小学数学乘法的速算方法
数学乘法口诀速算

数学乘法口诀速算数学是一门重要的学科,乘法是其中的基础运算之一。
在日常生活中,我们经常会遇到需要进行乘法计算的情况,因此熟练掌握乘法口诀是很有必要的。
本文将介绍一些数学乘法口诀速算的技巧和方法,帮助你更快地进行乘法运算。
1. 乘数的个位数为0或5时,乘积的末尾必为0或5。
2. 乘数的个位数为1时,乘积与被乘数相等。
3. 乘数的个位数为2时,乘积的末位依次为2、4、6、8、0循环。
4. 乘数的个位数为3时,乘积的末位依次为3、6、9、2、5、8、1、4、7、0循环。
5. 乘数的个位数为4时,乘积的末位依次为4、8、2、6、0循环。
6. 乘数的个位数为6时,乘积的末位依次为6、2、8、4、0循环。
7. 乘数的个位数为7时,乘积的末位依次为7、4、1、8、5、2、9、6、3、0循环。
8. 乘数的个位数为8时,乘积的末位依次为8、6、4、2、0循环。
9. 乘数的个位数为9时,乘积的末位依次为9、8、7、6、5、4、3、2、1、0循环。
除了上述末位规律外,我们还可以利用乘法的交换律和结合律进行速算。
例如,计算 8×7 ,我们可以将其改写为 7×8 ,然后利用乘法的末位规律计算出答案为56。
同样地,我们也可以利用乘法的结合律。
例如,计算 6×3×4 ,我们可以先计算 6×4 ,得到24,再将结果与3相乘,得到最终答案72。
在实际的乘法计算中,我们可能会遇到更大的数,例如两位数相乘或者更多位数相乘的情况。
这时,我们可以利用竖式乘法进行计算。
以两位数相乘的情况为例,我们将一个两位数(被乘数)竖直排列,将另一个两位数(乘数)写在下方。
然后,按照乘法的步骤,先计算个位数的乘积,再计算十位数的乘积,最后将结果相加即可。
例如,计算 23×58 :```23× 58--------115+ 1380--------1334```通过这种方法,我们可以把较复杂的乘法计算转化为较简单的加法计算,从而提高计算速度。
【小学数学】小学“速算乘除法”的8大技巧

小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。
对于新的知识接受,一定要让孩子在学校认真听讲,跟着老师的思路走,做好笔记,即使有不懂的地方也要及时的请教老师或者同学。
下面总结了小学“速算乘除法”的8大技巧;让孩子数学成绩迅速提升!家长和孩子一起来学学。
1、个位数是“1”
速算口诀:头乘头;头加头;尾是1(头加头如果超过10要进位)
2、十位数是“1”
速算口诀:头是1;尾加为;尾乘尾(超过10要进位)
3、个位数都是“9”
速算口诀:头数各加1 ;相乘再乘10;减去相加数;最后再放1
4、十位数都是“9”
速算口诀:100减前数;再被后减数。
100减大家;结果相互乘;占2位
5、头相同;尾互补(尾数相加为10)速算口诀:头乘头加1;尾乘尾占2位
6、头互补;尾相同
速算口诀:头乘头加尾;尾乘尾占2位
7、互补数乘叠数
速算口诀:头加1再乘头;尾乘尾占2位
8、其中一个是11
速算口诀:首尾都不动;相加放中间。
小学生数学乘法速算技巧

小学生数学乘法速算技巧大大提高计算速度1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
任意多位数乘法速算技巧

任意多位数乘法速算技巧乘法是数学中常见且重要的运算之一,而对于任意多位数的乘法,往往需要用到一些速算技巧来简化计算,提高计算的效率。
下面来介绍几种常用的任意多位数乘法速算技巧:1.单位数相乘法:当两个数中有一个数是个位数时,可以通过对个位数逐位乘以另一个数,并逐位对结果进行求和,从而得到乘积。
例如,计算36×72:首先,将36的每位数与72相乘,得到252和216;接着,将这两个数分别左移一位,得到2520和2160;最后,将2520和2160相加,得到4680。
所以,36×72=4680。
2.十倍增加法:当两个数中的一个数是以1为结尾的数时,可以通过将另一个数每一位乘以10,然后再进行相加,从而得到乘积。
例如,计算25×11:首先,将25的每位数分别乘以10,得到250和50;接着,将250和50相加,得到300。
所以,25×11=300。
3.交换律结合律:当计算两个多位数相乘时,可以利用交换律和结合律的性质,将乘法运算顺序调整,使得计算更加简便。
例如,计算39×63:首先,将39×60计算得到2340;接着,将39×3计算得到117;最后,将2340和117相加,得到2457所以,39×63=24574.分段乘法:当计算的两个数都是多位数且位数较大时,可以将每个数分成较小的段,然后对每个段进行分别乘法运算,并将结果进行相加。
例如,计算1234×5678:首先,将1234和5678分别分成两段,得到12、34和56、78;接着,对每一段进行乘法运算得到408和4368;最后,将408和4368相加,得到4776所以,1234×5678=4776以上就是几种常用的任意多位数乘法速算技巧,通过灵活运用这些技巧,可以在计算乘法时提高效率,减少计算的复杂性。
然而,在实际应用中,还需要根据具体情况选择适合的技巧,并结合实际问题灵活运用,从而取得更好的计算效果。
乘法中的速算技巧

乘法中的速算技巧乘法是数学中常见的运算之一,学好乘法不仅可以提高计算速度,还有助于培养逻辑思维和数学能力。
在进行乘法运算时,有许多速算技巧可以帮助我们更快、更准确地完成计算。
本文将介绍一些常见的乘法速算技巧,希望对读者有所帮助。
一、倍数速算倍数速算是指利用乘法的交换律和结合律,找出两个乘数中较容易计算的数进行相乘。
例如,计算75×8,可以先计算75×10,然后再将结果减去两倍的75,即75×2,得到最终的结果。
这样,我们只需要计算两步,而不是直接计算75×8,大大提高了计算速度。
二、平方数速算平方数速算是指计算一个数的平方的技巧。
当乘法题目中的两个乘数相等时,可以利用平方数速算的方法。
例如,计算12×12,可以将12拆分成10和2,然后运用(10+2)²=100+20+20+4的公式,得到144另外,还有一些常见的平方数速算公式可供利用:1. (a + b)² = a² + 2ab + b²2. (a - b)² = a² - 2ab + b²3.(a+b)(a-b)=a²-b²4. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac5. (a + b + c)³ = a³ + b³ + c³ + 3ab(a + b) + 3bc(b + c) +3ac(a + c) + 6abc利用这些公式,我们可以进一步简化平方数的计算,提高速算的效率。
三、近似数速算当乘法题目中的乘数接近一些特定的数时,可以利用近似数速算的方法。
例如,计算97×82,我们可以将82去一个数得到80,然后再将结果乘以两倍,得到结果7840。
这种方法在乘法运算中经常用到,能够有效简化计算过程,提高速算的能力。
小学数学速算方法与技巧

小学数学速算方法与技巧小学数学速算方法与技巧1、头差1尾合10的两个两位数相乘的乘法速算,即用较大的因数十位数的平方减去它的个位数的平方。
例如“48x52=2500-4=2496。
2、首同尾合10的两个两位数相乘的乘法速算,即其中有一个十位数上的数加1, 再乘以另一个数的十位数,得到的积做两个数相乘的积的百位、十位,再用两个数个位上的数的积作为两个数相乘的积的个位、十位。
例如“14x16=224” ,其中“4x6=24”,24分别作为个位、十位,(1+1) x1=2”,2作为百位,即可得到答案224。
假如两个个位数相乘的积缺乏两位数,那么需要在十位上补0。
3、利用“估算平均数”速算。
例如“712+694+709+688=? ”,观察算式得到平均数7。
0,将每个数与平均数的差累计,可得12-6+9-12=3,最后计算为“700 x 4+3=2803”。
4、最后,还需要熟记一些常用的数据,例如乘法口诀表、圆周率、1至20的平方数、20以内的质数表等等。
当孩子掌握这些知识后,最主要的还是要做多种多样的速算练习。
拓展阅读:小学数学不好怎么提升对于刚入门的小学生来说,数学是个很模糊的概念;或者,数学在他们看来,只不过是口袋里的零花钱罢了,所以数学学得再好似乎都不影响正常生活。
久而久之,这门功课就被淡忘,因此就学不好了。
所以应当从培养兴趣开场。
一、诱发学生的学习兴趣。
“兴趣是最好的老师”,“没有兴趣的学习,无异于一种苦役;没有兴趣的地方,就没有智慧和灵感。
”入迷才能叩开思维的大门,智力和才能才能得到开展。
作为老师,要擅长诱发孩子的学习兴趣。
1、以生动的实例,描绘枯燥的概念,使比拟抽数学知识,利用数学知识,来进步孩子学习的兴趣。
2、利用思辨问题或实验结论作引导。
这样既可激发孩子的学习兴趣又可启发孩子的考虑。
3、提出矛盾的问题,引起学生的疑惑。
学消费生疑惑,探求真理的愿望,也是激发学习兴趣的手段之一。
4、诱发求知欲。
数学快速计算方法乘法速算

一、两个20以内数的乘法两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就就是应求的得数。
如12×13=156,计算程序就是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就就是应求的积数。
二、首同尾互补的乘法两个十位数相乘,首尾数相同,而尾十互补,其计算方法就是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就就是应求的得数。
如26×24=624。
计算程序就是:被乘数26的头加1等于3,然后头乘头,就就是3×2=6,尾乘尾6×4=24,相连为624。
三、乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就就是乘数可加倍,加半倍,也可减半计算,但就是:加倍、加半或减半都不能有进位数或出现小数,如48×42就是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。
48×21=1008,48×63=3024,48×84=4032。
有进位数的不能算。
如87×83=7221,将83加倍166,或减半41、5,这都不能按规定的方法计算。
四、首尾互补与首尾相同的乘法一个数首尾互补,而另一个数首尾相同,其计算方法就是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。
如37×33=1221,计算程序就是(3+1)×3×100+7×3=1221。
五、两个头互补尾相同的乘法两个十位数互补,两个尾数相同,其计算方法就是:头乘头后加尾数为前积,尾自乘为后积。
如48×68=3264。
计算程序就是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。
六、首同尾非互补的乘法两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。
小学数学12种速算方法

小学数学速算法19*19乘法口诀记忆方法(建立在99乘法口诀的基础之上)方法一:1、被乘数加上乘数的末位数字,求出的和乘以10,2、被乘数和乘数的个位数相乘,3、然后步骤一和步骤二相加。
例:15×12=?即15+2=17,17×10=170,5×2=10,170+10=180方法二:拆分法例:15×12=?即15×10=150,15×2=30,150+30=180-----------------------------------------------------分割线--------------------------------------------------第一式:任意数和11相乘1、把和11相乘的数的首位和末位数字拆开,中间留出若干空位;2、把这个数各个数位上的数字依次相加;3、把步骤2求出的和依次填写在步骤1留出的空位上。
例1:12×11=?即1()2、即1+2=3 、即132。
例2:210×11=?即2()()0 、即2+1=3;1+0=1 、即2310。
例3:92586×11=?即9()()()()6 、即9+2=11;2+5=7;5+8=13;8+6=14 即9(11)(7)(13)(14)6 最后结果为:1018446 【注:所得和大于10往前进一位】练习:34×11=57×11=98×11= 123×11= 589×11= 967×11=25688×11= 8786854×11= 278678678×11=◆第二式:个位是5的两位数乘方运算:1、十位上的数字乘以比它大一的数;2、在上一步得数后面紧接着写上25。
例:15×15=?1、十位上的数字乘以比它大一的数,即1×2=2;2、在上一步得数后面紧接着写上,即225。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学乘法的速算方法
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例1:
15×17= 255
15 + 7 = 22
5 ×7 = 35
即:220+35=255
---------------
例2:
17 ×19 = 323
17 + 9 = 26
7 ×9 = 63
即:260 + 63 = 323
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例1:
51 ×31 = 1581
50 ×30 = 1500
50 + 30 = 80
1500 + 80 = 1580
因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,
即1580 + 1 = 1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例2:81 ×91 = 7371
80 ×90 = 7200
80 + 90 = 170
7200 +170 = 7370
因为1 ×1 = 1 ,所以后一位一定是1,在得数的后面添上1,
即7370 + 1= 7371。
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例1:
43 ×46 = 1978
(43 + 6)×40 = 1960
3 ×6 = 18
1960+ 18 = 1978
例2:89 ×87 = 7743
(89 + 7)×80 = 7680
9 ×7 = 63
7680 + 63 = 7743
四、一个数乘以11,“两头一拉,中间相加”
例1:2222×11=24442
例2:2456×11=27016。