三年级速算与巧算

合集下载

小学数学三年级巧算、速算

小学数学三年级巧算、速算

乘除法中的速算、巧算一、1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000……2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可99×1=100—1=99 99×2=200—2=198 99×8=800—8=7923、通过以上规律,那么一个数与999相乘呢?999×2=2000—2=1998 999×8=8000—8=7992二、巧算两位数与11的乘积。

12×11=132 35×11=385 47×11=517 69×11=759观察上面每一组题,发现俩位数与11相乘,只要把这个俩位数拉开,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。

概括为口诀:俩边一拉,中间相加。

三、1、巧算三位数与11相乘。

432×11=4752 168×11=1848口诀:俩边一拉,中间俩加。

注意哦,也是要满十进一的。

2、巧算俩位数与101相乘。

101×45=4545 101×67=6767规律就是积把这个俩位数连续写俩遍。

那么三位数与1001相乘呢?1001×782=782782 自己总结规律四、例题:根据37×3=111,简算下面各题。

37×9=37×3×3=33337×12=37×3×4=44437×33=37×3×11=122137×36=37×3×12=1332五、41×49=?【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

(完整版)小学数学三年级速算与巧算技巧

(完整版)小学数学三年级速算与巧算技巧

(完整版)小学数学三年级速算与巧算技巧第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看”“二想”“三选择”一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。

观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。

根据符号的规律划分周期,进行分组计算。

切记不要忘了第一个数的符号!1、简单分组例:10 -9 +8 -7 +6 -5 +4 -3 +2 -1+-+-+-+-+-(符号周期为+、-,两个数为一组)则原式=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)=1+1+1+1+1=52、分组有剩余例:20 + 19 –18 + 17 –16 + 15 –14 + 13 –12 + 11 –10++-+-+-+-+-(符号周期为+、-,两个数一组,但第一个数多余出来了)则原式=20 +(19-18)+(17-16)+(15-14)+(13-12)+(11-10)=20+1+1+1+1+1=253、复杂分组例:48 + 47 - 46 -45 + 44 + 43 –42 –41 + 40 + 39 –38 –37 + 36 ++--++--++--+(符号周期为+、+、-,-,四个数一组)则原式=(48 + 47 - 46 -45)+(44 + 43 –42 –41)+(40 + 39 –38 –37)+ 36 =4+4+4+36=48例:15 + 14 –13 + 12 + 11 –10 + 9 + 8 –7 + 6 + 5 –4 + 3 + 2 - 1++-++-++-++-++-(符号周期为+、+、-,三个数一组)则原式=(15 + 14–13)+(12 + 11–10)+(9 + 8–7)+(6 + 5 –4)+(3 + 2–1)=16+13+10+7+4 (这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比较简便)=(16+4)+(13+7)+10=20+20+10=504、重新分组(即符号或数字的规律不好用,需要观察重新“排队”分组)例:1-2+3-4+5-6+7-8+9-10+11经观察,数字和符号都是有规律的,可是按照(1-2)+(3-4)……这样分组的话,每个括号里都不够减。

三年级数学速算与巧算

三年级数学速算与巧算

速算与巧算举一反三周未加油站分秒第1周[点中典]计算:200×42100×3[一点通]我们观察发现,计算乘数中有0的乘法时,可先不考虑乘数末尾的0,即计算2×4和21×3,然后看原来乘数中有几个0,就在积的末尾添上几个0。

200×4=8002100×3=6300[一练通]计算:8000×4= 300×5= 1500×3= 2300×4= 1800×5= 1700×6= [点中典]计算:199×8[一点通]在这道里199×8我们可以把它看成整百数200×8,这样原本是199个8相加的和,现在成了200个8相加的和,也是就说多算了一个8,因此要从200×8里再减去一个8。

原式=200×8-8=1600-8=1592[一练通]计算:⑴5×198 ⑵201×7⑶99×32 ⑷101×23速算与巧算举一反三周未加油站分秒第2周数出下图中有几个角?[一点通]数角的办法可以采用与数线段相同的方法,先以OA 为一边的角有:∠AOB 、∠AOC 2个;以OB 为一边的角有:∠BOC 1个,所以图中共有2+1=3(个)角。

[一练通]数出下图中有几个角?速算与巧算举一反三周未加油站 分 秒 第3周数一数,算一算,下面图中共有几块小正方体?[一点通]通过观察,可以发现这个图形由3排组成,第一排有4块,中间一排有6块,最后一排有7块。

总块数4+6+7=17(块)。

我们还可以从上往下数,第一层有3块,第二层比第一层多3块,有6块,第三层比第二层多2块,有8块,总块数3+6+8=17(块) [一练通]数一数,算一算,下面图中有多少块正方体?计算:138+45+62+55 [一点通]在这道算式中我们不难看出138与62相加得200,45与55相加得100,因此,在计算过程中,我们可以利用“加法的交换律和结合律”,交换加数的位置,把能凑成整十、整百甚至整千的数结合,使得计算简便。

小学三年级数学乘法除法速算与巧算

小学三年级数学乘法除法速算与巧算

第二讲乘法中的巧算1. 两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:例1计算①123X 4X 25 2. 分解因数,凑整先乘。

例2计算①24 X 253. 应用乘法分配律。

例 3 计算① 175 X 34 + 175X 66 4.几种特殊因数的巧算例5 一个数X 10,数后添0; 一个数X 100,数后添00; —个数X 1000,数后添000; 以此类推:如:15X 10=15015X 100=150015X 1000= 15000例6 一个数X 9,数后添0,再减此数;一个数X 99,数后添00,再减此数; 一个数X 999,数后添000,再减此数; 以此类推。

例 7222 X 11 2456 X 11[分析]为了速算,可以记一句口诀:“两头一拉,中间相加”2 2 22 4 4 2 222 X 11=2442 2 4 5 6 2 7 0 1 6 2456X 11=27016 例 8、16X 5[分析]一个数X 5,可以除以“ 2”添上“ 0”。

16X 5=(16 - 2) X 10=80 例 9 24 X 15[分析]一个数X 15,“加半添0”。

5X 2=1025X 4=100 125X 8=1000② 125 X 2X 8X 25X 5X 4② 56 X 125 ③ 125 X 5X 32X 5例4计算①123 X 101② 123 X 99如:12X 9= 120-12 = 108 12 X 99= 1200- 12= 1188 12 X 999= 12000-12=11988 ②67X 12+67X 35+ 67X52+624 X 15= (24+12)X 10=360例4 从10到20X之间的两位数相乘(十几X十几)13X 14[分析]个位数相加后再加“10”,然后乘“ 10”,个位数相乘后,所得两个数相加。

13X 14=182想:(3+4+1Q X 10=1703 X 4=12170+12=182例 5 62 X 68 81 X 89[分析]62 X 68, —首数6+仁7,头X头是:7X 6=42,尾X尾是2X 8=16,42 与16 在一起:421681 X 89, —首数8+仁9,头X头9X 8=72,尾X尾是1X 9=9,因为9小于10,所以72与9相联时,在9的前面添一个0。

三年级速算与巧算

三年级速算与巧算

【课前回顾】
2.你能快速的写出结果吗?
⑴45×11 ⑵56×11 ⑶2456×11
【课前回顾】
2.你能快速的写出结果吗?
⑴45×11 ⑵56×11 ⑶2456×11
思路分析
“两头一拉,中间相加”
【课前回顾】
2.你能快速的写出结果吗?
⑴45×11
45
+
495
【课前回顾】
2.你能快速的写出结果吗?
速算与巧算
【课前回顾】
1.运用乘法的运算律大显身手吧 ⑴99×4×25 ⑵125×119×8 ⑶125×72
(1)99X4X25=99X(4X25)=99X100=9900 (2)125X119X8=(125X8)X119=1000X119=119000 (3)125X72=125X8X9=1000X9=9000
老师点睛
仔细挖掘题目中的隐藏信息。
【铺垫】(★★★★) 【知识回顾】
坐椅子(乘101,乘1001,乘1002 ……)
79X101 =79X(100+1) 有2把椅子,每把椅子宽度是2位 =7900+79 79是2位数,正好坐进去,坐2遍 =7979
【小练习1】
23×10101=232323 123×1001=123123 3985×100010001 =398539853985 19×1001001=190190 123×1002003 =123246369
思路分析
分配律
例1 (★★)
1.48×36+48×64
48×36+48×64
=48×(36+64)
=48×100 =4800
直接法
例1 (★★)
2.48×36+48×63+48

完整版小学数学三年级速算与巧算技巧

完整版小学数学三年级速算与巧算技巧

第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看〞“二想〞“三选择〞一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。

观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。

根据符号的规律划分周期,进行分组计算。

切记不要忘了第一个数的符号!1、简单分组例:10-9+8-7+6-5+4-3+2-1+-+-+-+-+-〔符号周期为+、-,两个数为一组〕那么原式=〔10-9〕+〔8-7)+〔6-5〕+〔4-3〕+〔2-1〕=1+1+1+1+1=52、分组有剩余例:20+19–18+17–16+15–14+13–12+11–10++-+-+-+-+-〔符号周期为+、-,两个数一组,但第一个数多余出来了〕那么原式=20+〔19-18〕+〔17-16〕+〔15-14〕+〔13-12〕+〔11-10〕=20+1+1+1+1+1=253、复杂分组例:48+47-46-45+44+43–42–41+40+39–38–37+36++--++--++--+〔符号周期为+、+、-,-,四个数一组〕那么原式=〔48+47-46-45〕+〔44+43–42–41〕+〔40+39–38–37〕+36=4+4+4+36=48例:15+14–13+12+11–10+9+8–7+6+5–4+3+2-1++-++-++-++-++-〔符号周期为+、+、-,三个数一组〕那么原式=〔15+14–13〕+〔12+11–10〕+〔9+8–7〕+〔6+5–4〕+〔3+2–1〕=16+13+10+7+4〔这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比拟简便〕=〔16+4〕+〔13+7〕+10=20+20+10=504、重新分〔即符号或数字的律不好用,需要察重新“排〞分〕例:1-2+3-4+5-6+7-8+9-10+11察,数字和符号都是有律的,可是按照〔1-2〕+〔3-4〕⋯⋯分的,每个括号里都不减。

(完整版)三年级-速算与巧算

(完整版)三年级-速算与巧算

速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。

即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。

相反,一个数减去几个数的和,等于连续减去这几个数。

即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。

如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。

如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。

例如:1+9=10,1叫做9的补数。

判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档