二叉树的三种遍历方法
汇编二叉树的遍历

一、软件背景介绍树的遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
访问结点所做的操作依赖于具体的应用问题。
遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算的基础。
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。
因此,在任一给定结点上,可以按某种次序执行三个操作:⑴访问结点本身(N),⑵遍历该结点的左子树(L),⑶遍历该结点的右子树(R)。
所以二叉树的遍历也包括三种:先序遍历,中序遍历,和后序遍历。
图1:程序显示结果二、核心算法思想二叉树的存储:在内存中为数组binary分配一个大小为63(0,0,0)的存储空间,所有数组元素初始化为0,用来存放二叉树。
每三个连续的数组地址存放一个节点:第一个地址存放节点的值;第二个地址存放有无左孩子的信息,如果有则将其置为1,否则为0;第三个地址存放有无右孩子的信息,如果有则将其置为1,否则为0。
将binary的首址偏移赋给si,cx初始化为0用来计数,用回车代表输入的为空,即没有输入。
按先根存储的方式来存二叉树,首先输入一个字符,若为回车则退出程序,否则cx+3且调用函数root。
然后该结点若有左孩子,调用leftchild函数,置该结点标志即第二个地址中的0为1,该结点进栈,再存储左孩子结点,递归调用左右,若没有左孩子,看有没有右孩子,若有,则调用rightchild置该结点标志位即上第三个地址中的0为1,然后该结点进栈,再存储右孩子结点,递归调用左右,整个用cx计数,数组binary中每多一个节点,cx加3。
此存储方式正好符合先序遍历思想。
遍历二叉树的执行踪迹:三种递归遍历算法的搜索路线相同,具体线路为:从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。
二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。
为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。
二叉树的遍历ppt课件

后序遍历顺序:
A
B
C
DE
F
中 序遍历 : 资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
拓展:
已知二叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
二叉树的遍历

二叉树的三种遍历方式:先序遍历、中序遍历、后序遍历先序:始终执行以下步骤,1、访问根节点2、遍历左子树3、遍历右子树中序:始终执行以下步骤,1、遍历左子树2、访问根节点3、遍历右子树后序:始终执行以下步骤,1、遍历左子树2、遍历右子树3、访问根节点“始终”:为什么要说“始终”执行呢?因为二叉树的每一个子树又可以看成是一个新的二叉树,遍历步骤、方式都保持一样,所以应该“始终”执行同样的操作,我们也应该始终把它看成一棵新的二叉树。
一些技巧:1、先序遍历第一个元素一定是根节点2、中序遍历中,任何一个元素的前一个元素一定在二叉树中它的左边,比如D在G前面,则D在G左边3、后序遍历最后一个元素一定是根节点4、先、中、后意思是说访问根节点的先后顺序,而且始终从左往右,从上往下先序遍历为:ABC中序遍历为:BAC后序遍历为:BCA先序遍历为:ABDECFG中序遍历为:DBEAFCG后序遍历为:AEBFGCA前序遍历:abcdef 中序遍历:cbdaef 后序遍历:cdbfea先序遍历为:ABDGCEF 中序遍历为:DGBAECF 后序遍历为:GDBEFCA前序遍历结果为 a b d e h i c f g 中序遍历结果为 d b h e i a f c g 后序遍历结果为 d h i e b f g c a前序遍历结果为 FCADBEGHP 中序遍历结果为 ACBDFEHGP 后序遍历结果为 ABDCHPGEF前序遍历为:—+ a * b — c d / e f 中序遍历为: a + b * c — d — e / f后序遍历为: a b c d — * + e f / —前序遍历结果为ABDHEICFG中序遍历结果为HDBEIACGF后序遍历结果为HDIEBGFCA由先序序列ABCDEFGH 和中序序列CBEDAGHF 恢复二叉树: 方法: 先序序列ABCDEFGH (注:A 是根) 中序序列CBEDAGHF由左子树先序序列:BCDE 和左子树中序序列:CBED 构造A 的左子树 同理,由右子树先序序列:FGH 和右子树中序序列GHF 构造A 的右子树:1. 已知某二叉树的其前序遍历序列为1 2 4 3 5 7 6,中序遍历序列为4 2 1 5 7 3 6,求后序遍历序列(4275631)。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。
二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
二叉树常用的三种遍历方法

二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。
遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。
下面将详细介绍这三种方法的实现步骤。
一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 访问当前节点。
3. 递归进入左子树。
4. 递归进入右子树。
代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 访问当前节点。
4. 递归进入右子树。
代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。
具体实现步骤如下:1. 如果当前节点为空,则返回。
2. 递归进入左子树。
3. 递归进入右子树。
4. 访问当前节点。
代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。
前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。
它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。
通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。
前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
它们的不同之处在于访问根节点的时机不同。
前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。
中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。
后序遍历常用于删除二叉树或者释放二叉树的内存空间。
在实际应用中,前序、中序和后序遍历算法有着广泛的应用。
它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。
在图像处理中,前序遍历可以用于图像压缩或者图像识别。
另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。
综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。
通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。
1.2文章结构文章结构是指文章中各个部分的布局和组织方式。
一个良好的文章结构可以使读者更好地理解和理解文章的内容。
本文将详细讲解前序、中序和后序三个部分的内容和应用。
首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。
接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。
在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。
通过详细的解释和实例,读者将能更好地理解前序的概念和用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
前序:BDEH 中序:D B EH
B
前序:EH 中序:EH
D
E
前序:CFIG 中序:FI C G
C
前序:FI 中序:FI
F
G
H
I
中后序遍历到二叉树
中序序列 : (DBEH)A(FICG) 后序序列 : DHEB IFGC A
从二叉树的遍历序列返回二叉树
二叉树的三
1 种遍历
2 前中序遍历到 二叉树
中后序遍历到二
叉树
3
目录
CONTENTS
二叉树的三种遍历
A
B
C
前序遍历:父左右 中序遍历:左父右 后序遍历:左右父
从二叉树的遍历序列返回二叉树必须有 其中序遍历序列,前后遍历序列有其中一种 即可。
前中序遍历到二叉树
A
中序:D B EH 后序:DHE
B
B
中序:FI C G 后序:IFG C
C
中序:EH 后序:HE
中序
I