运筹学教材编写组《运筹学》章节题库-动态规划的基本方法(圣才出品)

合集下载

动态规划(运筹学)

动态规划(运筹学)

k阶段的允许决策集合
四、状态转移方程 sk+1与sk,xk之间必须能够建立一种明确的数量对应关系,记为
Tk(sk,xk), 即有 sk+1 = Tk(sk,xk)
这种明确的数量关系称为状态转移方程。
五、策略
由各阶段决策xk构成的决策序列,称为全过程策略,简称策略,记为
p1(s1),有
p1(s1) = { x1(s1),x2(s2),… ,xn(sn)} ∈P1
xk∈Xk
f*n+1(sn+1) = 1 积 f*k(sk)xk=∈Xok pt {vk(sk,xk) ×fk+1*(sk+1)}
k = n, n-1, …, 2, 1 k = n, n-1, …, 2, 1
11
三、基本步骤
1°建立模型
(1) 划分阶段,设定 k (2) 设定状态变量 sk
(3) 设定决策变量 xk
3) 阶段指标函数。第k阶段装载 件货物时所创的利润 。 vk xk
4) 函数的基本方程为
fk
sk
opt
xk Dk sk
vk xk fk1 sk wk xk k 1, 2,3
sk 0,1, ,6
f4
s4
0
k=3时
w3 4, v3 18
s3 0,1, , 6
x3
0,1,
六、运输时间须控制在合理范围之内(如集装箱干线船的班期)。
ZH物流公司是一家大型的集装箱多式联运经营企业,在成都设有内 陆集装箱货运站(CFS),经营成都——上海间集装箱货物运输服务,其多式 联运通道的主要节点城市为南京与郑州。现有一个货主需要将2个20英尺的集装 箱从成都运往上海,运输路线为成都-郑州-南京-上海,要求在货物起运后2530小时之内到达目的地。

运筹学教材编写组《运筹学》章节题库-图与网络优化(圣才出品)

运筹学教材编写组《运筹学》章节题库-图与网络优化(圣才出品)

3.无向连通图 G 是欧拉图的充要条件是______。[深圳大学 2011 研] 【答案】G 中无奇点 【解析】连通多重图 G 有欧拉圈,当且仅当 G 中无奇点。一个图若有欧拉圈,则称为 欧拉图。
2 / 34
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.网络中如果树的节点个数为 z,则边的个数为______。[中山大学 2007 研] 【答案】z-1 【解析】由树的性质可知,树的边数=数的节点数-1。
2.利用破圈法求赋权图的最小支撑树时,每次都是任取一个圈并去掉其中权最小的边, 直到该赋权图不再含圈时,便得到最小支撑树。()[暨南大学 2011 研]
【答案】× 【解析】利用破圈法求最小支撑树时,每次任取一个圈,去掉圈中权最大的边。
3.任一图 G = (V , E) 都存在支撑子图和支撑树。()[北京交通大学 2010 研]
G1。如果 G1 不含圈,那么 G1 是 G 的圈,如此重复,最终可以得到 G 的一个支撑子图 Gk,它不含圈,于是 Gk 就是 G 的一个
支撑树。
2.流 f 为可行流必须满足______条件和______条件。[深圳大学 2007 研] 【答案】容量限制;平衡 【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上 的流量不能超过该弧的最大通过能力(即弧的容量);二是中间点的流量为零。因为对于每 个点,运出这点的产品总量与运进这点的产品总量之差,是这点的净输出量,简称为是这一 点的流量;由于中间点只起转运作用,所以中间点的流量必为零。易而发点的净流出量和收 点的净流入量必相等,也是这个方案的总输送量。
(2)若 vi 点为刚得到 P 标号的点,考虑这样的点 vi , (vi ,vj) 属于 E,且 vi 为 T 标号。

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)
3 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.已知 Yi 为线性规划的对偶问题的最优解,若 Yi>0,说明()。[深圳大学 2006 研] A.原问题的最优解 xi=0 B.在最优生产计划中第 i 种资源己完全耗尽 C.在最优生产计划中第 i 种资源有剩余 D.无法判断 【答案】B 【解析】当影子价格为 0 时,表示某种资源未得到充分利用;而当资源的影子价格不为 零时,表明该种资源在生产中已耗费完毕。
【答案】对偶单纯形法
3.某极小化线性规划问题的对偶问题的最优解的第 l 个分量为 yl=-12,则该问题的第 1 个约束条件的右端常数项的对偶价格为:______。[武汉大学 2006 研]
5 / 36
圣才电子书

【答案】-12
十万种考研考证电子书、题库视频学习平台
【解析】由对偶问题的经济解释可知,原问题约束条件的右端常数项的对偶价格等于对
4.根据对偶解的经济含义,若天然气资源是我国的一种稀缺能源资源,其影子价格必 然是()。[北京科技大学 2010 研]
A.不能确定 B.<0 C.=0 D.>0 【答案】D 【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越 高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值贡献也越大。天然 气是资源是一种稀缺能源资源,其影子价格必然大于 0。
学 2008 研]
十万种考研考证电子书、题库视频学习平台
【答案】√
【解析】它的对偶问题可能无解,也可能有无界解。
二、选择题
1.用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为 y甲=5 , y乙=8 ,说明这两种资源在该企业中的稀缺程度为()。[北京交通大学 2010 研]

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)
由此,可得出三条最优的运输路线:
(1) A → B2 →C1 → D1 → E ;(2) A → B3 →C1 → D1 → E ; (3) A → B3 →C2 → D2 → E 。
8.3 计算从 A 到 B、C 和 D 的最短路线。已知各段路线的长度如图 8-2 所示。
图 8-2
解:设阶段变量 k = 1, 2,3, 4 ,依次表示 4 个阶段选择路线的过程;状态变量 sk 表示第 k 阶段初所处的位置;决策变量 xk 表示第 k 阶段初可能选择的路线;最优值函数 fk (sk ) 表示 从起点 A 到第 k 阶段状态 sk 的最短距离,则有
xn =sn
n
xn
,或 fn+1(sn+1) = 0
n
(2)设状态变量为 sk = ai xi (k = 1, 2, n) ,状态转移方程为 sk+1 = sk − ak xk ,最 i=k
n
优值函数 fk (sk ) 表示在 sk 状态下从第 k 阶段到第 n 阶段使 z = ci xi2 最小的值,则动态规 i=k
划的基本方程为:
3 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

fk (sk )
=
min
0xk sk ak
{ck
xk2
+
f k +1 (sk
− ak xk )}
fn+1(sn − anxn ) = 0(k = n, n −1, 2,1)
8.5 用递推方法求解下列问题。
=
max {2
0x3 10
x32
+
f2 (s2 )} =
max {2
0x3 10

运筹学动态规划

运筹学动态规划
状态转移方程为 sk1 sk yk xk 阶段指标函数:vk ( sk , xk , yk ) qk yk pk xk
基本方程为:
fk ( sk ) max{qk yk pk xk fk1 ( sk1 )}

0 yk sk 0 xk H sk yk
f1(s1 )

max
0 x1 s1
{4
x1

2s22 }

max
0 x1 s1
{4
x1

2( s1

x1 )2 }
max{4s1 ,2s12} 200
第14页 共64页
上述最短路线的计算过程可用图直观表示(标 号法),如图4-3所示,结点上方矩形内的数字表 示该点到终点的最短距离。
5
A 18
13
B1 3
7
B2
16
13
C1 6
10 3
C2
9
3
C3
4
C4
12
7
D1
2
6
D2 1
3
D3
8
图4-3
7
E1 3
该点到G点的最短距离
4
F1 4
E2 2
5
6
E3
9
例4-3 分配投资问题的逆序求解
基本方程为:

fk
( sk
)

max { g 0 xk sk
k
(
xk
)

fk 1 ( sk 1 )}
f4 (s4 ) 0
sk+1 = sk – xk
g1(x1)= 4x1
g2(x2)= 9x2

运筹学04动态规划1

运筹学04动态规划1
S3
0 1 2
f3(S 3)
d
*
3
S3
3 4 5
f3(S 3)
d
*
3
0 4 7
0 1 2
9 10 11
3 4 5
店 数 0 1 2
2
区 1 0 3 7 2 0 5 10 3 0 4 7
店 数 3 4 5
区 1 12 14 15 2 14 16 16 3 9 10 11
k=2 时, 计算如下:
d
S3=S2-d2
4 E1 2 D1
动态规划的基本概念
阶段;
状态; 决策和策略;
状态转移;
指标函数。
1 阶段(Stage)
将所给问题的过程,按时间或 空间特征分解成若干个相互联系的 阶段,以便按次序去求每阶段的解。 用以描述阶段的变量叫作阶段变量, 一般以k表示阶段变量。
2 状态(State)
各阶段开始时的客观条件叫做 状态。描述各阶段状态的变量称为 状态变量,常用sk表示第k阶段的 状态变量,状态变量的取值集合称 为状态集合,用Sk表示。状态集合 可以是一离散取值的集合,也可以 为一连续的取值区间,视具体问题 而定。
动态规划是现代企业管理 中的一种重要决策方法,可用 于最优路径问题、资源分配问 题、生产计划和库存问题、投 资问题、装载问题、排序问题 及生产过程的最优控制等。
动态规划的基本原理
多阶段决策过程最优化 多阶段决策过程是指这样一类 特殊的活动过程,他们可以按时间 顺序分解成若干相互联系的阶段, 在每个阶段都要做出决策,全部过 程的决策是一个决策序列,所以多 阶段决策问题也称为序贯决策问题。
动态规划数学模型由最优指标函数递推表达式、边界 条件及状态转移方程构成。

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。

《运筹学》习题与答案

《运筹学》习题与答案

《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。

2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。

3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。

4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。

5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。

二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。

2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。

3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。

4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。

5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。

三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。

A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) 为 Dk sk = uk sk dk ,dk 表示第 k 个月所需的工人数,状态转移方程为 sk−1 = sk −uk 。
( ) fk sk 为第 1 个月至第 k 个月的最小总花费。
3 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

动态规划的基本方程为:
分公司至第 3 个分公司时所增加的最大效益。可写出递推关系式:
( ) fk
sk
= max 0xk sk
Pk ( xk ) + ( fk−1 sk − xk )
, k = 3, 2,1
f4 (s4 ) = 0
k=3
时,
f3
( s3
)
=
max x3
P3
(x3 )
,其数值计算如表
8-3
所示。
表 8-3
阶段状态为
sk
时,第
k
阶段至第
3
阶段的最优值,且
f4 (s4 )
=
0,
gk
(xk )
=
74xx12,,kk
=1 =2
表示
8x3, k = 3
每个阶段的指标函数。采用逆推法
2 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

k=3
时,
f3 (s3 )
=
0x3ms43,axx3为整数(8x3 )
1 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

A.在动态规划模型中,问题的阶段数等于问题中的子问题的数目 B.动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性 C.对一个动态规划问题,应用顺推成逆推解法可能会得出不同的最优解 D.假如一个线性规划问题含有 8 个变量和 6 个约束,则用动态规划方法求解时将划分 为 6 个阶段,每个阶段的状态将有一个 8 维的向量组成 【答案】A B 【解析】对于一个动态规划问题,不论是采用顺推法还是逆推法,只能得到一个唯一的 解; 假如一个线性规划问题含有 8 个变量和 6 个约束,则用动态规划方法求解时将按照变 量的个数划分为 8 个阶段,每个阶段的状态将有一个 6 维的向量组成。
表 8-1
每月超过需要量聘用,每人浪费 600 元,聘用或解聘费为 200 元乘上两个月份聘用人 数之差的平方。以这四个月的总花费最小为目标,写出本问题中厂方应如何聘用工人的动态 规划的模型。(假定工资按实际工作时间计算,则聘用人数可为分数)[北京交通大学 2009 研]
解:按月份将问题分为四个阶段,阶段变量 k = 1, 2,3, 4 ,设状态变量 sk 为第 k 月末的 工人数,决策变量 uk 表示第 k 月招聘或解聘的工人数(招聘为正,解聘为负),允许决策集合
16, s2 = 8, x2* = 0
k=1
时,
f1(s1)
=
0
x1
max [4
s1 2
,x1为整数
x1
+
f2 (s2 )] =18, x1*
=1
所以得 x1*=1,x2*=2,x3*=0,maxZ=18
2.某工厂的生产任务最近波动很大,为降低成本宜雇佣临时工,但熟练的生产工人临 时难以雇到,培训新手的费用又高,今后四个月需要工人数量如下表 8-1 所示:
( ) fk
sk
= min
uk Dk (sk )
600(sk − dk ) + 200uk2 +
( ) fk−1 sk − uk
, k =1, 2,3, 4
f0 (s0 ) = 0
3.某公司有资金 4 百万元,可向 A、B、C 三个分公司增加投资,已知各分公司增加不
同数量资金后增加的相应效益如表 8-2 所示,问如何分配资金可使公司总效益最大?(提
示:用动态规划方法)[北京交通大学 2009 研]
表 8-2
解:将问题按分公司分为三个阶段,将 A、B、C 三个分公司分别编号 1、2、3。设 sk
( ) 为分配给第 k 个分公司至第 3 个分公司的投资。xk 为分配给第 k 个分公司的投资。Pk xk ( ) 表示分配给第 k 个分公司的投资为 xk 后增加的效益。fk sk 表示为 sk 的投资分配给第 k 个
=
80,,s3s3 [4[,08,)4, )x,3*x3=*
= 1
16,s3 = 8, x3* = 2
0
07, , s2s2 [3[,04,)3,)x,2x*2*==1 0
k=2
时,
f2 (s2 )
=
0
x2
max (7
s2 3
,x2为整数
x2
+
f3 (s3 ))
=
8, s2 [4, 6), x2* = 0 14, s2 [6,8), x2* = 2
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 8 章 动态规划的基本方法
一、判断题 1.用动态规划方法求最优解时,都是在行进方向规定后,均要顺着这个规定的行进方 向,逐段找出最优途径。( )[暨南大学 2011 研] 【答案】√ 【解析】用递推法求解动态规划问题,首先将过程分成几个相互联系的阶段,选取状态 变量和决策变量并定义最优值函数,然后写出基本的递推关系式和基本方程。 其行进方向 的规定,即选择用逆推法还是顺推法。因为动态规划的状态具有无后效性,所以必须按规定 的行进方向逐段找出最优途径。
三、计算题 1.用动态规划方法求解下列整数规划问题:
要求写出动态规划模型的基本要素并求解。[北京交通大学 2010 研]

解:将该过程分为 3 个阶段;决策变量为 xk ;状态变量为 sk ,表示第 k 阶段开始时候
的状态(k=1,2,3),其中 s1 8 ;最优指标函数 fk (sk ) = mxak x{gk (xk )+fk+1(sk+1)} ,表示第 k
二、选择题 1.动态规划是解决( )的一种数学方法。[暨南大学 2011 研] A.单阶段决策过程最优化 B.多目标决策过程最优化 C.多阶段决策过程最优化 D.位目标决策过程最优化 【答案】C 【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方 法。
2.对于动态规划,下列说法正确的有( )[中山大学 2007 研]
x3
s3
0
0
0
P3 ( x3 )
1
2
3 4 f3 (s3 )
x3*
0
0
4 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

1
26
26
1
2
40
40
2
3
58
58
3
4
68
相关文档
最新文档