝傲霜雪二、文言文阅读(22分。

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷考生须知:1、全卷分试卷I 、II ,试卷共4页,有三大题,满分150分。

考试时间120分钟。

2、本卷答案必须做在答卷I 、II 的相应位置上,做在试卷上无效。

3、请用蓝、黑墨水笔或圆珠笔将姓名、准考证号分别填写在答卷I 、II 的相应位置上,用2B 铅笔将答卷I 的准考证号和学科名称所对应的方框内涂黑。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =34πR 3的高 其中R 表示球的半径选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,全集}9,7,6,4,2,1{=I , 其中}9,7,4,2{=M ,}9,7,4,1{=P ,}7,4,2{=S 是I 的3个子集,则阴影部分所表示的集合等于 ( ▲ )(A )}9,7,4{ (B )}9,7{ (C )}9,4{ (D )}9{2.已知a R ∈,则“2a >”是“22a a >”成立的( ▲ )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件3.已知βα,是不同的两个平面,n m ,是不同的两条直线,则下列命题中不正确...的是( ▲ ) (A )若α⊥m n m ,//,则α⊥n (B )若,m m αβ⊥⊥,则αβ∥ (C )若βα⊂⊥m m ,,则αβ⊥ (D )若,m n ααβ= ∥,则m n ∥4.下列函数中,既是偶函数又在) , 0(∞+上单调递增的是( ▲ )(A )||ln x y = (B )2x y -= (C )xe y = (D )x y cos = 5. 某中学高三理科班从甲、乙两个班各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( ▲ )(A )8 (B )7 (C )9 (D )168(第5题)乙甲y x 6119261180567986. 函数)(x f y =的图象向右平移3π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是( ▲ ) (A )()f x =)32cos(π-x (B )()f x =)62cos(π-x (C )()fx =)62cos(π+x (D )()f x =)32cos(π+x7.已知函数n mx x x f 231)(23+-=(n m ,为常数),当2=x 时,函数)(x f 有极值,若函数)(x f 只有三个零点,则实数n 的取值范围是( ▲ )(A )]35,0( (B ))32,0( (C ))35,1[ (D )]32,0[ 8.已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB,则△ABC 为 ( ▲ )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )等腰直角三角形9.P 为双曲线221916x y -=右支上一点,12,F F 分别是双曲线的左焦点和右焦点,过P 点作 12PH F F ⊥,若12PF PF ⊥,则PH = ( ▲ )(A )645 (B )85 (C )325 (D )16510.已知函数⎪⎩⎪⎨⎧≥-<-=2,132|,12|)(x x x x f x ,若方程0)(=-a x f 有两个不同的实数根,则实数a的取值范围为 ( ▲ ) (A ))3,1( (B ))3,1[(C ))1,0( (D ))3,0(非选择题部分(共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.函数y ( ) A .()0,+∞ B .()0,1 C .()1,+∞ D .[)1,+∞ 2.复数21z i=-(i 是虚数单位)在复平面内对应的点为:( ) A .()1,1 B .()1,1- C .11,22⎛⎫-⎪⎝⎭ D .11,22⎛⎫ ⎪⎝⎭3.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形, 其正视图(如图所示)的面积为8,则该三棱柱左视图的面积为( )A. BC. D.4.已知集合{}0,1,1A =-,{}21B x R x =∈=,则x A ∈是x B ∈的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既非充分又非必要条件7. 若向量(1,0)(0,1)a b ==,,且1c a c b ⋅=⋅=,则1c ta b t++(0t >)的最小正视图值是:( )A .2 B. C .4 D.8.设实数,x y 满足约束条件202502x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,则x y u x +=的取值范围是:( )A .43,32⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦ C .4,33⎡⎤⎢⎥⎣⎦ D .3,32⎡⎤⎢⎥⎣⎦9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为()4,3,则此双曲线的方程为:( )A .22134x y -= B .22143x y -= C .221916x y -= D .221169x y -= 10.定义在R 上的奇函数()f x ,当x ≥0时,))12log (1),0,1()1|3|,1,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩,则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为:( )A .12a- B .21a- C .12a-- D .21a--第II 卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分). 11.cos300= .12.数列{}n a 的前n 项和为()11121n n n S a a S n N *+==+∈,,,则n a = .13.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则圆222x y +=上的点到曲线cos sin 4(,)R ρθρθρθ+=∈的最短距离是 .14.命题“[]1,2x ∃∈,使20x a x++≥”是真命题,则实数a 的取值范围为 。

15.已知二次函数2() ()f x x ax a x R =-+∈同时满足:①不等式()0f x ≤的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项和为n S ,且()n S f n =.规定:在各项均不为零的数列{}n b 中,所有满足10k k b b +⋅<的正整数k 的个数称为这个数列{}n b 的变号数。

若令1n nab a =-(*n N ∈) 则:(ⅰ)2b = ; (ⅱ)数列{}n b 的变号数为: .三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明,证明过程或演算步骤)16.(本小题满分12分)一汽车厂生产,,A B C 三类轿车,每类轿车均有舒适型和标准型两种型号,该厂某月的产量如下表(单位:辆):按类型用分层抽样的方法在这个月生产的轿车中抽取辆,其中有A 类轿车10辆. (I )求z 的值.(II )用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从总体中任取2辆,求至少有1辆是舒适型轿车的概率; 17.(本题满分12分)如图,在平面直角坐标系中,角α的顶点是坐标原点,始边与x 轴的正半轴重合,终边交单位圆于点A ,且,32ππα⎛⎫∈ ⎪⎝⎭.将角α的始边按逆时针方向旋转6π,交单位圆于点B ,记()()1122,,,A x y B x y .(I )若114x =,求2x ; (II )分别过,A B 作x 轴的垂线,垂足依次为,C D ,记AO C ∆的面积为1S ,BOD ∆的面积为2S ,若12S S =,求角α的值。

18.(本题满分12分)如图,四棱锥P —ABCD 的底面是平行四边形,60BAD ∠=,平面PAB ⊥平面ABCD ,12PA PB AB AD ===,E ,F 分别为AD ,PC 的中点. (I )求证:BD ⊥平面PAB (Ⅱ) 求证:PBD EF ⊥平面;(Ⅲ)若AB=2,求直线AD 与平面PBD 所成的角的正弦值。

19.(本题满分13分)已知等比数列{}n a 是递增数列,若23428a a a ++=,且32a +是2a 和4a 的等差中项.(I )求数列{}n a 的通项公式;(II )若n n n a a b 21log =,n n b b b S +++= 21,求使5021>⋅++n n n S 成立的正整数n 的最小值.20.(本小题满分13分)设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C上,且12MF MF -=C(Ⅰ)求双曲线C 的方程;(Ⅱ)过双曲线C 上一动点P 向圆E :1)4(22=-+y x 作两条切线,切点分别为,A B , 求PA PB ⋅的最小值.21.(本小题满分13分)函数()2ln 1axf x x x =++有两个不同的极值点12,x x ,其中a 为实常数.(Ⅰ)求a 的取值范围;(Ⅱ)设命题p :()0,x ∀∈+∞,12()()()221f x f x f x x x++≥-+,试判断命题p 的真假,并说明你的理由.参考答案D PBCFE一、选择题:DACBB CBCDA 1.解:由10x -≥,得1x ≥,故选D 2.解:211z i i==+-,故选A 3.解:左视图是矩形,长(高)为4C 4.解:化简集合{}1,1B =-,B A ⊆,故选B5.解:2,2;6,3;12,4s k s k s k ======。

故选B6.解:由cos cos sin a B b A c C +=得:2sin()sin A B C +=,故sin 1C =,2C π=又由222b c a +-=得:222cos 22b c a A bc +-==,故6A π=,3B π=,选C 7.解:设(,)c x y =,由1c a c b ⋅=⋅=得:(1,1)c =,则 111(1,1)(,0)(0,)(1,1)c ta b t t t t t++=++=++故m =1(1)c ta b t t++=+=令1(0)u t t t=+>,则2u≥所以,m ==≥当且仅当2u =时,等号成立。

故选B8.解:如图,可行域为ABC ∆,其中:(1,2)A ,(4,2)B ,(C 2OA k =,1123OB OC k k ==,,故123yx≤≤,所以 41,33y u x ⎡⎤=+∈⎢⎥⎣⎦,故选C ˙9.解:易知:5c =,点(4,3)在渐近线by x a=上,所以34a b =又由222216259a b b b +=+=得:22916b a ==,,故选D 10.解:如图,易知:126x x +=-456x x +=,故12450x x x x +++=(]1,0x ∈-时,12()log (1)f x x =--+由132()log (1)f x x a =--+=得:3x 二、填空题:11.12; 12.13n -;14. [)3,-+∞;15.(ⅰ)5,(ⅱ)311. 1cos300cos(36060)cos602=-== 12.1211,213a a a =∴=+=,又 12(2)n n n a a a n +-=≥,即 13(2)n n a a n +=≥,故21233(2)n n n a a n --=⋅=≥,1n =时也成立,故13n n a -=13.圆222x y +=的圆心()0,0到直线40x y +-=的距离为故圆上的点到直线40x y +-=三、解答题:16. 解: (1).设该厂本月生产轿车为n 辆,由题意得:5010100300n =+,所以n=2000. ………2分 故2000100300150450600400z =-----= ………4分 (2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以40010005m=,解得m=2 ………6分 即抽取了2辆舒适型轿车,3辆标准型轿车;分别记作12123,,,,S S B B B 。

则从中任取2辆的所有基本事件为:(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3),共10个; ………8分其中至少有1辆舒适型轿车的基本事件有7个:(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2), ………10分 所以从中任取2辆,至少有1辆舒适型轿车的概率为710。

………12分 17.解:(I )易知:12cos ,cos()6x x παα==+, ………2分而,32ππα⎛⎫∈⎪⎝⎭,故sin α= ………4分故2cos()cos cos sin sin 666x πππααα=+=-1142==………6分 (II )111111cos sin sin 2224S x y ααα==⋅=, 222111cos()sin()sin(2)226643S x y πππααα=-=-+⋅+=-+ ………8分12S S = s i n 2s i n (2)03παα∴++=,可求得:tan 23α=-而 22,3παπ⎛⎫∈⎪⎝⎭,所以,552,612ππαα== ………12分 18. 解:(I )设12PA PB AB AD ===1= 222=2cos60BD AB AD AB AD +-⋅⋅1423=+-=,故 222B D A B A D +=,BD AB ∴⊥而平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =BD ∴⊥平面PAB ………4分(II )设点G 是PB 的中点,连结AG FG ,则FG ∥BC ∥AE ,1==2FG BC AE 所以,四边形AEFG 是平行四边形故AG ∥EF ………6分 因为BD ⊥平面PAB ,∴平面PBD ⊥平面PAB在正三角形PAB 中,AG PB ⊥,故AG ⊥平面PBD ,………7分 而AG ∥EF ,所以PBD EF ⊥平面; ………8分 (Ⅲ) 连结GD , 由(II )知:AG ⊥平面PBD ,故ADG ∠就是直线AD 与平面PBD 所成的角 ……10分2,4AB AD ==,在正三角形PAB中,AG =所以sin 4AG ADG AD ∠==4……12分19. 解:(Ⅰ)依题意:3242(2)a a a +=+,代入:23428a a a ++= 可得38a =,2420a a ∴+=, ………2分GFEDCBP A(Ⅱ) 122log 22n n n n b n ==-⋅,∴2(12222)n n S n =-⨯+⨯++⋅; ①2312[1222(1)22]n n n S n n +=-⨯+⨯++-⋅+⋅ ②②—①:2311122222222.n n n n n S n n +++=++++-⋅=--⋅ ………9分由1250n n S n ++⋅>得:1252.n +>易知:当4n ≤时,15223252n +≤=<,当5n ≥时,16226452.n +≥=>∴使1250n n S n ++⋅>成立的正整数n 的最小值为5. ………13分20. 解:(Ⅰ)由定义知:a =ce a== 故2c =,所以 2222b c a =-=故双曲线C 的方程是22122x y -=. ………4分(Ⅱ)连AE ,则AE ⊥AP ,且|AE |=1.设|PE |=t ,∠APB =2θ,则||||PA PB ==,||1sin ||AE PE tθ==. ………6分所以PA uu r ·PB uur ||||cos2PA PB θ=⋅u u r u u r22222222(1)(12sin )(1)(1)3t t t t tθ=--=--=+-.………8分 设点(,)P x y ,则222x y -=. 又圆心(0,4)E则 2222222||(4)(2)(4)2818t PE x y y y y y ==+-=++-=-+22(2)1010y =-+≥ ………10分设222()3f t t t =+-,则当t ≥时,43342(2)()20t f t t t t-'=-=>, 所以f (t )在)+∞上是增函数,从而min 36()5f t f ==故PA uu r ·PB uur 的最小值为365. ………13分21.解:(Ⅰ)函数的定义域为(0,)+∞22222(4)2()(1)(1)a x a x f x x x x x +++'=+=++ ………2分 因为()f x 有两个不同的极值点12,x x则12,x x 是方程22(4)20x a x +++=的两个不相等的正实数根所以1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,即2(4)160402a a ⎧+->⎪⎨+->⎪⎩ ………4分故 804a a a <->⎧⎨<-⎩或,所以 8a <-故a 的取值范围是:(),8-∞- ………6分(Ⅱ)12121212()()2ln 2ln 11ax ax f x f x x x x x +=+++++ 1212122ln()()11x xx x a x x =++++ 由(Ⅰ)知:121x x ⋅=故12()()f x f x +1212121212122212x x x x x x a a a x x x x x x ++++=⋅=⋅=+++++ ………9分所以不等式12()()()221f x f x f x x x ++≥-+可化为:()221a f x x x+≥-+,即 (1)()2(1)2(1)ax x f x x x x ≥+++-+, 即 (1)2ln 2(1)2(1)ax x x ax x x x ≥++++-+.因为x >0,则不等式可化为:ln 10x x -+≤ ………11分 令()ln 1g x x x =-+,则1()1(0)g x x x'=->. 1x >时,()0g x '<;01x <<时,()0g x '>所以当x ∈(0,+∞)时,max ()(1)0g x g == 所以当x ∈(0,+∞)时,ln 10x x -+≤恒成立。

相关文档
最新文档