2014年考研数学一真题及答案解析

合集下载

2014年考研数一真题及答案解析

2014年考研数一真题及答案解析

2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)B(2)D(3)D(4)B(5)B(6)A(7)(B )(8)(D )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)012=---z y x(10)11=-)(f(11)12+=x x yln(12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】(16)【答案】x y )(y 20-==或舍。

x y 2-=时,所以21-=)(y 为极小值。

(17)【答案】令u y cos e x =,则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214-+=-由,)(f ,)(f 0000='=得(18)【答案】 补{}∑=11z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,(19)【答案】(1)证}a {n 单调 由20π<<n a ,根据单调有界必有极限定理,得n n a lim ∞→存在, 设a a lim n n =∞→,由∑∞=1n n b 收敛,得0=∞→n n b lim , 故由n n n b cos a a cos =-,两边取极限(令∞→n ),得10==-cos a a cos 。

解得0=a ,故0=∞→n n a lim 。

(20)【答案】①()1,2,3,1T - ②123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫ ⎪--+ ⎪= ⎪--+ ⎪⎝⎭()123,,k k k R ∈ (21)【答案】利用相似对角化的充要条件证明。

2014年考研数学(一)真题与解析(完整版)

2014年考研数学(一)真题与解析(完整版)
0 2 0
1

1
应该选(D)
4. 若函数



( x a1 cos x b1 sin x ) 2 dx min ( x a cos x b sin x ) 2 dx ,则 a1 cos x b1 sin x
a ,bR



(A) 2 sin x 【详解】注意
1 y 1 ,可知 lim 1 且 lim ( y x ) lim sin 0 ,所以有斜渐近线 y x x x x x x x
(B)当 f ' ( x ) 0 时, f ( x ) g ( x ) (D)当 f ( x ) 0 时, f ( x ) g ( x )

(B) 2 cos x
(C) 2 sin x
(D) 2 cos x
x


2
2 dx 3 , cos 2 xdx sin 2 xdx , x cos xdx cos x sin xdx 0 , 3 2
x sin xdx 2 ,
如果换成直角坐标则应该是

0
1
dx
1 x 2
0
f ( x , y )dy dx
0
1
1 x
0
( A) , (B) f ( x , y )dy ,
两个选择项都不正确;
如果换成极坐标则为


2 0
d cos sin f ( r cos , r sin )rdr d cos sin f ( r cos , r sin )rdr .
2 2
其中 :

2014年考研数学一真题及解析

2014年考研数学一真题及解析

1 sin ) ⎰ ⎰2014 年全国硕士研究生入学统一考试数学一试题及解析(完整精准版)一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)下列曲线中有渐近线的是 (A ) y = x + sin y = x 2 + sin 1.xx .(B) y = x 2 + sin x .(C) y = x + sin .(D)xx + sin 1【解析】a = lim f (x ) = lim x = lim(1+ 1 1 = 1 x →∞ x x →∞ x x →∞ x xb = lim[ f (x ) - ax ] = lim[x + sin 1 - x ] = lim sin 1= 0x →∞ x →∞ x x →∞ x∴y=x 是 y=x + sin 1的斜渐近线x【答案】C(2)设函数 f ( x ) 具有 2 阶导数, g ( x ) = f (0)(1- x ) + f (1) x ,则在区间[0,1]上()(A)当 f (' x )≥ 0 时, f ( x ) ≥ g ( x ) . (B)当 f (' x )≥ 0 时, f ( x ) ≤ g ( x )(C)当 f (' x )≥ 0 时, f (x ) ≥ g ( x ) . (D)当 f ' ≥ 0 时, f ( x ) ≤ g ( x )【解析】当 f "( x ) ≥ 0 时, f ( x ) 是凹函数而 g ( x ) 是连接(0, f (0))与(1, f (1))的直线段,如右图故 f ( x ) ≤ g ( x )【答案】D (3)设 f ( x , y ) 是连续函数,则11- ydy f (x , y )⎰0⎰- 1- y 21x -1 01- x 2(A ) ⎰0 dx⎰111- x (B ) 0dxf (x , y )dy +⎰-1 dx ⎰0f (x , y )dy +⎰-1 dx ⎰- 1- x 2 f (x , y )dy .f (x , y )dy .=1- y 2 π1 1 {π∈ ⎰ 0⎰ 0ππ 1π 1(C )⎰ 2 d θ ⎰cos θ +sin θ f (r cos θ , r sin θ )dr +⎰π d θ ⎰ f (r cos θ , r sin θ )dr .0 02π 1π 1(D )⎰ 2 d θ ⎰cos θ +sin θ f (r cos θ , r sin θ )rdr +⎰π d θ ⎰ f (r cos θ , r sin θ )rdr .2【解析】积分区域如图 0≤y ≤1.- ≤ x ≤ 1- yπ用极坐标表示,即:D 1:≤ θ ≤ π , 0 ≤ r ≤ 1 2π1【答案】DD 2: 0 ≤ θ ≤, 0 ≤ r ≤2cos θ + sin θ( 4 ) 若⎰-π(x - a cos x - b sin x )2dx = min ⎰-π a ,b R(x - a cos x - b sin x )2 dx }, 则a 1 cos x +b 1 sin x =(A ) 2π sin x . (B) 2 cos x . (C) 2π sin x . (D) 2π cos x .⎰-π⎧Z ' = 2 π (x - a cos x - b sin x )(-cos x )dx = 0 (1) ⎪ a⎰ -π ⎨ Z ' = 2 π (x - a cos x - b sin x )(-sin x )dx = 0 (2)⎛⎪ b ⎰-π⎰1由(1)得2a π cos 2xdx = 0π x sin xdx故a = 0, a = 0由(2)得【答案】A(5)行列式b π sin 2 = = 2xdx b 1 = 2(A )(ad-bc)2 (B )-(ad-bc )2。

2014考研数一真题答案及详细解析

2014考研数一真题答案及详细解析

令y'=O,得y = -2x,或y =O (不适合方程 , 舍去).
将y =-2x代入方程得-6 x 3 +6 =0,解得x=l,J(l) =-2.
在3y
2
I
y
+y
2
I
+ 2x y y
+2xy +X
2
I
y
=0两端关于x求导
,得
(3y 2 +2xy +x 勹 y"+2(3y +x) (y') 2 +4(y+x)y'+2y =0.
l
cosb
b
2
n
an

l -cosb n
= — 2l nl-im00
1
an -cosb n
1 2
ln-im00
a
n
an +l -cosa
n
2,
00
00
2 且级数 n = l 从收敛,所以: n = l 生 bn 收敛.
(2 0)解 C I)对矩阵A施以初等行变换
。 。01 0
A�(�-; -0� �n-(� 1
(8) D

厂 [f EY 1 = _00Yfy1(y)dy = 了
+■a
_00Yf1(y)dy+f_=yj、z(y)dy]
=
(EX

1
+EX2
),
EY2=— 2 ECX1 +Xz)
=
—(EX
2
1
+EX2
),
故EY1 =EY2 , 又因为
DY 1 =E(Y�)-(EY 1 凡DY2 = ECY!) -(EY2 凡

2014-数一真题大全及答案

2014-数一真题大全及答案

X
的概率密度为
f
( x, )
=
2x
3
2
,
x
2
,其中
是未知参数, X1,
X 2 ,,
X n 是来自总
0, 其它
n
体的简单样本,若 C
X
2 i

2
的无偏估计,则常数 C
=

i =1
【详解】E( X 2 ) =
x2
2x 3 2 dx
=
5 2
2 ,所以
E C
n i =1
X
2 i
=
Cn
5 2
2 ,由于 C
0
0
0
2
【分析】此题考查二重积分交换次序的问题,关键在于画出积分区域的草图. 【详解】积分区域如图所示
如果换成直角坐标则应该是
0
1− x2
1
1− x
dx
f ( x, y)dy + dx f ( x, y)dy ,(A),(B)
−1 0
0
0
两个选择项都不正确;
如果换成极坐标则为
1
1
2 d cos +sin f (r cos , r sin )rdr + d cos +sin f (r cos , r sin )rdr .
线性无关的 (A)必要而非充分条件 (C)充分必要条件
(B)充分而非必要条件 (D) 非充分非必要条件
【详解】若向量1, 2 ,3 线性无关,则
1 (1 + k3 , 2 + l3 ) = (1, 2 ,3 ) 0 k
0
1 = (1, 2 ,3 )K ,对任意的常数 k, l ,矩阵 K 的秩都等 l

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)下列曲线中有渐近线的是 (A )sin y x x =+.(B)2sin y x x =+.(C)1sin y x x =+.(D)21sin y x x=+.【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]limsin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线【答案】C(2)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( ) (A)当0f x '≥()时,()()f x g x ≥. (B)当0f x '≥()时,()()f x g x ≤ (C)当0f x '≥()时,()()f x g x ≥.(D)当0f '≥时,()()f x g x ≤【解析】当() 0f x "≥时,()f x 是凹函数而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()() f x g x ≤ 【答案】D(3)设(),f x y是连续函数,则110(,)ydy f x y -=⎰⎰(A)11110(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰.(B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰.(C )112cos sin 02(cos ,sin )(cos ,sin ).d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin ).d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【解析】积分区域如图 0≤y ≤1.1x y ≤≤-用极坐标表示,即:D 1:,012r πθπ≤≤≤≤ D 2: 10,02cos sin r πθθθ≤≤≤≤+【答案】D (4)若{}2211,(cos sin )(cos sin )mina b Rx a x b x dx x a x b x dxππππ--∈--=--⎰⎰,则11cos sin a x b x +=(A )2sin x π.(B)2cos x .(C) 2sin x π. (D)2cos x π. 【解析】令2(,)(cos sin )Z a b x a x b x dx ππ-=--⎰2(cos sin )(cos )0(1)2(cos sin )(sin )0(2)a b Z x a x b x x dx Z x a x b x x dx ππππ--⎧'=---=⎪⎨'=---=⎪⎩⎰⎰由(1)得 202cos 0axdx π=⎰故10,0a a ==由(2)得 0120sin 22sin x xdx b b xdxππ===⎰⎰【答案】A(5)行列式00000000a b abc d c d= (A )(ad-bc )2(B )-(ad-bc )2。

2014年考研数一真题及答案解析(完整版)

2014年考研数一真题及答案解析(完整版)

2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)B(2)D(3)D(4)B(5)B(6)A(7)(B)(8)(D)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)012=---z y x(10)11=-)(f(11)12+=x xy ln (12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x )e (x lim xtdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x xx x x x x 则令(16)【答案】20202232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y yx y )(y 20-==或舍。

x y 2-=时,21106606248062480633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y04914190141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。

2014考研数学(一)真题

2014考研数学(一)真题

2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。

(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。

,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。

(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。

(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。

(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B)充分非必要条件. (D)既非充分也非必要条件.
1 0 【解析】由 (α 1 + kα 3, α 2 + lα 3) = (α 1, α 2, α 3) 0 1 知, k l
当 α 1, α 2, α 3 线性无关时,因为
1 0 ≠0 0 1
所以 α 1 + kα 3, α 2 + lα 3 线性无关 反之不成立 如当 α 3 = 0 ,
}
, 则
a1 cos x + b1 sin x =
(A) 2π sin x . 【解析】 解析】令 Z ( a, b) = (B) 2 cos x . (C) 2π sin x . (D) 2π cos x .

π
−π
( x − a cos x − b sin x) 2 dx
π Za ′ = 2∫ −π ( x − a cos x − b sin x)(− cos x)dx = 0 π ′ Zb = 2∫ −π ( x − a cos x − b sin x)(− sin x)dx = 0
针方向,则曲面积分 [ ] zdx + ydz =___________.

x = cos t 【解析】 解析】令 y = sin t z = − sin t

t : [0,2π]dz =
∫ [− sin t (− sin t ) + sin t (− cos t )]dt
2014 年全国硕士研究生入学统一考试数学一试题及解析(完 整精准版)
一、选择题: 选择题:1~8 小题, 小题,每小题 4 分,共 32 分,下列每题给出四个选项中, 下列每题给出四个选项中,只有一个选项 符合题目要求的, 符合题目要求的,请将所选项的字母填在答题纸指定位置上。 请将所选项的字母填在答题纸指定位置上。 (1)下列曲线中有渐近线的是 (A) y = x + sin x . (B) y = x 2 + sin x . (C) y = x + sin
∴ DY 1> DY 2 【答案】 答案】D 填空题: 二、填空题 :9~14 小题, 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上。 请将答案写在答题纸指定位置上。
( 1 − sin y) + y (1 − sin x ) 在点(1,0,1)处的切平面方程为 (9)曲面 z = x
π
2
≤θ ≤π,
0 ≤ r ≤1 0≤r ≤ 1 cos θ + sin θ
π
D2: 0 ≤ θ ≤ 【答案】 答案】D ( 4 ) 若
π
2
,
∫ π ( x − a cos x − b sin x) dx = min {∫ π ( x − a cos x − b sin x) dx
π
2 2 − 1 1 a ,b∈R −
1 ( X 1 + X 2 ) .则( 2
) (B)EY1=EY2,DY1=DY2 (D)EY1= EY2,DY1>DY2
(A)EY1>EY2,DY1>DY2 (C)EY1=EY2,DY1<DY2 【解析】 解析】 EY1 =

1 1 1 y[ f1 ( y ) + f 2 ( y )]dy = −∞ 2 2 2


+∞
−∞
yf1 ( y )dy +
1 2

+∞
−∞
yf 2 ( y )dy
1 1 EX 1 + EX 2 2 2 1 1 1 EY2 = E[ ( X 1 + X 2 )] = EX 1 + EX 2 2 2 2 =
∴ EY1 = EY2
EY12 =

+∞
−∞
1 1 1 1 2 y 2 f1 ( y ) + f 2 ( y)dy = EX 12 + EX 2 2 2 2 2
【答案】 答案】C (2)设函数 f ( x ) 具有 2 阶导数, g ( x ) = f ( 0 )(1 − x ) + f (1) x ,则在区间[0,1]上( (A)当 f( ′ x) ≥ 0 时, f ( x ) ≥ g ( x ) . (C)当 f( ′ x) ≥ 0 时, f ( x ) ≥ g ( x ) . 【解析】 解析】当 f ″ ( x ) ≥ 0 时, f ( x ) 是凹函数 而 g ( x ) 是连接 0, f ( 0 ) 与 ( 1, f (1)) 的直线段,如右图 故 f ( x) ≤ g ( x) 【答案】 答案】D (3)设 f ( x, y ) 是连续函数,则 (A) (B)
0 2 1 0
1
π
1
(D)

π
2 0
dθ ∫ cosθ +sin θ f (r cos θ , r sin θ )rdr + ∫π dθ ∫ f (r cos θ , r sin θ )rdr.
0 2 0
π
1
【解析】 解析】积分区域如图 0≤y≤1.
− 1− y2 ≤ x ≤ 1− y
用极坐标表示,即:D1:
1− y

(B)当 f( ′ x) ≥ 0 时, f ( x ) ≤ g ( x ) (D)当 f ′ ≥ 0 时, f ( x ) ≤ g ( x )
(
)

1
0
dy ∫
0
0
− 1− y 2
f ( x, y ) =

1
0
1
dx ∫
x −1
1
1− x
f ( x, y )dy + ∫ dx ∫
−1
0
0
1− x 2
0

=

2π 1 −
0
cos 2t dt + 2


0
(− sin t )d sin t
=π+0=π
(13)设二次型 f ( x1 , x2 , x3 ) = x 1 − x 2 + 2ax1 x3 + 4x2 x3 的负惯性指数是 1,则 a 的取值范围
2 2
_________.
1 0 a 【解析】 解析】 A = 0 −1 2 a 2 0
f ( x, y )dy .
f ( x, y )dy .
∫ dx ∫
0
0
f ( x, y )dy + ∫ dx ∫
−1
− 1− x 2
(C)

π
2 0
dθ ∫ cosθ +sinθ f (r cos θ , r sin θ )dr + ∫π dθ ∫ f (r cos θ , r sin θ )dr.

1 d (ln u − 1) dx + ln C = ln u − 1 x
du
1

ln u − 1 = cx u = ecx +1 y = xecx +1 将y (1) = e3代入上式得C = 2 ∴ y = xe 2 x +1
2 2 (12)设 L 是柱面 x + y = 1 与平面 y + z = 0 的交线,从 z 轴正向往 z 轴负向看去为逆时
0 d
(C)a2d2-b2c2. (D)b2 c2-a2 d2
(A) (ad-bc)2
0 a 【解析】 解析】 0 c
a 0 c 0
b 0 0 a b a b 0 0 b 4 +1 4+ 4 按第4行展开 c(−1) 0 0 b + d (−1) a 0 0 d 0 0 c d c d 0 0 d
= −c ⋅ b(−1)3+ 2
1 . x
(D)
1 y = x 2 + sin . x
1 f ( x) x = lim(1 + 1 sin 1 ) = 1 【解析】 = lim 解析】 a = lim x →∞ x →∞ x →∞ x x x x 1 1 b = lim[ f ( x) − ax] = lim[ x + sin − x] = lim sin = 0 x →∞ x →∞ x →∞ x x 1 ∴y=x 是 y=x+ sin 的斜渐近线 x x + sin
2 2
.
【解析】 解析】在点(1,0,1)处, z x
(1,0,1)
zy
=
[2 x(1 − sin y ) − y 2 cos x] (1, 0,1)
= [− x 2 cos y + 2 y (1 − sin x)]
=2
(1,0,1)
(1, 0,1)
= −1
切平面方程为 z x ( x − 1) + z y ( y − 0) + (−1)( z − 1) = 0 即 2x − y − z − 1 = 0 ( 10 )设 f ( x ) 是周期为 4 的可导奇函数,且 f( ′ x) =( 2 x −1 ) , x ∈ [0, 2], 则f (7) =. 【解析】 解析】∵ f ( x) 是周期为 4 的可导函数 ∴ f (7) = f (3) = f (−1) = − f (1) 且f (0) = 0 又 f ′( x) = 2( x − 1)
(1) (2)
故 a = 0, a1 = 0
由(1)得
2 2a ∫ π 0 cos xdx = 0
由(2)得 【答案】 答案】A
∫ x sin xdx = 2 b= π ∫ sin xdx
0 2 0
π
b1 = 2
0 a b
相关文档
最新文档